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Chapter 1

Introduction

We present an overview of active learning and the contributions of this dissertation.

1.1 Active and Passive Learning

This dissertation is concerned with automated procedures for active learning. Active learning
is best described in contrast to passive learning—a standard, well-studied learning framework
established in statistics and machine learning. In passive learning (sometimes referred to
simply as supervised learning), the goal of a learner is to infer an accurate predictor from
labeled training data. The labeled training data are examples of input-output pairs (x, y):
the output (or label) y represents the correct answer to a question associated with the input
x. For example, in the problem of e-mail classification, the label y may be the “yes” / “no”
answer to whether a particular e-mail message x is spam or not. These labeled examples
are collected prior to the learning (training) process, and the intention is to deploy a learned
predictor to predict the labels of input instances x encountered in the future. The goal of
the learner, during the training process, is to infer such a predictor from the training data
that is accurate with respect to these future input instances.

Active learning models a slightly different framework in which the initially available data
does not come with any labels. That is, each training data point is simply an input x
without an associated label y. The goal of the active learner is the same as that of a passive
learner: to infer an accurate predictor of labels from inputs. However, the active learner is
allowed to request the label y of any particular input x in the training data; these requests
can be made sequentially, so as to adapt to the results of previous label requests. In the
e-mail classification example, this function of the active learner can be seen as asking the
user whether a particular e-mail in the mailbox is spam or not. This interactive process
of building up a (partially) labeled data set may continue for some time, but eventually a
predictor must be returned by the active learner for use in predicting the labels of future
input instances.1

The practical motivations of the active learning framework are grounded in the disparity

1An intermediate framework between supervised (passive) learning and active learning is called semi-
supervised learning [CSZ06]. There, the learner is given both labeled data and unlabeled data (and typically
the latter is in relative abundance), but otherwise the learning process is the same as passive learning.
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6 CHAPTER 1. INTRODUCTION

between the availability of labeled and unlabeled data. Unlabeled data is nowadays often
available in vast quantities, with the raw features of input instances easily collected by
automatic processes. For instance, the internet contains trillions of web pages that are
readily collected by robots. However, assigning a label to a web page (say, of the page’s
subject matter) may demand significantly more effort. Labeling typically requires some
manual intervention to evaluate or judge input instances, and this can be a costly enterprise
(e.g., in terms of time or money), especially relative to the high-throughput collection of
the unlabeled data itself. Therefore, in many modern applications of machine learning, only
unlabeled data is available cheaply and in large quantities, whereas the labels are expensive
to obtain.

The active learning framework addresses the challenge faced in these modern applications
by explicitly modeling the process of obtaining labels for unlabeled data. The hope is that
the active learner just needs to request the labels of just a few, carefully chosen points during
the interactive process in order to produce an accurate predictor.

This dissertation explores both the algorithmic and statistical aspects of active learning
for binary classification. What are effective procedures for determining which data to label?
How can these procedures take advantage of the interactive learning process, and in what
circumstances do they yield improved learning performance compared to standard passive
learners? To answer these questions, we develop and rigorously analyze a broad class of gen-
eral active learning methods that address the essential algorithmic and statistical difficulties
of the problem.

1.2 Some Motivating Examples

Learning Threshold Functions

Consider first the task of learning a threshold function of a single variable. A single-variable
threshold function fθ : R → {±1}, parameterized by the real number θ ∈ R (the threshold
value), is defined by

fθ(x) :=

{
+1 if x ≥ θ
−1 if x < θ

for all x ∈ R. Threshold functions are a basic tool for classifying univariate data.
Suppose a (passive) learner is presented with n labeled examples, i.e., pairs (xi, yi) ∈

R × {±1} for 1 ≤ i ≤ n. A reasonable predictor that the learner could produce is one for
which the number of disagreements with the given examples is minimal. That is, the learner
could choose θ ∈ R such that

|{1 ≤ i ≤ n : fθ(xi) 6= yi}|

is as small as possible. For now, we assume that all of the labels actually correspond to
some threshold function fθ∗ , so yi = fθ∗(xi) for all 1 ≤ i ≤ n. Therefore, the learner can
easily find some threshold value θ ∈ R that has no disagreements with the given examples,
so |{1 ≤ i ≤ n : fθ(xi) 6= yi}| = 0.

Suppose now the same examples are presented to an active learner, except that the labels
yi are initially withheld. It turns out that an active learner can also find a threshold value
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θ ∈ R such that fθ has no disagreements with the (xi, yi), and it can do so after requesting
just log2 n of the labels! To see this, note the correspondence of this problem to binary search
for the target threshold θ∗: if a requested label yi is +1, then we can infer that θ∗ ≤ xi, and
therefore yj = +1 for all xj ≥ xi; if yi is −1, then θ∗ > xi, and therefore yj = −1 for all
xj ≤ xi. Thus, one can simply choose to request the label of a point xi at the median of the
unlabeled points; this is guaranteed to result in an outcome that lets the learner label (for
free) at least half of the other unlabeled points.

+

must also be +query point
(label is +)

Active Learning as Binary Search?

The strategy for learning single-variable threshold functions represents a best-case scenario
for active learning: just log2 n label requests are needed to deduce all of the n labels, after
which standard passive learning techniques (such as returning a consistent predictor) can be
readily applied. What aspects of the learning problem made this possible?

1. At any point in the interactive process, the active learner could always make a query
(label request) that results in labeling (for free) at least half of the other unlabeled
points. Viewed another way, the query eliminates at least half of the potential classifiers
still in contention.

2. We crucially made an assumption that the labels yi = fθ∗(xi) correspond to some
threshold function fθ∗ .

Unfortunately, these aspects do not always carry over to other learning problems: there
need not always be queries that provide the information needed for a binary search-like
process, even when the labels perfectly correspond to a simple function. And, of course,
labels are often noisy, whether due to the occasional erroneous annotation or because of
model mismatch.

Learning Interval Functions

Consider now the problem of learning single-variable interval functions fa,b : R → {±1},
where

fa,b(x) :=

{
+1 if a ≤ x < b
−1 if x < a or x ≥ b.

Even in the case where the labels correspond exactly to some interval function fa∗,b∗ , the
active learner may need to request all labels in order to distinguish between intervals that
include any particular xi (i.e., one for which fa,b(xi) = +1), and an interval that includes
none of the xi (i.e., one for which fa,b(xi) = −1 for all 1 ≤ i ≤ n) [Das05]. In the example
depicted below, all of the boxed points are determined to be −1, and still the active learner
cannot avoid requesting the label of the final point to choose between fa,b and fa′,b′ .
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b

a′ b′

a

all − all −?

Thus, the active learning process need not take the form of a straightforward binary search.
Consider the following two-phase strategy for learning a single-variable interval function

fa,b, also described in [Das05].

1. Request the label of randomly chosen xi until some yi is found such that yi = +1. If
no yi = +1, then return the empty interval function.

2. Use the binary search-like procedure for learning single-variable threshold functions to
determine the interval boundaries a and b, and return fa,b.

The crucial observation behind this algorithm is that an interval function can be described
by two single-variable threshold functions

fa,b(x) =

{
+1 if fa(x) = +1 and fb(x) = −1
−1 if fa(x) = −1 or fb(x) = +1.

The binary search for b pretends that all points to the left of positive point xi have a negative
label; the binary search for a is similar.

The first phase of the algorithm is certainly not like binary search, but it serves the useful
purpose of identifying a starting point for binary search in the second phase. In the worst
case, the algorithm may end up querying every label before transitioning into this second
phase. But if a significant fraction of the points are labeled +1 by fa∗,b∗ , then the first phase
ends quickly.

Both phases of the algorithm are susceptible to noise. Can it be made more robust?
Suppose it is known that

|{1 ≤ i ≤ n : fa∗,b∗(xi) 6= yi}| ≤ 1

2
· |{1 ≤ i ≤ n : fa∗,b∗(xi) = +1}|.

Then, the first phase is modified so that instead of using the first positively-labeled point
as the basis for the start of the binary searches for a and b, we use the median of the
first several positively labeled points (the precise number depends on the level of confidence
desired). Note that this median point will be positively labeled by fa∗,b∗ as long as a majority
of the positively labeled points are as well. Therefore, this modified procedure produces a
point that reduces the task to that of active learning threshold functions. Although this was
not a complete nor general solution, it suggests that with some care, active learning methods
can in fact be made robust to noise.

General Procedures

Instead of developing specific procedures for each individual learning problem of interest (e.g.,
a special procedure for learning of threshold functions, a different procedure for learning
interval functions, and so on), we will develop general methods that tackle broad classes
of learning problems together. Of course, this approach cannot yield better solutions for
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individual problems than specialized methods. However, by approaching the problem of
active learning from a more abstract perspective, we can identify general issues specific to
active learning algorithms that are distinguished from the concerns of passive learning. The
general procedures that are developed can then be specialized to specific problems with fine
tuning that is often anyway required in practice.

1.3 Literature Review

The review in this section focuses primarily on algorithmic techniques for active learning that
have been rigorously analyzed. For a review of various heuristic techniques, applications,
and model extensions, see the survey of [Set09].

The theoretical study of active learning for binary classification initially focused on a
model of learning with membership queries [Ang98, Ang04]. In this model, the learner is
allowed to query the label of any unlabeled data point, even an artificially created one. The
primary drawback of this model is that the synthesized data points may be too unnatural for
a human to label them [LB92]. Therefore, the theoretical focus of active learning has turned
to a model in which the learner is only allowed to query the label of data points drawn from
the underlying distribution.

The work of Cohn, Atlas, and Ladner [CAL94] (which will be discussed in Chapter 2) pre-
sented a selective sampling scheme based on uncertainty sampling in noise-free settings. This
scheme has been the inspiration for many subsequent work on active learning, including the
algorithms developed in this dissertation. The idea of uncertainty sampling—querying the
label of points about which the learner is least sure about—quickly took on many forms, both
in probabilistic and non-probabilistic settings [LC94, LG94, SC00]. The query-by-committee
(QBC) algorithm of Seung, Opper, and Sompolinsky [SOS92] considered a form of uncer-
tainty sampling grounded in a Bayesian framework, where uncertainty is measured relative
to a prior distribution over hypotheses or models. QBC was formally analyzed in [FSST97],
where it was shown that the class of linear separators under a uniform data distribution
could be learned exponentially faster in the active learning model than in a passive learning
model. A simpler (non-Bayesian) algorithm for this task was given in [DKM05].

In the noise-free setting, active learning was abstractly studied by Dasgupta in [Das04,
Das05]. The work in [Das04] analyzed a greedy algorithm that is often approximated by
Bayesian methods (e.g., [TK00]). It also initiated the rigorous study of the generalization
properties of active learning algorithms. The work in [Das05] characterized the label com-
plexity of active learning problems with a parameter called the splitting index—upper and
lower bounds on label complexity were proved in terms of this quantity. Unfortunately,
the algorithm achieving the upper bound is generally intractable. A different perspective
on sample complexity considered in [BHW08] shows that active learning always strictly im-
proves on the label complexity of passive learning, although the improvement may be very
small.

In the noisy setting, Kääriäinen showed a lower bound on the number of label queries
required for any active learner to achieve a particular generalization error relative to the
inherent noise rate [Kää06]. This lower bound is matched in certain cases by an algorithm
developed by Balcan, Beygelzimer, and Langford called A2 [BBL06] (which we discuss in



10 CHAPTER 1. INTRODUCTION

Chapter 2). A2 was subsequently analyzed by Hanneke, who proved an upper bound on its
label complexity in terms of a parameter called the disagreement coefficient [Han07]. The
disagreement coefficient was further studied in [Fri09, Wan09], giving further justification to
algorithms with label complexity bounded in terms of this quantity. Koltchinskii remarks
that a similar parameter was previously used for studying ratio-type empirical processes,
which has applications in passive learning [Ale87, GK06, Kol09]. A generalization of the
disagreement coefficient to a certain class of loss functions was presented in [BDL09]. This
work of [BDL09] also presents a framework called importance weighted active learning (which
we discuss in Chapter 5), upon which one of the algorithms in this dissertation is based.
(One of the algorithms in [BDL09] generalizes an algorithm developed in this dissertation
in Chapter 4.) Finally, restrictions on the noise model (based on the low-noise condition of
[Tsy04]) have also been studied and algorithmically exploited [BBZ07, CN06, CN07, Han09,
Kol09]; under these restrictions, the achievable label complexity interpolates between what
is achievable in the noise-free setting and the general (agnostic) noisy setting considered
by [Kää06, BBL06].

1.4 Summary of Contributions

We begin by studying general approaches to active learning based on the idea of uncertainty
sampling—querying the label of points about which the learner is “uncertain” in a precise
sense. In Chapter 2, we describe the methods of [CAL94] and [BBL06] for (respectively)
PAC and agnostic active learning. We describe a novel analysis of the [CAL94] procedure,
specifically using a parameter called the disagreement coefficient, which was used by [Han07]
for analyzing the [BBL06] procedure. This analysis turns out to be tighter than the corre-
sponding analysis of [BBL06] when specialized to the PAC setting. We compare the results
of both analyses to other upper and lower bounds for active and passive learning.

Both of the procedures from [CAL94] and [BBL06] are algorithmically underspecified:
they require a mechanism for maintaining a subset of the hypotheses still under consideration
by the algorithm; doing this efficiently was a challenge in the work of [CAL94] and not
addressed by [BBL06]. In Chapters 3, 4, and 5, we present reduction-based active learning
methods that are more algorithmic. In Chapter 3, we show how the procedure of [CAL94]
can be viewed as a reduction to a very standard form of PAC learning. This immediately
yields efficient procedures for PAC active learning whenever the corresponding PAC (passive)
learning problems can be solved. The analysis also yields general upper bounds for these
PAC active learning problems.

