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“Unfair” associations + conseguences
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It was the same Swingline stapler, on the same Staples.com website. But for
Kim Wamble, the price was $15.79, while the price on Trude Frizzell’s screen,
just a few miles away, was $14.29.

A key difference: where Staples seemed to think they were located.

In what appears to be an unintended
side effect of Staples’ pricing
methods—likely a function of retail
competition with its rivals—the
Journal’s testing also showed that
areas that tended to see the
discounted prices had a higher
average income than areas that

tended to see higher prices.



“Unfair” associations + conseguences

Google Photos labeled black people
'gorillas’

Jessica Guynn, USA TODAY 2:10 p.m. EDT July 1, 2015

SAN FRANCISCO — Google has apologized after its new Photos
application identified black people as "gorillas."

On Sunday Brooklyn programmer Jacky Alciné tweeted a
screenshot of photos he had uploaded in which the app had labeled
Alcine and a friend, both African American, "gorillas."

Yontan Zunger, an engineer and the company's chief
architect of Google+, responded swiftly to Alciné on
Twitter: "This is 100% Not OK." And he promised that
Google's Photos team was working on a fix.
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SAN FRANCISCO — Google has apologized after its new Photos
application identified black people as "gorillas."

On Sunday Brooklyn programmer Jacky Alciné tweeted a
screenshot of photos he had uploaded in which the app had labeled
Alcine and a friend, both African American, "gorillas."

These are software bugs: need to actively test for them

and fix them (i.e., debug) in data-driven applications...
just as with functionality, performance, and reliability bugs.
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What doesn’t work:
* Hide protected attributes from data-driven application.
e Aim for statistical parity w.r.t. protected classes and service output.
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Foremost challenge is to even detect these unwarranted associations.
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FairTest: a testing suite for data-driven apps

* Finds context-specific associations between protected variables and
application outputs

* Bug reportranks findings by assoc. strength and affected pop. size

prices, tags, ...
[ location, click, ... & Data-driven | %—]
User inputs o Application outputs
P application PP P

race, gender, ...
Protected vars.

| le code, job, .. ]> Context vars. Fa i rTe St

Explanatory vars.
qualiﬁcations, ]/
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A data-driven approach

Core of FairTest is based on statistical machine learning

Find context-specific associations

Tra I nl ng data |<=50K [|556(73%) 2061 (88%) | 115647 (75%) |18640 (76%) |
| >50K [206(27%) | 287(12%)| | 5238(25%) | 5781 (24%) |
|Total |762 (3%)2348(10%)| |20885(86%) [24421(100%) |

Test data
Statistically validate associations

Ideally sampled from
relevant user population

Statistical machine learning internals:

* top-down spatial partitioning algorithm Qﬁ

* confidence intervals for assoc. metrics

@

Report of associations of O=Income on Si=Race:
Global Population of size 24,421
p-value = 1.3%9e-53 ; NMI = [0.0063, 0.0139]

| Income | Asian| Black| | White| Totall|

1. Subpopulation of size 341
Context = {Age <= 42, Job: Fed-gov, Hours <= 55}
p-value = 3.24e-03 ; NMI = [0.0085, 0.1310]

|Income| Asian| Black]| | White| Total|

|<=50K [10(71%) |62(91%) | 1153(63%) 239 (70%) |
[>50K | 4(29%)| 6 (9%) | | 91(37%) (102 (30%) |
|Total |14 (4%)168(20%) | [244(72%) 341(100%) |

2. Subpopulation of size 14,477
Context = {Age <= 42, Hours <= 55}
p-value = 7.50e-31 ; NMI = [0.0070, 0.0187]

| Income | Asian| Black| | White| Totall|

|<=50K [362(79%) 1408 (93%) | 110113(83%) [12157 (84%) |
[>50K | 97(21%) | 101 (7%)| | 2098(17%)| 2320 (16%) |
|Total [459 (3%) [1509(10%) | 12211 (84%) [14477(100%) |

)




Example: health care application

Predictor of whether patient will visit hospital again in next year
(from winner of 2012 Heritage Health Prize Competition)

age, gend.er, Will patl.ent be
# emergencies, ... re-admitted?
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Association may translate to quantifiable harms
(e.g., if app is used to adjust insurance premiums)!
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Admission into UC Berkeley graduate programs

(Bickel, Hammel, and O’Connell, 1975)

Bickel et al’s (and also FairTest’s) findings: gender bias in admissions at
university level, but mostly gone after conditioning on department

age, gender,GPA, ... ——»

—» Admit applicant?

FairTest helps developers understand & evaluate
potential association bugs.
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