In Chapter 4, we show how to make the procedure of [BBL06] more algorithmic by
recasting it using reductions to a particular form of agnostic learning. Unfortunately, this
algorithm, like the [BBL06] procedure, suffers from a suboptimal analysis when specialized
to the PAC setting. Thus, we also describe a more straightforward extension of the [CAL94]
procedure that does recover the tighter analysis. We show how the corresponding notions
used in the analysis of the [CAL94] procedure carry over to the agnostic setting for this new
algorithm.

In Chapter 5, we describe two new algorithms based on reductions to simpler forms of
agnostic learning. These algorithms have qualitative advantages over those in Chapter 4.
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The first algorithm is a relaxation of the second method from Chapter 4 that allows for
the use of reductions to simpler forms of agnostic learning. The second algorithm is based
on importance weighting [BDL09], a technique for ensuring unbiased error estimates. We
present a novel analysis of these error estimates, which is crucial for the analysis of the
importance weighting active learning algorithm itself.

1.5 Learning Framework

We develop and analyze our algorithms with the standard PAC and agnostic learning frame-
works in mind [Val84, KSS94]. These are standard in the study of supervised (passive)
learning, and thus will allow us to compare the performance of our active learning proce-
dures to their passive learning counterparts.

Let D be a distribution over X × Y where X is the input space and Y = {±1} are the
possible labels. Let (X,Y ) ∈ X ×Y be a pair of random variables with joint distribution D.
Here, X represents an unlabeled data point, and Y is its corresponding label.

Let H be a set of hypotheses mapping from X to Y . The error of a hypothesis h : X → Y
is

err(h) := Pr(h(X) 6= Y ).

Let h∗ := arg min{err(h) : h ∈ H} be a hypothesis of minimum error in H—we assume for
simplicity that the minimum always exist. The goal of the learner is to return a hypothesis
h ∈ H with error err(h) not much more than err(h∗).

In the realizable (PAC) setting of learning (active and passive), we assume that h∗ has
zero error err(h∗) = 0, i.e., that the labels perfectly correspond to the optimal hypothesis
h∗. In this case, we can simply write err(h) = Pr(h(X) 6= h∗(X), since the conditional
distribution of Y given X = x is deterministic. In the agnostic setting, the distribution of
(X,Y ) is arbitrary—no assumption is made about err(h∗).

We assume a learner has access to independent and identically distributed (iid) copies of
the pair (X,Y ). However, the active learner is not immediately given access to the labels;
the labels are hidden from the learner unless the learner explicitly queries to see them. The
active learner therefore has the added objective of minimizing the number of label queries
(in addition to returning a low-error hypothesis).

The sample complexity of an algorithm (with respect to D and H) is the required number
of labeled examples randomly drawn from D so that, with probability at least 1 − δ over
the choice of the random examples, the algorithm produces a hypothesis h ∈ H with error
err(h) ≤ err(h∗) + ǫ. The label complexity of an active learning algorithm is the number
of label queries required to achieve the same goal. Note that a standard passive learning
algorithm can be viewed as an active learning algorithm that simply queries every label.
Therefore it has label complexity equal to its sample complexity. We are interested in active
learning algorithms that improve on this baseline.
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Chapter 2

Active Learning with Version Spaces

We present two active learning algorithms based on a simple version space approach, as well
as a concept called the disagreement coefficient for analyzing the label complexity of active
learning algorithms.

2.1 Introduction

One technique that has proved theoretically profitable is to maintain a candidate set of
hypotheses (sometimes loosely called a version space), and to query the label of a point only
if there is disagreement within this set about how to label the point. Note that if there is
no disagreement within the set about how to label a point (i.e. every hypothesis there labels
the point the same way), then the label of the point cannot be used to distinguish between
any hypotheses in the set. Now, the criteria for membership in this candidate set need to
be carefully defined so that the optimal hypothesis h∗ is always included, but otherwise the
set can be quickly pared down as more labels are queried.

To apply this technique, we need to resolve two issues: (i) what are the criteria for
membership in the candidate set, and (ii) if there are several data points of disagreement for
a candidate set, which one should we label?

In this chapter, we describe two algorithms based on this paradigm: the first for the
(realizable) PAC setting due to [CAL94], and the second for the agnostic setting due to
[BBL06]. The algorithms differ in the way they address the first issue above (due to the
assumptions made in PAC learning), but are similar in the way they address the second.

2.2 PAC Active Learning

2.2.1 Algorithm

In PAC (active) learning, we assume there exists a hypothesis h∗ ∈ H that correctly labels
every example, i.e. Pr(h∗(X) = Y ) = 1. Although this is often an unrealistic assumption in
practice, we will see that some of the algorithmic ideas in this setting can be transferred to
the more realistic agnostic setting.

13
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The algorithm of [CAL94], which we henceforth refer to as CAL, is shown in Figure 2.1.
CAL proceeds by examining the unlabeled data points X1, X2, . . . one at a time, and decides
after each point Xt whether or not to examine (i.e. query) its label Yt. Whenever CAL doesn’t
query the label Yt, it synthesizes one Ỹt on its own. Thus, after examining t unlabeled data
points, the algorithm has a set of t labeled examples Zt.

As suggested at the beginning of this chapter, the choice of whether or not to query yt

is made based on whether there is disagreement about how to label xt among hypotheses in
the version space Vt := V(Zt), where

Definition 2.1. For a set of labeled examples Z ⊂ X × Y, the version space V(Z) with
respect to a hypothesis class H is

V(Z) := {h ∈ H : h(x) = y ∀(x, y) ∈ Z}
the subset of hypotheses in H consistent with the examples in Z.

For example, suppose the hypothesis class H is the set of linear separators in the plane.
The version space for the set of points depicted below contains all linear separators consistent
with the labeling of these points.

������
��

�����
�
�
�

��

��
�����
�
�
�

(Just two of the hypotheses are depicted.)
Formally, CAL chooses to query the label Yt if and only if Xt is in the region of disagree-

ment R(Vt−1) for Vt−1:

Definition 2.2. For a set of hypotheses V , the region of disagreement1 R(V ) is

R(V ) := {x ∈ X : ∃h, h′ ∈ V such that h(x) 6= h′(x)}
the set of unlabeled examples x for which there are hypotheses in V that disagree on how to
label x.

Continuing our previous example, the indicated point in the figure below is not in the
region of disagreement with respect to the current version space.
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Clearly, all of the hypotheses in the version space also assign the indicated point a −1 label.
Note that Step 2(b) in CAL is unnecessary (and can simply be replaced by Zt := Zt−1).

This is because if Step 2(b) is executed in, say, iteration t, then every h ∈ Vt−1 has h(Xt) = Ỹt;
in this case,

Vt = Vt−1 ∩ {h ∈ Vt−1 : h(Xt) = Ỹt} = Vt−1.

Put another way, the version space is unchanged by the synthesized labels.

1[CAL94] defines a region of uncertainty with respect to a set of labeled examples Z ⊂ X × Y; it is
equivalent to R(V(Z)).
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Algorithm 2.1 (CAL)
Initialize: Z0 := ∅, V0 := H.
For t = 1, 2, . . . , n:

1. Obtain unlabeled data point Xt.

2. If there exist h, h′ ∈ Vt−1 such that h(Xt) 6= h′(Xt):

(a) Then: Query Yt, and set Zt := Zt−1 ∪ {(Xt, Yt)}.
(b) Else: Set Ỹt := h(Xt) for any h ∈ Vt−1, and set Zt := Zt−1 ∪ {(Xt, Ỹt)}.

3. Set Vt := {h ∈ H : h(Xi) = Yi ∀(Xi, Yi) ∈ Zt}.

Return: any h ∈ Vn.

Figure 2.1: The algorithm of [CAL94] for PAC active learning.

2.2.2 Correctness Analysis

CAL correctly deduces the labels assigned by h∗ whenever it doesn’t query the true label Yt.
This is formalized in the following theorem.

Theorem 2.1. Assume h∗ ∈ H satisfies h∗(Xt) = Yt for all t. Every label Ỹt synthesized by
CAL (in Step 2(b)) is the true label ( i.e. Ỹt = h∗(Xt)).

Proof. By induction on t. If CAL synthesizes the label Ỹt, then every hypothesis h ∈ Vt−1

assigns h(Xt) = Ỹt. If t = 1 (the base case), then h∗ ∈ H = V0 so h∗(Xt) = Ỹt. If t > 1, we
assume as the inductive hypothesis that Zt−1 = {(X1, h

∗(X1)), . . . , (Xt−1, h
∗(Xt−1))}; this

implies h∗ ∈ Vt−1 so h∗(Xt) = Ỹt.

We conclude that the final hypothesis returned by CAL after seeing n random unlabeled
examples is, in fact, consistent with n random labeled examples. This means that CAL
has label complexity bounded by that of a passive learning algorithm that simply returns a
hypothesis consistent with a given labeled sample.

2.2.3 Disagreement Coefficient

The cases in which CAL will have an improved label complexity over passive learning are
particular to the hypothesis class H and the data distribution D. The relevant quantity
that characterizes the label complexity of CAL is the disagreement coefficient, which was
used in [Han07] for analyzing the label complexity of the A2 algorithm of [BBL06]. A
similar quantity was previously used for studying ratio-type empirical processes in passive
learning [Ale87, GK06, Kol09].

To introduce the disagreement coefficient, we first define a metric on the set of hypotheses
H.
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Definition 2.3. For a random variable X ∈ X , the disagreement (pseudo) metric ρ on H
is defined by

ρ(h, h′) := Pr(h(X) 6= h′(X)).

The disagreement metric is a pseudo-metric because we may have ρ(h, h′) = 0 but h 6= h′.
Nevertheless, it inherits the other metric properties from the L1 probability metric induced
by the distribution of X (e.g., the triangle inequality).

Let B(h, r) := {h′ ∈ H : ρ(h, h′) ≤ r} denote the ball centered at h ∈ H of radius r ≥ 0.
We can now define the disagreement coefficient.

Definition 2.4. The disagreement coefficient θ(H,D) with respect to a hypothesis class H
and distribution D is

θ(H,D) := sup

{
Pr(X ∈ R(B(h∗, r)))

r
: r > 0

}
(2.1)

where h∗ is a (particular) hypothesis of minimum error under D.

Note that we can also consider a variant of the disagreement coefficient in Eq. (2.1) so
that the supremum is taken over r = Ω(ǫ) where ǫ > 0 is the target error rate. This is
sensible because we may only care about the distinction between hypotheses up to some
tolerable error rate ǫ. In this case, we always have θ(H,D) ≤ O(1/ǫ).

We now give some intuition behind the disagreement coefficient. Suppose in the course
of active learning, an algorithm has narrowed down its current set of candidate hypotheses
Vt to just those of error at most rt. In the notation above, this means that

err(h) = Pr(h(X) 6= Y ) = Pr(h(X) 6= h∗(X)) = ρ(h, h∗) ≤ rt

for every h ∈ Vt; i.e. Vt ⊆ B(h∗, rt). Now, the only examples that can possibly help
distinguish hypotheses in Vt are those in R(Vt) ⊆ R(B(h∗, rt). This is because all x 6∈ R(Vt)
are labeled in the same way by every h ∈ Vt. As learning progresses, we expect Vt to shrink
and rt to decrease: the algorithm will need to consider fewer hypotheses, and will be able to
return a more accurate result. If the active learning algorithm simply chooses to query the
label of any randomly chosen example that is in R(Vt), then the size of this region relative
to rt will determine its label complexity. This is the ratio captured by the disagreement
coefficient.

The disagreement coefficient is derived for various (H,D) pairs in [Han07]. If H is the
class of single-variable threshold functions, and X has a uniform distribution on [0, 1], then
θ(H,D) = 2. To see this, any hθ ∈ B(hθ∗ , r) has θ ∈ [θ∗ − r, θ∗ + r], which has probability
mass 2r.

r

θ∗

In the case of single-variable interval functions with the same distribution on X, we have
that θ(H,D) = max(4, 1/ Pr(h∗(X) = 1)). To see this, note that if r < (b∗ − a∗), then any
ha,b ∈ B(ha∗,b∗ , r) has a ∈ [a∗ − r, a∗ + r] and b ∈ [b∗ − r, b∗ + r], which accounts for a region
of probability mass 4r;
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Algorithm 2.2 (Phased CAL)
Initialize: Z0 := ∅, V0 := H, p := 0, t0 := 0.
For t = 1, 2, . . . , T :

1. Repeatedly sample Xt until Xt ∈ R(Vtp).

2. Query Yt, and set Zt := Zt−1 ∪ {(Xt, Yt)}.

3. Set Vt := {h ∈ H : h(Xi) = Yi ∀(Xi, Yi) ∈ Zt}.

4. If Pr(X ∈ R(Vt)) ≤ 1
2
Pr(X ∈ R(Vtp)), then set tp+1 := t and p := p + 1

(i.e. advance to the next phase).

Return: any h ∈ VT .

Figure 2.2: A variant of the CAL algorithm.

r

a∗ b∗

if r ≥ (b∗ − a∗), then B(ha∗,b∗ , r) contains every ha,b with b − a ≤ r − (b∗ − a∗), and such
hypotheses potentially disagree with ha∗,b∗ everywhere.

a∗ b∗

a′ b′ a′′

r

b′′

Finally, if H = {hw : w ∈ R
d, hw(x) = sgn(w · x)} is the class of homogeneous linear

separators in R
d, and X is uniformly distributed on the surface of the unit ball {x ∈ R

d :
‖x‖ = 1}, then π

√
d/4 ≤ θ(H,D) ≤ π

√
d.

2.2.4 Label Complexity Analysis

We now give a label complexity analysis of CAL. The goal of this analysis is to determine
the number of label queries required for the algorithm to return a hypothesis of error at most
ǫ.

To more transparently illustrate the version space technique, we will actually analyze
a slight variant of CAL which we call Phased CAL (Figure 2.2). Phased CAL has similar
correctness and label complexity analyses as CAL proper.

The differences between Phased CAL and CAL proper are as follows. In Phased CAL,
we assume for simplicity of analysis that H is finite. The arguments can be made to work
for infinite classes using, say, covering arguments, but we omit these details because they
distract from the core ideas.
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Another difference is that the iterations of Phased CAL are divided into phases p =
0, 1, 2, . . .. Let Ip := {tp + 1, tp + 2, . . . , tp+1} be the iterations in phase p; each phase p is
characterized by a version space Vtp fixed at the beginning of the phase. By construction,
the regions of disagreement Rtp := R(Vtp) decrease geometrically in probability mass with
p. Note that this aspect of Phased CAL is the main point of inefficiency relative to CAL
proper. CAL will query Yt only if Xt is in the region of disagreement for Vt, which is just a
subset of Vtp if t ∈ Ip. Therefore the label complexity of Phased CAL essentially bounds the
label complexity of CAL proper.

The final difference is that Xt for t ∈ Ip is repeatedly sampled (i.e. independent copies
are instantiated) until Xt ∈ Rtp . This can be seen as a form of rejection sampling—passing
up unlabeled data points until we find one in Rtp . We note that this is actually only a
cosmetic difference, since CAL proper effectively does this as well.

Theorem 2.2. Fix any ǫ ∈ (0, 1) and δ ∈ (0, 1). With probability at least 1 − δ, Phased
CAL returns a hypothesis h ∈ H with err(h) ≤ ǫ after querying at most

O

(
θ(H,D) ·

(
log

|H|
δ

+ log log
1

ǫ

)
· log

1

ǫ

)

labels.

Proof. Fix some p ≥ 0. Let Hp := {h ∈ Vtp : ρ(h, h∗) > rp} for some rp > 0. These are
the “bad” hypotheses in Vtp that the algorithm will eliminate before moving onto the next
phase. A bad hypothesis is eliminated (in Step 3) by observing an example (x, y) for which
h(x) 6= y. For any h ∈ Hp, we have

Pr(h(X) 6= h∗(X)|X ∈ Rtp) ≥
rp

Pr(X ∈ Rtp)
=: cp

and thus
Pr(h(Xt) = h∗(Xt) ∀t ∈ Ip|Xt ∈ Rtp ∀t ∈ Ip) ≤ (1 − cp)

tp+1−tp

by the independence of the xt. By a union bound over all h ∈ Hp, we have

Pr(∃h ∈ Hp � h(Xt) = h∗(Xt) ∀t ∈ Ip|Xt ∈ Rtp ∀t ∈ Ip) ≤ |Vtp|(1 − cp)
tp+1−tp =: δp.

The above inequality states that the probability the algorithm fails to eliminate all of the
bad hypotheses Hp is at most δp.

In order to have Pr(X ∈ Rtp+1
) ≤ (1/2) Pr(X ∈ Rtp), it suffices to ensure that Vtp+1

⊆
B(h∗, rp) with rp := Pr(X ∈ Rtp)/(2θ(H,D)). This is because

Pr(X ∈ Rtp+1
) ≤ Pr(X ∈ R(B(h∗, rp)))

≤ θ(H,D) · rp

≤ θ(H,D) · Pr(X ∈ Rtp)

2θ(H,D)

=
1

2
· Pr(X ∈ Rtp).



2.2. PAC ACTIVE LEARNING 19

With the above choice of rp, we have cp = 1/(2θ(H,D)) (for all p), so

δp = |Vtp|
(

1 − 1

2θ(H,D)

)tp+1−tp

≤ |V0|e−(tp+1−tp)/(2θ(H,D))

using the fact 1 + a ≤ ea as well as the crude bound |Vtp| ≤ |V0|. So, by a union bound
over phases p = 0, 1, . . . , P − 1, the bad hypotheses Hp are eliminated in each phase p with
probability at least

1 − |V0|
P−1∑

p=0

e−(tp+1−tp)/(2θ(H,D)).

Note that if

tp+1 − tp =

⌈
2θ(H,D) log

P |V0|
δ

⌉

for each 0 ≤ p ≤ P , then the success probability above is at least 1 − δ. That is, with
probability at least 1 − δ, the algorithm will successfully eliminate the bad hypotheses Hp

after querying at most O(θ(H,D) · log(P |V0|/δ)) labels in each phase p. In this event, with
P = O(log 1/ǫ), the final hypothesis returned has error at most ǫ, and the number of labels
queried is

P−1∑

p=0

tp+1 − tp = O

(
θ(H,D) · log

1

ǫ
·
(

log
|V0|
δ

+ log log
1

ǫ

))

as claimed.

When is the bound from Theorem 2.2 an improvement over passive learning? Suppose
θ(H,D) = O(1). The bound states that, in terms of ǫ, the number of labels required by
Phased CAL is just O(log(1/ǫ) · log log(1/ǫ)). In contrast, the number of labeled examples
required of a passive learner is Ω(1/ǫ). Therefore, in this case, active learning provides an
exponential improvement over passive learning in label complexity.

Of course, we have assumed here that θ(H,D) is bounded. which is not always the case.
However, if we consider the alternative definition of θ(H,D) in which the supremum is taken
over r = Ω(ǫ) in Eq. (2.1), then it may be possible to explicitly consider the dependence
on ǫ and achieve a tighter label complexity analysis. We may then view the analysis in
Theorem 2.2 as applicable in the regime where θ(H,D) is constant, understanding that
another analysis may better characterize what happens outside of this regime.

2.2.5 Discussion

We remark that CAL (and Phased CAL) is a suboptimal strategy for active learning for a
simple reason: it is content with querying the label of any point in the disagreement region.
This is evident in the analysis of Phased CAL, which says that the number of queries to
advance from one phase to the next is roughly proportional to the disagreement coefficient
θ(H,D). A better strategy would be to query a point that potentially eliminates as many
bad hypotheses as possible; this may be many more than can be eliminated by a typical
(random) point in the region of disagreement.
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A simple example of this disparity is the case where X is uniformly distributed on the
unit sphere in R

d, and H is the set of homogeneous linear separators. In this case, θ(H,D) ≈√
d [Han07]; however, there are always points to query that will eliminate a constant fraction

of the bad hypotheses [Das05, BBZ07]. Therefore, CAL is roughly
√

d times suboptimal in
label complexity, due to its conservativeness in choosing points to query.

A more aggressive active learning strategy was discovered by Dasgupta, who characterized
the label complexity of the algorithm by a sharper quantity called the splitting index [Das05].
However, Dasgupta’s algorithm is computationally intractable, whereas CAL can be made
computationally tractable, as we will see in the next chapter. We leave as an open problem
whether Dasgupta’s algorithm can be made computationally tractable, perhaps in the similar
manner as CAL. Note that in special cases, there are efficient algorithms that achieve the
same label complexity as Dasgupta’s algorithm [FSST97, GBNT05, DKM05, BBZ07].

2.3 Agnostic Active Learning

Agnostic (active) learning differs from PAC (active) learning in that we no longer assume
there exists a hypothesis in H that correctly labels every example. Therefore, the learner
only hopes to return a hypothesis with error not much more than that of a hypothesis h∗ ∈ H
with minimum error

h∗ := arg min
h∈H

errD(h)

(we assume the minimum exists for simplicity).
The correctness of the CAL algorithm crucially relies on the assumption that the hypoth-

esis class H contains a classifier h∗ that perfectly labels all of the data. Such an assumption
is both often unrealistic and potentially dangerous in practice. The second point here de-
serves further explanation. The consistency analysis in Theorem 2.1 actually implies that
CAL is always able to find a hypothesis in H consistent with its set of labeled examples Zt,
even if no h ∈ H is consistent with the true labels. This is because the synthesized labels
Ỹt always correspond to some h ∈ Vt−1 ⊆ H, and true labels Yt are only queried if there
are hypotheses in Vt−1 consistent with both Yt = +1 and Yt = −1. Therefore, CAL never
discovers if the data is actually inconsistent with every hypotheses in H (which is often easily
checked in the non-active setting), and the hypothesis returned can be significantly worse
than the best hypothesis in the class. Thus assuming the existence of a perfect hypothesis
can be a self-fulfilling delusion in active learning. Related inconsistency issues arise with a
variety of active learning methods, including many based on uncertainty sampling and other
similar heuristics.

2.3.1 Algorithm

The first algorithm designed for the agnostic setting is the A2 algorithm of [BBL06], specified
in Figure 2.3; it can be seen as a generalization of CAL (or Phased CAL) to the agnostic
setting. A2 proceeds in phases p = 0, 1, 2, . . . relative to version spaces Vp, and points are
drawn from the distribution conditioned falling in R(Vp). The variable k is used to index a
sequence of confidence parameters δk := δ/(k2 + k), which guarantees that

∑
k≥1 δk ≤ δ.



2.3. AGNOSTIC ACTIVE LEARNING 21

Algorithm 2.3 (A2)
Notes: δk := δ/(k2 + k) for all k ≥ 1.
Initialize: Z0 := ∅, V0 := H, k := 1.
For p = 0, 1, 2, . . . until

Pr(X ∈ R(Vp)) ·
(

min
h′∈Vp

UB(Zp, h
′, δk) − min

h′∈Vp

LB(Zp, h
′, δk)

)
≤ ǫ :

1. Let Zp := ∅, np := 0, V ′
p+1 := Vp, k := k + 1.

2. Repeat until Pr(X ∈ R(V ′
p+1)) ≤ 1

2
Pr(X ∈ R(Vp)):

If

Pr(X ∈ R(Vp)) ·
(

min
h′∈Vp

UB(Zp, h
′, δk) − min

h′∈Vp

LB(Zp, h
′, δk)

)
≤ ǫ

Then: return h := arg minh′∈Vp
UB(Zp, h

′, δk).
Else:

i. Let k := k + 1.

ii. Let np := 2np + 1.

iii. For t = 1, . . . , np:

A. Repeatedly sample Xp,t until Xp,t ∈ R(Vp).

B. Query Yp,t, and add (Xp,t, Yp,t) to Zp.

iv. Let V ′
p+1 := {h ∈ Vp : LB(Zp, h, δk) ≤ minh′∈Vp

UB(Zp, h
′, δk)} and k :=

k + 1.

3. Let Vp+1 := V ′
p+1 and p := p + 1.

Return: h := arg minh∈Vp
UB(Zp, h, δk).

Figure 2.3: The A2 algorithm of [BBL06] for agnostic active learning.
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The core of the algorithm is in the “else” clause of Step 2: the algorithm draws and labels
examples from the distribution D restricted to R(Vp), and then eliminates hypotheses from
Vp based on these examples. The aim here is to eliminate enough hypotheses so that the next
disagreement region R(V ′

p+1) is half as large in probability mass as the current one. This
elimination step is based on error upper- and lower-bounds UB and LB. The requirement of
these bounds is the following. If Z is a sample drawn iid from a distribution D, then with
probability at least 1 − δ,

LB(Z, h, δ) ≤ errD(h) ≤ UB(Z, h, δ)

for all h ∈ H. For concreteness, we use

UB(Z, h, δ) := err(h, Z) + O

(√
d + log(1/δ)

|Z|

)

and

LB(Z, h, δ) := err(h, Z) − O

(√
d + log(1/δ)

|Z|

)

where d is the VC dimension of H [Tal94]. Because these bounds are allowed to fail with
probability δ, the algorithm splits the overall allowed failure probability over successive
applications of the bound by setting δk := δ/(k2 + k).

Assuming the validity of these bounds, the algorithm ensures that the optimal hypothesis
h∗ is never eliminated. This is clear to see when the bounds are applied to errors with respect
to D: if a hypothesis h is eliminated, then errD(h) ≥ LB(Z0, h, δk) > minh′ UB(Z0, h

′, δk) ≥
errD(h∗), so h 6= h∗. The same logic also continues to hold by induction when applied to
the restricted distributions. In this way, the algorithm pares down the version space while
ensuring convergence towards h∗.

2.3.2 Label Complexity Analysis

The following theorem about A2 is due to [Han07].

Theorem 2.3 ([Han07]). With probability at least 1 − δ, A2 returns a hypothesis h with
error err(h) ≤ err(h∗) + ǫ and requests at most

O

(
θ(H,D)2 ·

(
err(h∗)2

ǫ2
+ 1

)
·
(

d log2 1

ǫ
+

(
log

1

δ
+ log log

1

ǫ

)
· log

1

ǫ

))

labels, where d is the VC dimension of H.

To interpret the label complexity guarantee, we first ignore the dependence on the dis-
agreement coefficient. The supervised sample complexity is

O

((
err(h∗)

ǫ2
+

1

ǫ

)
·
(

d log
1

ǫ
+ log

1

δ

))
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[VC71]. Up to logarithmic factors, the d err(h∗)/ǫ2 term in the supervised bound is scaled
by a factor of err(h∗) in the A2 bound, while the explicit d/ǫ term in the supervised bound
is reduced to d. Note that if err(h∗) = 0, then the label complexity is completely reduced to
d times logarithmic factors in 1/ǫ.

We can also compare this upper bound for A2 to lower bounds on the number of labels that
any active learner must query in order to produce a hypothesis of error at most err(h∗) + ǫ.
First, there is a lower bound of

Ω

(
d err(h∗)2

ǫ2

)

due to [BDL09]. This explains the d err(h∗)2/ǫ2 term in the A2 bound.
Second, there is an information-theoretic lower bound of

Ω(logM(ǫ))

where M(ǫ) is the size of the largest ǫ-packing of the metric space (H, ρ) (this is argued
in [KMT93]: each label query provides a single bit of information, and at least logM(ǫ) bits
are needed to describe a hypothesis in a maximal packing). A result due to [Hau95] states
that there exist data distributions for which M(ǫ) = Ω((1/ǫ)d). Therefore, we have a lower
bound of

Ω(d log 1/ǫ).

This explains the d term in the A2 bound.
Now we consider the disagreement coefficient. If err(h∗) = 0, then Phased CAL depends

only linearly on θ(H,D), whereas A2 depends quadratically on it. In fact, this is not due to
slack in the analysis; it is shown in [Han07] that A2 queries at least Ω(θ(H,D)2) labels. It was
posed as an open question by Hanneke whether this quadratic dependence was necessary of
any agnostic active learner. We will see in a later chapter that, in fact, a linear dependence is
sufficient. It is, however, an open question as to whether any dependence on the disagreement
coefficient is necessary in the label complexity of all active learners.
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Chapter 3

Reduction to PAC Learning

We recast the active learning algorithm of [CAL94] as a reduction to PAC learning. This
view of the algorithm also leads to a simpler analysis of its label complexity.

3.1 Introduction

The CAL algorithm from the previous chapter (Algorithm 2.1) may appear to require explicit
bookkeeping of which hypotheses remain in the version space Vt. While this is certainly
doable when the hypothesis class is small and easily enumerable, it appears intractable for
large or infinite classes.

However, with some thought, it can be seen that the task of determining membership
in the version space Vt can be reduced to a standard method for PAC learning – that of
checking the existence of a hypothesis consistent with a set of labeled data. This can be
much easier than an explicit enumeration of the version space. For instance, when H is the
class of linear separators in R

d, checking for the existence of consistent hypothesis can be
done by solving a simple linear program.

Viewing CAL as a reduction not only provides a tractable implementation for many
hypothesis classes, it also allows for a simpler label complexity analysis. The analysis given
in Theorem 2.2 focuses on eliminating hypotheses in the version space Vt. We will show
another, comparable analysis that avoids this fixation on Vt. Instead, the analysis will
more directly relate to the task of finding consistent hypotheses, i.e., the reduction to PAC
learning.

3.2 A Reduction-based Characterization of CAL

The key to the reduction (Algorithm 3.1) is that the version space Vt used by CAL can be
implicitly tracked through the labeled sample Zt. The existence of h, h′ ∈ Vt−1 such that
h(Xt) 6= h′(Xt) is equivalent to the existence of both

1. a hypothesis h+1 ∈ H consistent with Zt−1 ∪ {(Xt, +1)}, and

2. a hypothesis h−1 ∈ H consistent with Zt−1 ∪ {(Xt,−1)}.

25
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Algorithm 3.1 (Reduction-based CAL)
Initialize: Z0 := ∅.
For t = 1, 2, . . . , n:

1. Obtained unlabeled data point Xt.

2. If there exists both

• h+1 ∈ H consistent with Zt−1 ∪ {(Xt, +1)}, and

• h−1 ∈ H consistent with Zt−1 ∪ {(Xt,−1)}

(a) Then: Query Yt, and set Zt := Zt−1 ∪ {(Xt, Yt)}.
(b) Else if only hy exists (for some y ∈ {±1}): Set Ỹt := y and set Zt :=

Zt−1 ∪ {(Xt, Ỹt)}.

Return: any h ∈ H consistent with Zn.

Figure 3.1: The CAL algorithm recast using reductions.

Finding hypotheses consistent with a set of labeled examples is a standard approach to PAC
learning. Indeed, it is well-known that if Zn is a random sample of n examples labeled by
some h∗ ∈ H, then with probability at least 1 − δ, any h ∈ H consistent with Zn has error
err(h) at most

O

(
1

n

(
d log n + log

1

δ

))
(3.1)

where d is the VC dimension of H [BEHW89]. Moreover, the task of finding consistent
hypotheses can be reduced to (distribution-free) PAC learning. In this sense, CAL can be
viewed as a reduction from PAC active learning to PAC supervised learning.

To see the claimed equivalence of Algorithm 2.1 (CAL) and Algorithm 3.1 (Reduction-
based CAL), we proceed by induction as in Theorem 2.1 by assuming h∗(X) = Y for all
(X,Y ) ∈ Zt−1, including the synthesized labels. This means h∗ ∈ Vt−1. If both h+1 and
h−1 exist, then they are both consistent with Zt−1 and therefore both in Vt−1. But because
h+1(Xt) 6= h−1(Xt), CAL would query the label Yt = h∗(Xt) in this case. On the other hand,
if (say) h−1 does not exist, then no hypothesis consistent with Zt−1 is also consistent with
(Xt,−1). This means every hypothesis consistent with Zt−1 (i.e., every hypothesis in Vt−1),
including h∗, must label Xt as +1.

3.3 A Simpler Label Complexity Analysis

In light of the reduction in Algorithm 3.1, we can give a simpler label complexity analysis
of the algorithm.



3.3. A SIMPLER LABEL COMPLEXITY ANALYSIS 27

3.3.1 Some Refined Disagreement Metric Notions

First, we define some refined notions of region of disagreement and the disagreement coeffi-
cient.

Definition 3.1. The region of disagreement R(h, r) of radius r around a hypothesis h ∈ H
in the disagreement metric space (H, ρ) is

R(h, r) := {x ∈ X : ∃h′ ∈ B(h, r) such that h(x) 6= h′(x)}

the set of unlabeled examples x for which there exists a hypothesis h′ at distance at most r
from h (under ρ) that disagrees with h on x.

The quantity is more refined than the earlier notion of the region of disagreement
with respect to a set of hypotheses V , because it restricts attention to disagreement with
a particular hypothesis, rather than any pair of hypotheses V . For instance, we have
R(h∗, r) ⊆ R(B(h∗, r)), but the reverse may not be true.

Definition 3.2. The disagreement coefficient θ(h,H,D) for a hypothesis h ∈ H in the
disagreement metric space (H, ρ) is

θ(h,H,D) := sup

{
Pr(X ∈ R(h, r))

r
: r > 0

}
.

We will often simply write θ to mean θ(h∗,H,D).

3.3.2 Label Complexity Analysis

We are now ready to give the new label complexity analysis.

Theorem 3.1. Conditioned on an event that occurs with probability at least 1 − δ, the
expected number of labels queried by Reduction-based CAL after n iterations is at most

O

(
θ ·
(

d log n + log
1

δ

)
· log n

)
.

Proof. First, we argue that with probability at least 1 − δ, we have the following property.
For all t ≥ 1, every h ∈ H consistent with Zt has error err(h) at most

O

(
1

t

(
d log t + log

t(t + 1)

δ

))
. (3.2)

This simply follows from applying Eq. (3.1) for every t ≥ 1, substituting δ/(t2 + t) in place
of δ, and then applying a union bound over all t.

Now we condition on the event that the above property holds. The algorithm queries Yt

if and only if there exists h ∈ H such that:

1. h is consistent with Zt−1, and

2. h disagrees with h∗ on Xt.
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The first condition implies that the error of such a hypothesis h ∈ H can be bounded using
Eq. (3.2), i.e. err(h) ≤ O((1/t)(d log t + log(t/δ))). Let rt denote the value of this bound.
This, combined with the second condition, implies that Xt is in the region of disagreement
for the subset of hypotheses at most rt away from h∗, i.e. Xt ∈ R(h∗, rt). By the definition
of the disagreement coefficient θ, we have

Pr(Xt ∈ R(h∗, rt)) ≤ θ · rt.

Let Qt ∈ {0, 1} be the random variable that indicates if the label Yt is queried. Then the
expected number of queries after n iterations is

E

[
n∑

t=1

Qt

]
=

n∑

t=1

E[E[Qt|Zt−1, Xt]]

≤
n∑

t=1

E [Pr(∃h ∈ H consistent with Zt−1 ∪ {(Xt,−h∗(Xt))}|Zt−1, Xt)]

≤
n∑

t=1

Pr(∃h ∈ B(h∗, rt) s.t. h(Xt) 6= h∗(Xt))

=
n∑

t=1

Pr(Xt ∈ R(h∗, rt))

≤
n∑

t=1

θ · O
(

1

t

(
d log t + log

t(t + 1)

δ

))

= O

(
θ ·
(

d log n + log
1

δ

)
· log n

)

as claimed.

The label complexity guarantee in Theorem 3.1 can be related back to that in Theorem 2.2
as follows. First, while Theorem 3.1 is stated in terms of the (conditional) expectation of
the number of labels queried, it can easily be converted into a high-probability guarantee by
simply applying standard large deviation bounds for martingales (see, e.g., [MR95]). Second,
to give a label complexity guarantee in terms of the target error rate ǫ, one simply needs to
substitute a value of n for which the error in Eq. (3.1) is at most ǫ. This is because the final
hypothesis returned by the algorithm is consistent with n labeled examples drawn iid from
D, and therefore has error bounded as in Eq. (3.1). Finally, we allow any hypothesis class
H with finite VC dimension d in Theorem 3.1 (but note that d ≤ log |H|, so the bound here
can only be tighter) and use the more refined variant of the disagreement coefficient1. Now,
it should be clear that the two stated theorems provide essentially the same guarantee on
the label complexity of CAL.

1We note that the argument in Theorem 2.2 can be reworked in terms of the VC dimension d by working
with a finite covering of H of size O((1/ǫ)d), and also be written in terms of θ(h∗,H,D) rather than θ(H,D).



Chapter 4

Reduction to Agnostic Learning I:
Implicit Version Spaces

We recast the A2 algorithm of [BBL06] as a reduction to a form of agnostic learning. We
also describe a generalization the algorithm of [CAL94] to the agnostic setting.

4.1 Introduction

Viewing the CAL algorithm using reductions to a form of PAC learning is rather straight-
forward, as testing for membership in the current version space precisely corresponds to
checking for consistency with the current set of labeled examples. Such a test fails in the
agnostic setting since it may be that no hypothesis in the version space is consistent with
the examples.

Recall our example from Chapter 2 where H was the class of two-dimensional linear
separators, and the first six data were labeled in the following manner.
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If it is assumed that the data is linearly separable (i.e., the labels correspond to some
h∗ ∈ H), then the label of the indicated point is already determined: it must be labeled −1,
as every linear separator consistent with the first six data label it as −1. But this logic is
invalid without the separability assumption, as it could be that the optimal hypothesis in
H disagrees with these first six labels. The sampling error with just six data is too large to
reliably conclude that the optimal hypothesis would label the seventh point as −1. On the
other hand, with more labeled data (as depicted below), such a conclusion becomes more
plausible.
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A hypothesis that labels the indicated point +1 label would have to misclassify many other
points—an unlikely event if the optimal hypothesis has low error.

We need to generalize the test developed for the separable setting to the agnostic setting.
Our reduction will divide the examples into two sets, S̃ and T (the significance of the orna-
ment on S̃ will be explained later). The set S̃ will always contain examples consistent with
the best hypothesis in the class, while T may contain examples on which even the best hy-
pothesis errs. Assuming we can manage this, it would be reasonable for a learning algorithm
to simply locate a hypothesis h ∈ H consistent with S̃, and otherwise with minimum error
with respect to T . Thus, the form of agnostic learning we use for our reductions is a variant
of empirical risk minimization, which we encapsulate in the following subroutine LEARNH:

LEARNH(S̃, T ) returns h ∈ H such that err(h, S̃) = 0 and err(h, T ) is minimum
over all h ∈ H. If no hypothesis h ∈ H is consistent with S̃, signal this failure
by returning ⊥.

It is well-known that standard empirical risk minimization is a consistent method for agnostic
learning: if Zt is a random sample of t examples from D, then with probability at least 1−δ,
the empirical minimizer h := arg minh∈H err(h, Zn) has error err(h) at most

err(h∗) + O

(√
err(h∗) · d log n + log(1/δ)

n
+

d log n + log(1/δ)

n

)
(4.1)

where d is the VC dimension of H and h∗ ∈ H is a hypothesis of minimum (true) error [VC71].
Therefore, the extra stipulation—requiring the hypothesis h := LEARNH(S̃, T ) be consistent
with S̃—is the mechanism we use to maintain an implicit version space, which we hope to
gradually reduce in the same manner as the CAL algorithm for the PAC setting.

We note that exact implementation of the LEARNH subroutine is often intractable in
high dimensions. Indeed, agnostic supervised learning is computationally hard for many
hypothesis classes such as half-spaces [Fel06, GR06], and of course, agnostic active learning
is at least as hard in the worst case. However, we will see that the LEARNH subroutine is only
called on samples from the underlying unlabeled data distribution, and not on pathologically
hard instances (like those arising from hardness reductions) unless they are inherent in the
data. Therefore, we think of LEARNH as an ideal abstraction of agnostic supervised learning,
with the understanding that it may be only approximately implemented in practice.

4.2 A Reduction-based Variant of A2

We first describe a method for recasting the A2 algorithm of [BBL06] using reductions to
agnostic learning. The reduction (Algorithm 4.1) is specified in terms of the LEARNH sub-
routine detailed above. There are two key differences between Reduction-based A2 algorithm
and A2 proper (Algorithm 2.3). First, Reduction-based A2 operates on an initial sample U0

of iid copies of X, whereas A2 involves computing probabilities with respect to the distri-
bution of X. Using a uniform distribution over the sample U0 is sufficient as long as U0 is
large enough for true errors of hypotheses err(h) to be closely approximated by empirical
errors computed with respect to the sample U0 (assuming that the proper labels are given).



4.2. A REDUCTION-BASED VARIANT OF A2 31

Algorithm 4.1 (Reduction-based A2)
Notes: δk := δ/(k2 + k) for all k ≥ 1; see Eq. (4.2) for the definition of ∆.
Initialize: U0 := {x1, x2, . . . , xm}, S̃0 := ∅, n0 := 1, k := 0.
For phase p = 0, 1, 2, . . .:

1. k := k + 1; pk := p.

2. Let U ′ be a random subset of Up of size np.

3. Let Tp := {(xi, yi) : xi ∈ U ′}, querying the labels yi as needed.

4. Let hp := LEARNH(S̃p, Tp).

5. If (|Up|/|U0|) · ∆(Tp, δk) ≤ ǫ, then return hp.

6. Let U ′ := ∅ and S̃ ′ := ∅.

7. For each x ∈ Up:

(a) Let h′
x,p := LEARNH(S̃p ∪ {(x,−hp(x))}, Tp).

(b) If h′
x,p = ⊥ or err(h′

x,p, Tp)− err(hp, Tp) > ∆(Tp, δk), then U ′ := U ′ ∪ {x} and

S̃ ′ := {(x, hp(x))}.

8. Let Up+1 := Up \ U ′ and S̃p+1 := S̃p ∪ S̃ ′.

9. If |Up+1|/|U0| ≤ ǫ, then return hf := LEARNH(S̃p+1, ∅).

10. If |Up+1| > (1/2)|Up|:

(a) Then: repeat phase p with np := 2np.

(b) Else: continue to phase p + 1 with np+1 := 1.

Figure 4.1: The A2 algorithm recast using reductions.
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Second, Reduction-based A2 implicitly maintains a version space through example-based
constraints (enforced using the constraint mechanism in LEARNH). Examples are added to
the constraint set S̃ only if they are consistent with the h∗, the best hypothesis in the class.
This guarantees that h∗ is never eliminated from the version space.

4.2.1 Active Learning with a Fixed Sample

We will view U0 as the unlabeled components of m iid copies of (X,Y )—call them (X1, Y1), . . . , (Xm, Ym).
The labels Yi corresponding to the Xi are hidden unless the algorithm queries for them. Let
Z0 := {(X1, Y1), . . . , (Xm, Ym)} be the fully-labeled set. Uniform convergence results imply
that

m = Ω

(
1

ε2

(
d + log

1

η

))

suffices to ensure, with probability at least 1 − η/2, that | err(h) − err(h, Z0)| ≤ ε/3 for all
h ∈ H, where d is the VC dimension of H [Tal94]. If the goal of the learning algorithm
is to return a hypothesis of error minh∈H err(h) + ε with probability at least 1 − η, we
simply need to find a hypothesis of error at most minh∈H err(h, Z0) + ε/3 with probability
at least 1 − η/2 (conditioned on the initial sample Z0). This see that this is sufficient, let
h∗
D := arg minh∈H err(h) and h∗ := arg minh∈H err(h, Z0). If err(h, Z0) ≤ err(h∗, Z0) + ε/3,

then

err(h) = err(h∗
D) + (err(h, Z0) − err(h∗

D, Z0))

+ (err(h) − err(h, Z0)) + (err(h∗
D, Z0) − err(h∗

D))

≤ err(h∗
D) + (err(h∗, Z0) + ε/3 − err(h∗

D, Z0)) + ε/3 + ε/3

≤ err(h∗
D) + ε.

Therefore, we simply set the target ǫ := ε/3 and allow probability of failure δ := η/2; now
treat the uniform distribution over a realization of the initial sample Z0 = {(x1, y1), . . . , (xm, ym)}
as the base distribution for which h∗ is optimal.

4.2.2 Deviation Bounds for Bootstrap Samples

As in the original A2 algorithm, we will evaluate upper- and lower-bounds on the error of
hypotheses. These bounds will be probabilistic, holding with probability at least 1−δ over a
random sample from Z0 (or some subset thereof). Because we draw multiple random samples
over the course of the algorithm, we allow the bounds to fail with probability δk := δ/(k2+k)
on the kth sample (which comes during phase pk), so that the total failure probability is at
most

∑
k≥1 δk ≤ δ.

The quantity ∆(T, η) is derived from deviation bounds for bootstrap samples. Note
that the projection of the hypothesis class H onto U0 is bounded in size by S(H,m) =
O(md) [Sau72], where for a family F of functions f : Z → {0, 1},

S(F ,m) := sup{|{(f(z1), . . . , f(zm))}| : (z1, . . . , zm) ∈ Zm}

is the mth shatter coefficient of F . (This is a worst case bound; the size of the projection
can be much smaller.)



4.2. A REDUCTION-BASED VARIANT OF A2 33

Therefore we only need to bound the deviations of errors for at most O(md) hypotheses.
This observation is standard in the proof of many uniform convergence bounds [VC71], but
here we use it explicitly because we are actually dealing with a fixed, finite sample U0.

We can therefore employ large deviation inequalities to bound the deviation of err(h, T )
from err(h, Z0), where T is a random subset of Z0.

Lemma 4.1. Pick any η ∈ (0, 1) and finite Z0 ⊆ X ×Y. With probability at least 1− η over
the choice of a random subset T of Z0,

| err(h, Z0) − err(h, T )| ≤
√

log(2M/η)

2|T |

for all h ∈ H, where M := |{(h(x) : (x, y) ∈ Z0) : h ∈ H}|.

Proof. An easy application of Hoeffding’s inequality and the union bound.

In light of this, we set

∆(T, η) := 2 ·
√

log(2M/η)

2|T | (4.2)

where M is the quantity specified in the lemma, noting that M = O(md). The following
corollary is immediate given the definition of ∆ and δk.

Corollary 4.1. With probability at least 1− δ over the choice of random samples {Tpk
: k ≥

1},
|(err(h, Zpk

) − err(h∗, Zpk
)) − (err(h, Tpk

) − err(h∗, Tpk
))| ≤ ∆(Tpk

, δk) (4.3)

for all h ∈ H and all k ≥ 1.

4.2.3 Correctness Analysis

For each p, let Zp be the subset of labeled examples from Z0 whose unlabeled component is
in Up. Note that Z0 \ Zp = Sp, where Sp (lacking the ornament) is the same as S̃p, except
with the true labels y swapped in for the synthesized labels ỹ. Therefore, if h, h′ ∈ H agree
on how to label points in S̃p, then err(h, Z0 \Zp) = err(h′, Z0 \Zp). This will be a key point
used to prove the following lemma.

Lemma 4.2. Assume the bound from Eq. (4.3) holds for all h ∈ H and all k ≥ 1. For all
p ≥ 0, h∗ is consistent with all examples in S̃p, and

err(h∗, Zp) ≤ err(h, Zp) (4.4)

for all h ∈ H consistent with examples in S̃p.

Proof. By induction on p. The base case p = 0 is trivially true by the definitions of Z0, S̃0,
and h∗. So pick ℓ ≥ 0 and assume as the inductive hypothesis that h∗ is consistent with
all examples in Sℓ and that Eq. (4.4) holds for p = ℓ. First, it is clear that hℓ 6= ⊥ by the
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inductive hypothesis, since h∗ is consistent with Sℓ. Suppose for sake of contradiction that
some (x, ỹ) is added to S̃ ′, but h∗(x) 6= ỹ = hℓ(x). It must be that h′

x,ℓ 6= ⊥ and

err(h′
x,ℓ, Tℓ) − err(hℓ, Tℓ) > ∆(Tℓ, δk)

for the current value of k. Moreover, since Tℓ is a random subset of Zℓ, we have by Corol-
lary 4.1 and the definition of h′

x,ℓ, that

err(h∗, Zℓ) − err(hℓ, Zℓ) ≥ err(h∗, Tℓ) − err(hℓ, Tℓ) − ∆(Tℓ, δk)

≥ err(h′
x,ℓ, Tℓ) − err(hℓ, Tℓ) − ∆(Tℓ, δk)

> ∆(Tℓ, δk) − ∆(Tℓ, δk) = 0

so err(h∗, Zℓ) > err(hℓ, Zℓ), a contradiction of the inductive hypothesis. Therefore h∗(x) = ỹ
for all (x, ỹ) added to S̃ ′, which are those ultimately added to S̃ℓ+1. Note that each such
x ∈ U ′, so x /∈ Uℓ+1.

Take any h ∈ H consistent with examples in S̃ℓ+1; such an h therefore agrees with h∗ on
S̃ℓ+1. Then err(h, Z0 \ Zℓ+1) = err(h∗, Z0 \ Zℓ+1), so

err(h, Z0) =
|Z0 \ Zℓ+1|

m
· err(h, Z0 \ Zℓ+1) +

|Zℓ+1|
m

· err(h, Zℓ+1)

=
|Z0 \ Zℓ+1|

m
· err(h∗, Z0 \ Zℓ+1) +

|Zℓ+1|
m

· err(h, Zℓ+1)

= err(h∗, Z0) +
|Zℓ+1|

m
· (err(h, Zℓ+1) − err(h∗, Zℓ+1)).

Because err(h, Z0) ≥ err(h∗, Z0) by definition of h∗, it must be that err(h, Zℓ+1) ≥ err(h∗, Zℓ+1).

Theorem 4.1. The following holds with probability at least 1− δ over the choice of random
subsets generated by Reduction-based A2. If Reduction-based A2 returns a hypothesis h, then
err(h, Z0) ≤ err(h∗, Z0) + ǫ.

Proof. We first apply the bounds from Corollary 4.1, which hold with probability at least
1 − δ. Then, Lemma 4.2 implies that h∗ is consistent with all examples in S̃p for all p ≥ 0.
Therefore,

err(h, Z0) =
|Z0 \ Zp|

m
· err(h, Z0 \ Zp) +

|Zp|
m

· err(h, Zp)

=
|Z0 \ Zp|

m
· err(h∗, Z0 \ Zp) +

|Zp|
m

· err(h, Zp)

= err(h∗, Z0) +
|Zp|
m

· (err(hp, Zp) − err(h∗, Zp))

= err(h∗, Z0) +
|Up|
|U0|

· (err(hp, Zp) − err(h∗, Zp)). (4.5)

If a hypothesis h is returned in phase p, then either (|Up|/|U0|) · ∆(Tp, δk) ≤ ǫ, or
|Up+1|/|U0| ≤ ǫ. In the former case, we have h = hp = LEARNH(S̃p, Tp). Using Eq. (4.5)
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and Corollary 4.1, we have

err(h, Z0) = err(h∗, Z0) +
|Up|
|U0|

· (err(hp, Zp) − err(h∗, Zp))

≤ err(h∗, Z0) +
|Up|
|U0|

· (err(hp, Tp) − err(h∗, Tp) + ∆(Tp, δk))

≤ err(h∗, Z0) +
|Up|
|U0|

· ∆(Tp, δk)

≤ err(h∗, Z0) + ǫ.

In the latter case, we have h = LEARNH(S̃p+1, ∅), so using Eq. (4.5), we have

err(h, Z0) = err(h∗, Z0) +
|Up+1|
|U0|

· (err(h, Zp+1) − err(h∗, Zp+1))

≤ err(h∗, Z0) + ǫ

as required.

4.2.4 Discussion

Reduction-based A2 essentially provides a particular implementation of A2 proper using the
LEARNH primitive on a finite random sample. This is a sort of “batch mode” active learning
algorithm in that all of the unlabeled data is accessed up front. One advantage of such
methods is that decisions for whether to query a label can be made with full knowledge of
other points that could also be labeled. Note that it is not completely clear if Reduction-based
A2, or even A2 proper, fully exploits this advantage—we leave this as an interesting open
question. On the other hand, if additional unlabeled data is acquired, it is not immediately
obvious how to incorporate them into the active learning process.

In contrast to Reduction-based A2, CAL operates by examining the data one at a time.
In this “online mode” of active learning, the label of an unlabeled point is either queried upon
first seeing this point, or never at all. Thus, this style of active learning is complementary
in the above mentioned strength and weakness of “batch mode” active learning. In the
next section, we present a more direct generalization of CAL to agnostic active learning
that retains the “online” aspect. It will also improve on the label complexity guarantees in
Theorem 2.3 that were afforded to A2 proper.

4.3 An Agnostic Generalization of CAL

A more direct generalization of CAL to the agnostic setting comes from viewing CAL in
reduction form (Algorithm 3.1). By replacing the PAC notions used in CAL with appro-
priate agnostic analogues, we arrive at the Agnostic CAL algorithm, which is specified in
Algorithm 4.2. Specifically:

• In place of the reduction to finding consistent hypotheses, we use the subroutine
LEARNH to select minimize empirical error over an implicit version space.
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Algorithm 4.2 (Agnostic CAL)
Notes: δt := δ/(t2 + t) for all t ≥ 1; see Eq. (4.10) for the definition of ∆.
Initialize: S̃0 := ∅, T0 := ∅.
For t = 1, 2, . . . , n:

1. Obtained unlabeled data point Xt.

2. Let

(a) ht := LEARNH(S̃t−1, Tt−1), and

(b) h′
t := LEARNH(S̃t−1 ∪ {(Xt,−ht(Xt))}, Tt−1).

3. If h′
t 6= ⊥ and

err(h′
t, S̃t−1 ∪ Tt−1) − err(ht, S̃t−1 ∪ Tt−1) ≤ ∆(h′

t, ht, S̃t−1 ∪ Tt−1, δt−1)

(a) Then: Query Yt, and set S̃t := S̃t−1 and Tt := Tt−1 ∪ {(Xt, Yt)}.
(b) Else: Set Ỹt := ht(Xt), and S̃t := S̃t−1 ∪ {(Xt, Ỹt)} and Tt := Tt−1.

Return: hn+1 := LEARNH(S̃n, Tn).

Figure 4.2: The Agnostic CAL algorithm.

• Instead of simply checking for the existence of consistent hypotheses, we use a robust
test that compares empirical errors.

4.3.1 Deviation Bounds for Error Differences

The test used by Agnostic CAL (Step 3 in Algorithm 4.2) appears similar to the one used
in Reduction-based A2 (Step 7(b) in Algorithm 4.1). However, the test used by Reduction-
based A2 compares the empirical errors estimated from a random labeled samples, whereas
this does not appear to be the case with that of Agnostic CAL: the empirical errors are
computed using labels in S̃t−1 determined by the algorithm, rather than queried (i.e., drawn
from the underlying distribution).

The key trick to justifying the test is to consider the deviations of empirical error dif-
ferences from their expectations, rather than simply the deviations of empirical errors from
their expectations (as was done in Lemma 4.1 for Reduction-based A2). For any n, let

Sn := {(Xi, Yi) : (Xi, Ỹi) ∈ S̃n}

be the set of labeled examples the same as S̃n, except with the true labels swapped in. Note,
then, that Sn ∪ Tn is an iid sample of n labeled examples. Consider two hypotheses h and
h′, both of which are consistent with a set of labeled examples S̃n. Then, we have

err(h, S̃n ∪ Tn) − err(h′, S̃n ∪ Tn) = err(h, Sn ∪ Tn) − err(h′, Sn ∪ Tn).
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In other words, the difference in empirical errors on S̃n ∪ Tn is precisely the same as the
difference in empirical errors on Sn ∪ Tn. Therefore, we can apply bounds similar to those
from Lemma 4.1, so long as we are concerned only with hypotheses that agree on S̃n.

However, the bounds similar to those from Lemma 4.1 are insufficient for our purposes.
This is because such bounds do not take into account variance information: specifically, the
fact that deviations scale not only with the size of the random sample, but also with the
variance. The variance of err(h, Sn ∪ Tn) is err(h)(1 − err(h))/n, so the further err(h) is
from 1/2, the smaller the variance is. Note that if err(h) = 0, then the deviations ought to
behave like the bounds used in the analysis of CAL (e.g., Eq. (3.1)). We will instead use
normalized uniform convergence bounds [VC71], which interpolate between O(1/

√
n) and

O(1/n), depending on expectation of the random variable in question.
There is one more detail to deal with. The bound we will use deals with {0, 1}-valued

functions, whereas the empirical error differences err(h, Sn ∪ Tn) − err(h′, Sn ∪ Tn) are the
averages of {−1, 0, +1}-valued functions. We will work around this in the following manner.
Let Zn := Sn ∪ Tn and Z̃n := S̃n ∪ Tn. Let A := {ah,h′ : (h, h′) ∈ H2} and B := {bh,h′ :
(h, h′) ∈ H2}, where

ah,h′(x, y) := 1(h(x) 6= y ∧ h′(x) = y)

bh,h′(x, y) := 1(h(x) = y ∧ h′(x) 6= y).

Then, define

an(h, h′) :=
1

n

∑

(Xi,Yi)∈Zn

ah,h′(Xi, Yi)

bn(h, h′) :=
1

n

∑

(Xi,Yi)∈Zn

bh,h′(Xi, Yi).

Define ãn and b̃n similarly, replacing Zn with Z̃n. We have

an(h, h′) − bn(h, h′) = err(h, Zn) − err(h′, Zn)

E[an(h, h′) − bn(h, h′)] = err(h) − err(h′).

We can now state our deviation bounds for error differences.

Lemma 4.3. Pick any n ≥ 1 and η ∈ (0, 1). Let

εn :=
4

n
·
(

2d ln
2en

d
+ ln

24

η

)
.

Let Zn := {(X1, Y1), . . . , (Xn, Yn)} be a set of n iid copies of (X,Y ), Sn ⊆ Zn an arbitrary
subset; Tn := Zn \ Sn; S̃n := {(Xi, ỹi) : (Xi, Yi) ∈ Sn} for any ỹ1, . . . , ỹn ∈ Y; and Z̃n :=
S̃n ∪ Tn. The following holds with probability at least 1 − η.

For all h ∈ H,

−min
(
εn +

√
εn · err(h),

√
εn · err(h, Zn)

)

≤ err(h) − err(h, Zn) ≤ min
(√

εn · err(h), εn +
√

εn · err(h, Zn)
)

. (4.6)
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For all (h, h′) ∈ H2,

err(h, Zn) − err(h′, Zn) ≤ err(h) − err(h′) + εn +
√

εnan(h, h′) +
√

εnbn(h, h′). (4.7)

For all (h, h′) ∈ H2 such that h and h′ agree on S̃n,

err(h, Z̃n) − err(h′, Z̃n)

≤ err(h) − err(h′) + εn +
√

εnãn(h, h′) +

√
εnb̃n(h, h′) (4.8)

≤ err(h) − err(h′) + εn +

√
εn err(h, Z̃n) +

√
εn err(h′, Z̃n). (4.9)

Proof. First, Lemma A.2 (with failure probability η/3) easily applies to the loss class {(x, y) 7→
1(h(x) 6= y) : h ∈ H} to give Eq. (4.6). Next, note that max(S(A,m),S(B,m)) ≤
S(H,m)2 ≤ (em/d)d by Sauer’s Lemma [Sau72]. Therefore, we can apply Lemma A.2
to the class A and B (with failure probability η/3 each) to give Eq. (4.7). To get Eq. (4.8)
from Eq. (4.7), we just notice that

err(h, Z̃n) − err(h′, Z̃n) = err(h, Zn) − err(h′, Zn)

ãn(h, h′) = an(h, h′)

b̃n(h, h′) = bn(h, h′)

for all (h, h′) ∈ H2 that agree on S̃n. Finally, to get Eq. (4.9), we use the facts ãn(h, h′) ≤
err(h, Z̃n) and b̃n(h, h′) ≤ err(h′, Z̃n).

In light of Lemma 4.3, we will define ∆ as

∆(h, h′, Z̃, η) := ε|Z̃| +
√

ε|Z̃| err(h, Z̃) +
√

ε|Z̃| err(h
′, Z̃) (4.10)

where

εn :=
4

n
·
(

2d ln
2en

d
+ ln

24

η

)
. (4.11)

We use δt := δ/(t2 + t) so that
∑

t≥1 δt ≤ δ.
We remark that our choice of the threshold function ∆ is based on the agnostic learning

model. In general, however, it can be based on any computable deviation bound suitable for
the learning model.

4.3.2 Correctness Analysis

The following is an agnostic analogue of Theorem 2.1—the consistency guarantee for CAL
in the PAC setting. Here, we prove that the version space implicitly defined by the set S̃t

always contains the optimal hypothesis h∗.

Lemma 4.4. Assume the bound from Eq. (4.9) holds for all (h, h′) ∈ H2 and all n ≥ 1,
using η = δn when applied to Zn. The hypothesis h∗ is consistent with all examples in S̃n for
all n ≥ 0.
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Proof. First, note that the bounds from Eq. (4.9) trivially hold for n = 0, so we have by
assumption that they hold for all n ≥ 0. Now we proceed by induction on n. The base
case of n = 0 holds trivially since S̃0 = ∅. So pick any n ≥ 1 and assume as the inductive
hypothesis that h∗ is consistent with S̃n−1. Suppose, in iteration n, that (Xn, Ỹn) is added
to S̃n. If h′

n = ⊥, then every h ∈ H consistent with S̃n−1 must label Xn the same as hn(Xn).
By the inductive hypothesis, it must be that h∗(Xn) = hn(Xn) = Ỹn. If h′

n 6= ⊥, then

err(h′
n, Z̃n−1) − err(hn, Z̃n−1) > εn−1 +

√
εn−1 · err(h′

n, Z̃n−1) +

√
εn−1 · err(hn, Z̃n−1).

In particular, err(h′
n, Z̃n−1) ≥ εn−1. Suppose, for sake of contradiction, that h∗(Xn) 6=

hn(Xn). Then err(h∗, Z̃n) ≥ err(h′
n, Z̃n) > εn−1 by definition of h′

n (by the inductive hypoth-
esis, h∗ is consistent with S̃n, yet LEARNH returns h′

n in preference to it). Therefore,

err(h∗, Z̃n−1) − err(hn, Z̃n−1)

= err(h∗, Z̃n−1) − err(h′
n, Z̃n−1) + err(h′

n, Z̃n−1) − err(hn, Z̃n−1)

>

√
err(h′

n, Z̃n−1)

(√
err(h∗, Z̃n−1) −

√
err(h′

n, Z̃n−1)

)

+ εn−1 +

√
εn−1 · err(h′

n, Z̃n−1) +

√
εn−1 · err(hn, Z̃n−1)

>

√
εn−1 · err(h∗, Z̃n−1) −

√
εn−1 · err(h′

n, Z̃n−1)

+ εn−1 +

√
εn−1 · err(h′

n, Z̃n−1) +

√
εn−1 · err(hn, Z̃n−1)

= εn−1 +

√
εn−1 · err(h∗, Z̃n−1) +

√
εn−1 · err(hn, Z̃n−1).

Now, the bounds from Eq. (4.9) implies err(h∗) > err(hn), a contradiction.

Lemma 4.4, together with the deviation bounds in Lemma 4.3, immediately implies that
Agnostic CAL has essentially the same sample complexity bound as a supervised learner
based on empirical risk minimization.

Theorem 4.2. With probability at least 1 − δ,

err(hn+1) ≤ err(h∗) + O

(√
err(h∗) · d log n + log(1/δ)

n
+

d log n + log(1/δ)

n

)
.

Proof. Follows from the deviation bounds in Lemma 4.3, the consistency guarantee from
Lemma 4.4, and some simple algebraic manipulations.

The error bound in Theorem 4.2 differs from the error bound of a fully-supervised learner
(see Eq. (4.1)) by constant factors.

4.3.3 Label Complexity Analysis

We now give a bound on the number of labels requested by Agnostic CAL after n iterations.
This will recover the label complexity analysis for Reduction-based CAL (Theorem 3.1) when
err(h∗) = 0.
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Lemma 4.5. Assume the bounds from Eq. (4.6) and Eq. (4.9) hold for all (h, h′) ∈ H2 and
all n ≥ 1, using η = δn when applied to Zn. There exists a universal constant C ∈ (0, 25)
such that the following holds. Pick any n ≥ 1, and let Qn+1 ∈ {0, 1} be the random variable
that indicates if Yn+1 is queried. Then

E[Qn+1] ≤ θ ·
(

(2 + λ) · err(h∗) + C ·
(

1 +
1

λ

)
· 4

n
·
(

2d ln
2en

d
+ 2 ln

24n

δ

))

for any λ > 0.

Proof. We apply Lemma 4.4 to ensure that h∗ is consistent with S̃n. Agnostic CAL queries
Yn+1 iff

err(h′
n+1, Z̃n) − err(hn+1, Z̃n) ≤ εn +

√
εn · err(h′

n+1, Z̃n) +

√
εn · err(hn+1, Z̃n)

where εn is defined in Eq. (4.11). Assume that h∗(Xn+1) 6= h′
n+1(Xn+1)—this is without

loss of generality since, as we could otherwise exchange the roles of hn+1 and h′
n+1 in the

subsequent argument. The left-hand side of the above inequality is bounded below using

err(h′
n+1, Z̃n) − err(hn+1, Z̃n) ≥ err(h′

n+1, Z̃n) − err(h∗, Z̃n)

= err(h′
n+1, Zn) − err(h∗, Zn),

and the right-hand side is bounded above using

εn +

√
εn · err(h′

n+1, Z̃n) +

√
εn · err(hn+1, Z̃n)

≤ εn +

√
εn · err(h′

n+1, Z̃n) +

√
εn · err(h∗, Z̃n)

≤ εn +
√

εn · err(h′
n+1, Zn) +

√
εn · err(h∗, Zn);

the last inequality follows because err(h, Z̃n) ≤ err(h, Zn) for all h is consistent with S̃n.
Therefore

err(h′
n+1, Zn) − err(h∗, Zn) ≤ εn +

√
εn · err(h′

n+1, Zn) +
√

εn · err(h∗, Zn).

Now, we use the bounds from Eq. (4.6) to give

err(h′
n+1) − err(h∗) ≤ err(h′

n+1, Zn) − err(h∗, Zn)

+ εn +
√

εn · err(h′
n+1, Zn) +

√
εn · err(h∗, Zn).

Combining the previous two inequalities, applying Eq. (4.6) to the empirical error terms
err(h′

n+1, Zn) and err(h∗, Zn) inside the square-roots, and simplifying the quadratic inequal-
ities gives

err(h′
n+1) ≤ (1 + λ) · err(h∗) + C ·

(
1 +

1

λ

)
· εn
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for any λ > 0. Here C ∈ (0, 25) is some universal constant (which is almost certainly loose).
By the triangle inequality, we have

ρ(h∗, hn+1) ≤ err(h∗) + err(h′
n+1)

≤ (2 + λ) · err(h∗) + C ·
(

1 +
1

λ

)
· εn =: rn.

Therefore, since h∗(Xn+1) = hn+1(Xn+1) 6= h′
n+1(Xn+1) (by assumption), it must be that

Xn+1 ∈ R(h∗, rn). The result now follows from the definition of the disagreement coefficient
θ:

E[Qn+1] = E[E[Qn+1|Zn, Xn+1]] ≤ E[Pr(Xn+1 ∈ R(h∗, rn))] ≤ θ · rn.

Theorem 4.3. There exists a universal constant C ∈ (0, 25) such that the following holds.
Conditioned on an event that occurs with probability at least 1 − δ, the expected number of
labels queried by Agnostic CAL after n iterations is at most

1 + 2 · θ · err(h∗) · (n − 1)

+ 4 · θ ·
√

C · err(h∗) ·
(

2d ln
2en

d
+ 2 ln

24n

δ

)
· (n − 1) · ln n

+ 4C · θ ·
(

2d ln
2en

d
+ 2 ln

24n

δ

)
· ln n.

Proof. Assume Y1 is always queried. Apply Lemmas 4.3 and 4.5, and linearity of expectation
to bound E[Q2 + . . . + Qn]. Then optimize over the choice of λ.

The bound here implies a label complexity that is essentially a factor of θ smaller than
the label complexity guarantee for A2 (Theorem 2.3).

4.3.4 Discussion

Relation to Previous and Subsequent Work

In many ways, Agnostic CAL can be seen as a direct generalization of Reduction-based CAL
that imports the robustness of A2 using deviation bounds. Note that if it is assumed that
err(h∗) = 0, then it would be enough to set ∆ ≈ O(d/n) in iteration n, and we would
still recover the same correctness and label complexity guarantees as those afforded to CAL.
Thus, the setting of ∆ in Eq. (4.10) is specifically designed to handle the adversarial noise
that is allowed in the agnostic learning model. The influence of A2 and Reduction-based A2

is clear, as ∆ is based on a deviation bound for error differences.
In subsequent work, Hanneke has shown that by using a more sophisticated setting of

∆ based on Rademacher complexities, Agnostic CAL can yield improved label complexity
bounds under a different noise model [Han09]. A very similar algorithm is analyzed using
localized Rademacher complexities by Koltchinskii for similar label complexity improve-
ments [Kol09]. We leave as an open question as to whether the setting of ∆ prescribed in
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Eq. (4.10) can be shown to adapt to these noise models. It would also be interesting to
develop variants of Agnostic CAL that operate in even more adversarial settings, such as
the malicious noise model or mistake-bound models. Finally, a similar algorithm that also
used importance-weights was developed by Beygelzimer et al for certain loss functions such
as logistic loss [BDL09].

Version Spaces

Thus far, the algorithms described (including the above mentioned subsequent work) are all
based on either an explicit or implicit version space. That is, the hypothesis returned by the
algorithm is selected from a restricted subset of the hypothesis class. In Reduction-based
A2 and Agnostic CAL, we have encapsulated enforcement of the hard constraints defining
the implicit version space in the LEARNH subroutine. However, hard constraints can make
the algorithm brittle, as a single mishap by the algorithm can potentially evict the optimal
hypothesis h∗. Moreover, hard constraints can be computationally cumbersome to enforce,
especially for complex hypothesis classes. Instead, we would prefer algorithms that avoid
explicit enforcement of a version space when selecting a hypothesis to return. This will be
explored in the next chapter.

4.4 Bibliographic Notes

This chapter is based on joint work with Sanjoy Dasgupta and Claire Monteleoni titled “A
General Agnostic Active Learning Algorithm”, published in the proceedings of the Twenty-
First Annual Conference on Neural Information Processing Systems in 2007 [DHM07]. The
dissertation author was the primary investigator and author of this paper.



Chapter 5

Reduction to Agnostic Learning II:
Error Minimization Oracles

We describe agnostic active learning algorithms that are not explicitly based on the version
space approach. These algorithms use error minimization oracles that are simpler than the
LEARNH subroutine of A2 and Agnostic CAL.

5.1 Introduction

The A2 and Agnositc CAL algorithms use a set of labeled examples S̃ together with hard
constraints (enforced by the subroutine LEARNH) in order to maintain an implicit version
space, and hypotheses selected by these algorithms are always chosen from this space. The
approach ensures a simple monotonicity property H = V0 ⊇ V1 ⊇ V2 ⊇ . . . that appears
to both simplify and sharpen the label complexity analysis: the deviation bounds for error
differences only need to apply to pairs of hypotheses within the version space, and the re-
striction to a subset of hypothesis class yields a tighter bound on the size of the disagreement
region.

Strict adherence to an implicit version space, however, has potential drawbacks. The first
is the computational difficulty of respecting the hard constraints that define the version space.
For instance, with the class of linear separators, the version space is the intersection of several
half-spaces, one per example in S̃. Although some of the constraints will likely be redundant
and thus safe to ignored, the constraints nonetheless complicate the implementation of the
LEARNH subroutine. Moreover, the difficulty is only increased with more complicated
predictors (e.g., decision trees, neural networks). The plausibility of LEARNH matching
our abstraction of practical supervised learning algorithm is therefore jeopardized by this
computational difficulty.

The second drawback of the implicit version space is the danger of evicting the optimal
hypothesis h∗. The same monotonicity property that appeared to be a blessing for A2 and
Agnostic CAL is also a liability in this sense. The analysis of A2 and Agnostic CAL proves
that h∗ is never evicted, but only with the specified choice of the threshold function ∆. In
practice, the large constants in the definition of ∆ may render nil the potential benefits of
active learning, but a more optimistic choice may be dangerous when coupled with a strict

43
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Algorithm 5.1 (Oracular CAL)
Notes: δt := δ/(t2 + t) for all t ≥ 1; see Eq. (5.3) for the definition of ∆.
Initialize: S̃0 := ∅, T0 := ∅.
For t = 1, 2, . . . , n:

1. Obtained unlabeled data point Xt.

2. Let

(a) ht := LEARNH(∅, S̃t−1 ∪ Tt−1), and

(b) h′
t := LEARNH({(Xt,−ht(Xt))}, S̃t−1 ∪ Tt−1).

3. If h′
t 6= ⊥ and

err(h′
t, S̃t−1 ∪ Tt−1) − err(ht, S̃t−1 ∪ Tt−1) ≤ ∆(ht, S̃t−1, Tt−1, δt−1)

(a) Then: Query Yt, and set S̃t := St−1 and Tt := Tt−1 ∪ {(Xt, Yt)}.
(b) Else: Set Ỹt := ht(Xt), and S̃t := S̃t−1 ∪ {(Xt, Ỹt)} and Tt := Tt−1.

Return: hn+1 := LEARNH(Z̃n).

Figure 5.1: The Oracular CAL algorithm.

version space.

We address both of these drawbacks in this chapter by developing algorithms that (i)
rely on an error minimization oracle simpler than LEARNH, and (ii) avoid strict adherence
to a version space.

5.2 A Modification of Agnostic CAL

Our first algorithm (Algorithm 5.1) is a simple modification of Agnostic CAL; we call this
new algorithm Oracular CAL. Relative to Agnostic CAL, the primary differences are:

1. The threshold function ∆ treats the sets S̃t and Tt separately (rather than together as
S̃t ∪ Tt, as in Agnostic CAL).

2. The use of the LEARNH subroutine is restricted in that at most one hard constraint
is used in each invocation.

Moreover, the final hypothesis returned is obtained via a call to LEARNH with no hard
constraints.

The restricted use of LEARNH makes it a more plausible abstraction of standard super-
vised learning algorithms. In fact, all of the hypotheses ht—and therefore the hypothesis
finally returned by the algorithm—are obtained using standard empirical risk minimization
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without any hard constraints; only the “alternative” hypotheses h′
t are obtained using a sin-

gle hard constraint. In this sense, the version space approach is almost entirely avoided by
Oracular CAL.

However, this relaxation appears to come at a cost in terms of the formal label complexity
analysis. The cause of this is related to the specification of the threshold function ∆. The
deviation bound (Lemma 4.3) that underlies the choice of ∆ for Agnostic CAL is only valid
for error differences between hypotheses that agree on the set of examples S̃t. However, the
hypotheses selected by Oracular CAL are not subject to hard constraints on the set S̃t, so the
same deviation bound cannot be applied to such hypotheses. Instead, Oracular CAL (and
its analysis) will rely on a different, conservative bound that appears to lead to a somewhat
worse label complexity guarantee.

To simplify the exposition, we will assume that for each x ∈ X , there exists some h, h′ ∈ H
such that h(x) = +1 and h′(x) = −1. In other words, the entire hypothesis class H does not
completely agree on any single data point. This is without loss of generality, because data
points for which there is no disagreement in the entirety of H have no contribution to the
error relative to the optimal hypothesis h∗ ∈ H.

5.2.1 A Conservative Threshold

Similar to Agnostic CAL, we will base our threshold function ∆ on a deviation bound. Here,
we will derive a bound that is normalized by the disagreement with the optimal hypothesis
h∗.

First, recall the following definitions from the analysis of Agnostic CAL.

• Sn: the set S̃n with the true labels swapped in.

• Zn := Sn ∪ Tn and Z̃n := S̃n ∪ Tn.

• ah,h′(x, y) := 1(h(x) 6= y ∧ h′(x) = y).

• bh,h′(x, y) := 1(h(x) = y ∧ h′(x) 6= y).

• an(h, h′) := (1/n)
∑

(Xi,Yi)∈Zn
ah,h′(Xi, Yi).

• bn(h, h′) := (1/n)
∑

(Xi,Yi)∈Zn
bh,h′(Xi, Yi).

Note that

an(h, h′) − bn(h, h′) = err(h, Zn) − err(h′, Zn)

E[an(h, h′) − bn(h, h′)] = err(h) − err(h′)

an(h, h′) + bn(h, h′) = ρn(h, h′)

E[an(h, h′) + bn(h, h′)] = ρ(h, h′)

where

ρn(h, h′) :=
1

n

n∑

i=1

1(h(Xi) 6= h′(Xi))

is the empirical disagreement between h and h′.
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Lemma 5.1. Pick any n ≥ 1 and η ∈ (0, 1). Let

εn :=
4

n
·
(

d ln
2en

d
+ ln

16

η

)
.

Let Zn := {(X1, Y1), . . . , (Xn, Yn)} be a set of n iid copies of (X,Y ). Fix any h∗ ∈ H. The
following holds with probability at least 1 − η. For all h ∈ H,

|(err(h, Zn) − err(h∗, Zn)) − (err(h) − err(h∗))|
≤ εn + min

(√
2εnρn(h, h∗),

√
2εnρ(h, h∗)

)
(5.1)

and
|ρn(h, h∗) − ρ(h, h∗)| ≤ εn + min

(√
2εnρn(h, h∗),

√
2εnρ(h, h∗)

)
. (5.2)

Proof. We apply Lemma A.2 to classes {ah,h∗ : h ∈ H} and {bh,h∗ : h ∈ H} (with failure

probability η/2 each), and then use the fact that
√

x +
√

y ≤
√

2(x + y) for nonnegative x
and y.

It may not be obvious why the above deviation bounds are useful for deriving a threshold
function ∆, since the bound quantities are not obviously computable by the algorithm.
However, recall that in the correctness analysis Agnostic CAL, we were able to prove that
h∗(Xi) = Ỹi whenever the algorithm avoided querying the label Yi. It turns out that we
will be able to prove the same guarantee for Oracular CAL; so assume for now that it is
possible to compute 1(h(Xi) 6= h∗(Xi)) for all (Xi, Ỹi) ∈ S̃n. Then, the only trouble that
remains is computing 1(h(Xi) 6= h∗(Xi)) for (Xi, Yi) ∈ Tn. For these examples, we can use
a pessimistic bound 1(h(Xi) 6= h∗(Xi)) ≤ 1 that assumes disagreement with h∗. Therefore,
we have the following computable bound on ρn(h, h∗):

ρn(h, h∗) ≤ 1

n
·



|Tn| +
∑

(Xi,Ỹi)∈S̃n

1(h(Xi) 6= h∗(Xi))





=
1

n
·



|Tn| +
∑

(Xi,Ỹi)∈S̃n

1(h(Xi) 6= Ỹi)





where the equality uses the assumption that Ỹi = h∗(Xi). This suggests that a suitable
setting of ∆ is

∆(h, S̃, T, η) := ε|S̃∪T | +

√√√√√2ε|S̃∪T | ·
1

|S̃ ∪ T |
·



|T | +
∑

(x,ỹ)∈S̃

1(h(x) 6= ỹ)



 (5.3)

where

εn :=
4

n
·
(

d ln
2en

d
+ ln

16

η

)
. (5.4)

We use δt := δ/(t2 + t) so that
∑

t≥1 δt ≤ δ.
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5.2.2 Correctness Analysis

The analysis of Oracular CAL begins with a lemma that captures the following intuition.
If some of the labels in a data set are replaced by the labels assigned by a hypothesis h∗,
then h∗ only appears more attractive compared to other hypothesis. This is because the
substitutions penalizes hypotheses that disagree with h∗ on the examples where the change
is made.

Lemma 5.2. Pick any h∗ : X → Y and any S, T ⊆ X ×Y. If S̃ := {(x, h∗(x)) : (x, y) ∈ S},
then

err(h, S̃ ∪ T ) − err(h∗, S̃ ∪ T ) ≥ err(h, S ∪ T ) − err(h∗, S ∪ T ) (5.5)

for all h : X → Y.

Proof. It suffices to show that

1(h(x) 6= ỹ) − 1(h∗(x) 6= ỹ) ≥ 1(h(x) 6= y) − 1(h∗(x) 6= y)

whenever (x, y) ∈ S and h(x) = y 6= ỹ = h∗(x). Note that

−1(h∗(x) 6= ỹ) = 0 ≥ −1 = −1(h∗(x) 6= y).

Since h(x) = y, we have

1(h(x) 6= ỹ) = 1 ≥ 0 = 1(h(x) 6= y).

Combining these inequalities completes the proof.

Next, we prove an analogue of Lemma 4.4, which states that the optimal hypothesis h∗

agrees with the synthesized labels in S̃n.

Lemma 5.3. Assume the bound from Eq. (5.1) holds for all h ∈ H and all n ≥ 1, using
η = δn when applied to Zn. The hypothesis h∗ is consistent with all examples in S̃n for all
n ≥ 0.

Proof. First, note that the bounds from Eq. (5.1) trivially hold for n = 0, so we have by
assumption that they hold for all n ≥ 0. Now we proceed by induction on n. The base case of
n = 0 holds trivially since S̃0 = ∅. So pick any n ≥ 1 and assume as the inductive hypothesis
that h∗ is consistent with S̃n−1. A consequence of this is that the deviation of err(hn, Sn−1 ∪
Tn−1) − err(h∗, Sn−1 ∪ Tn−1) below its mean is bounded by ∆(hn, S̃n−1, Tn−1, δn−1). That is,

(err(hn) − err(h∗)) − (err(hn, Zn−1) − err(h∗, Zn−1))

≤ εn +
√

2εnρn(h, h∗) ≤ ∆(hn, S̃n−1, Tn−1, δn−1) (5.6)

where the first inequality follows from the deviation bound in Eq. (5.1); and the second
follows from the inductive hypothesis Ỹi = h∗(Xi) for all (Xi, Ỹi) ∈ S̃n−1, together with the
conservative bound 1(hn(Xi) 6= h∗(Xi)) ≤ 1 for all (Xi, Yi) ∈ Tn−1 .

Suppose the label Yn is not queried, so (Xn, Ỹn) ∈ S̃n. In this case,

err(h′
n, Z̃n−1) − err(hn, Z̃n−1) > ∆(hn, S̃n−1, Tn−1, δn). (5.7)
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It suffices to show that err(h′
n, Z̃n−1) > err(h∗, Z̃n−1); this implies Ỹn = hn(xn) = h∗(xn)

because h′
n minimizes err(h′

n, Z̃n−1) over all h ∈ H with h(Xn) 6= hn(Xn). Indeed,

err(h′
n, Z̃n−1) − err(h∗, Z̃n−1)

= err(h′
n, Z̃n−1) − err(hn, Z̃n−1) + err(hn, Z̃n−1) − err(h∗, Z̃n−1)

≥ err(h′
n, Z̃n−1) − err(hn, Z̃n−1) + err(hn, Zn−1) − err(h∗, Zn−1)

> ∆(hn, S̃n−1, Tn−1, δn) + err(hn, Zn−1) − err(h∗, Zn−1)

≥ err(hn) − err(h∗)

≥ 0.

Above, the inequalities follow (respectively) from Lemma 5.2 (with the inductive hypothesis),
Eq. (5.7), Eq. (5.6), and the definition of h∗.

Theorem 5.1. With probability at least 1 − δ,

err(hn+1) ≤ err(h∗) + O

(
d log n + log(1/δ)

n
+

√
err(h∗) · d log n + log(1/δ)

n

)
.

Proof. We apply the bounds from Lemma 5.1 for all n ≥ 1, using η = δn when applied to
Zn. These bounds hold with probability at least 1−δ; we henceforth condition on this event.
By Lemma 5.2 and Lemma 5.3, we have

err(hn+1, Zn) − err(h∗, Zn) ≤ err(hn+1, Z̃n) − err(h∗, Z̃n) ≤ 0.

Now, using the deviation bounds,

err(hn+1) − err(h∗) ≤ εn +
√

2εnρ(hn+1, h∗)

≤ εn +
√

2εn(err(hn+1) + err(h∗))

≤ εn +
√

2εn err(hn+1) +
√

2εn err(h∗)

where the second inequality follows from the triangle inequality. Solving the quadratic
inequality for err(hn+1) implies

err(hn+1) − err(h∗) ≤ 2εn +

√
2εn(err(h∗) +

√
2εn err(h∗))

≤ 2εn +
√

2εn err(h∗) +

√
2εn

√
2εn err(h∗)

≤ (2 + 1/
√

2)εn + (3/2)
√

2εn err(h∗)

where we have used the fact 2
√

xy ≤ x + y in the last step.

Once again, we have a basic consistency guarantee implies a label complexity bound
for Oracular CAL no worse (up to constants) than that of a fully-supervised learner (see
Eq. (4.1)).
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5.2.3 Label Complexity Analysis

We now bound the number of labels requested by Oracular CAL after n iterations. First,
we show a bound on the threshold value ∆(hn+1, S̃n, Tn, δn).

Lemma 5.4. Assume the bounds from Eq. (5.1) and Eq. (5.2) hold for all h ∈ H and all
n ≥ 1, using η = δn when applied to Zn. For all n ≥ 1,

∆(hn+1, S̃n, Tn, δn) ≤ 3.2εn +
√

2εn|Tn|/n + 1.5
√

2εnρ(hn+1, h∗)

where εn is defined in Eq. (5.4) (with η = δn).

Proof. Lemma 5.3 implies that

∆(hn+1, S̃n, Tn, δn) = εn +

√√√√√2εn · 1

n
·



|Tn| +
∑

(Xi,Ỹi)∈S̃n

1(h(Xi) 6= h̃∗(Xi))





≤ εn +
√

2εn|Tn|/n +
√

2εnρn(hn+1, h∗)

Now applying the deviation bound from Eq. (5.2) to ρn(hn+1, h
∗) and simplifying (using

2
√

xy ≤ x + y) gives the claim.

Lemma 5.5. Assume the conditions from Lemma 5.4. There exists a universal constant
C ∈ (0, 27) such that the following holds. Let Qn+1 ∈ {0, 1} be the random variable that
indicates if Yn+1 is queried. For all n ≥ 1,

E[Qn+1] ≤ θ ·



(2 + λ) · err(h∗) + C ·
(

1 +
1

λ

)
· εn + 3.2 ·

√√√√εn · 1

n

n∑

i=1

E[Qn]





for all λ > 0.

Proof. Let

h :=

{
hn+1 if h′

n+1(Xn+1) = h∗(Xn+1)
h′

n+1 if hn+1(Xn+1) = h∗(Xn+1)

so h(Xn+1) 6= h∗(Xn+1). Suppose Yn+1 is queried (Qn+1 = 1). We consider two possible
cases:

1. If h = hn+1, then

err(h) − err(h∗) = err(hn+1) − err(h∗)

≤ err(hn+1, Zn) − err(h∗, Zn) + εn +
√

2εnρ(h, h∗)

≤ err(hn+1, Zn) − err(h′
n+1, Zn) + εn +

√
2εnρ(h, h∗)

≤ εn +
√

2εnρ(h, h∗)

where the first inequality follows from Eq. (5.1), and the second follows from the fact
h′

n+1(Xn+1) = h∗(Xn+1) and the definition of h′
n+1.
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2. If instead h = h′
n+1, then

err(h) − err(h∗) = err(h′
n+1) − err(h∗)

≤ err(h′
n+1, Zn) − err(h∗, Zn) + εn +

√
2εnρ(h, h∗)

≤ err(h′
n+1, Zn) − err(hn+1, Zn) + εn +

√
2εnρ(h, h∗)

≤ ∆(h, S̃n, Tn, δn) + εn +
√

2εnρ(h, h∗)

≤ 4.2εn + 2.5
√

2εnρ(h, h∗) +
√

2εn|Tn|/n

where the last inequality follows from Lemma 5.4.

In either case, we have by the triangle inequality,

ρ(h, h∗) ≤ 2 err(h∗) + 4.2εn + 2.5
√

2εnρ(h, h∗) +
√

2εn|Tn|/n.

Solving the quadratic inequality for ρ(h, h∗) and simplifying gives

ρ(h, h∗) ≤ (2 + λ) · err(h∗) + C ·
(

1 +
1

λ

)
· εn + 3.2 ·

√
εn · |Tn|

n
=: rn

for any λ > 0. Therefore Xn+1 ∈ R(h∗, rn). Now using the definition of the disagreement
coefficient θ,

E[Qn+1] = E[E[Qn+1|Zn, Xn+1]]

≤ E[Pr(Xn+1 ∈ R(h∗, rn))]

≤ E[θ · rn]

= θ ·



(2 + λ) · err(h∗) + C ·
(

1 +
1

λ

)
· εn + E



3.2 ·

√√√√εn · 1

n

n∑

i=1

Qn









≤ θ ·



(2 + λ) · err(h∗) + C ·
(

1 +
1

λ

)
· εn + 3.2 ·

√√√√εn · 1

n

n∑

i=1

E[Qn]





where the last two steps use linearity of expectation and Jensen’s inequality.

Theorem 5.2. There exists a universal constant C > 0 such that the following holds. Con-
ditioned on an event that occurs with probability at least 1− δ, the expected number of labels
queried by Oracular CAL after n iterations is at most

1 + 2 · θ · err(h∗) · (n − 1) + C · θ2 ·
(

d + log
1

δ

)
· ln3 n

+ C · θ3/2 ·
√(

d + log
1

δ

)
· err(h∗) · (n − 1) · ln3 n.
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Proof. Assuming Y1 is always queried; applying Lemmas 5.1 and 5.5, and linearity of expec-
tation; and optimizing over λ gives the bound

n∑

i=1

E[Qi] ≤ 1 + 2 · θ · err(h∗) · (n − 1) + C ·
∫ n

1

εxdx

+ 2 · θ ·
√

err(h∗) · (n − 1) · C ·
∫ n

1

εxdx

+ 3.2 · θ ·
∫ n

1

√
εx

x
dx ·

√√√√
n∑

i=1

E[Qi].

Evaluating the integrals and solving the quadratic for E[Q1] + . . . + E[Qn] completes the
proof.

The bound given here is worse than the bound for Agnostic CAL (Theorem 4.3) in its
dependence on the disagreement coefficient θ in the sub-linear terms, but still implies a label
complexity bound that improves over that of A2 (Theorem 2.3).

5.2.4 Discussion

Comparing Agnostic CAL and Oracular CAL

The label complexity bound we derived for Oracular CAL appears to be weaker than that
of Agnostic CAL. There are two possible avenues of improvement:

1. Tighten the analysis.

2. Use a different threshold function ∆.

The latter option can be carried out to some degree. In the (n + 1)th iteration, the basic
mechanism of inferring the label assigned by the optimal hypothesis h∗ can be applied to
every data point in Tn, in addition to the current point Xn+1 (Lemma 5.3). Whenever it
is possible to infer h∗(Xi) for some (Xi, Yi) ∈ Tn, the example is removed from Tn and
placed in S̃n, using the label Ỹi := h∗(Xi). This has the effect of lessening effect of the
over-approximation ∑

(Xi,Yi)∈Tn

1(h(Xi) 6= h∗(Xi)) ≤ |Tn|

used in the threshold function ∆. Unfortunately, carrying out this improvement does not
seem to reduce the label complexity to that of Agnostic CAL. Thus, it seems that Oracular
CAL pays a price for abandoning the strict version space approach, at least relative to
Agnostic CAL.

On the other hand, Oracular CAL has qualitative advantages over Agnostic CAL that
may be important in practice. The first is that tweaking ∆ to be more aggressive has less
severe consequences in Oracular CAL than in Agnostic CAL. That is, the failure mode of
Oracular CAL is that it sometimes sets Ỹi 6= h∗(Xi), which seems fine as long as it doesn’t
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happen too often. In contrast, if Agnostic CAL sets Ỹi 6= h∗(Xi), then h∗ is evicted from the
implicit version space, which can be devastating.

The second advantage is the computational advantage of the restricted use of the LEARNH

subroutine, a clear practical improvement.

Favorable Bias

Both Agnostic CAL and Oracular CAL ultimately create a labeled data set Z̃n = S̃n∪Tn that
is biased. The bias is favorable in that it only makes h∗ more attractive to a learner—this
idea is formally expressed in Lemma 5.2.

However, sometimes even such a favorable bias can be undesirable. For instance, the
empirical error of a hypothesis computed on Z̃n is no longer an unbiased estimator of its
true error; this cannot even be compensated for with uniform deviations bounds. Moreover,
the bias may drop out of favor if h∗ is no longer sought after, e.g., if the hypothesis class
changes.

5.3 An Importance Weighting Algorithm

We now describe an algorithm that overcomes the issue of creating a biased data set. In
fact, the algorithm will avoid synthesizing labels altogether, and instead add importance
weights to data for which labels are queried. For an importance weighted set of examples
S ⊂ X × Y × R+, the importance weighted empirical error of a hypothesis h : X → Y is

err(h, S,m) :=
1

m

∑

(x,y,w)∈S

w · 1(h(x) 6= y) (5.8)

(m is a suitable normalizing constant). The weights will be set in such a way that guarantees
E[err(h, S,m)] = err(h). Here, the expectation includes the internal randomness used by the
algorithm in forming the weighted set of examples S. The primary challenge, then, will be
in controlling the variance of these estimates.

The algorithm (Algorithm 5.2) is based on the Importance Weighted Active Learning
(IWAL) framework of [BDL09]; we call our particular instantiation IWAL-CAL, as it com-
bines a technique from Oracular CAL with the importance weighting trick. Note that, like
Oracular CAL, IWAL-CAL only requires the enforcement of a single hard constraint for
determining h′

t, and does not require any hard constraints for determining ht. However, it
does require the minimization of an importance weighted empirical error, which may add
some computational complexity.

As we did for Oracular CAL, we will assume for simplicity that the entire hypothesis
class H does not completely agree on any single data point x ∈ X . That is, for each x ∈ X ,
there exists h, h′ ∈ H such that h(x) = 1 and h′(x) = −1. If the learner should come across
any points for which this assumption fails, it can choose any query probability Pt ∈ (0, 1]
(e.g., Pt = 1/t) without affecting the behavior of the algorithm with respect to the rest of
the data points. We will also assume for simplicity that H is finite. This can be relaxed by
letting H be a finite ǫ-cover of an infinite class.
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Algorithm 5.2 (IWAL-CAL)
Notes: see Eq. (5.8) for the definition of err (importance weighted error), and Sec-
tion 5.3.4 for the definitions of C0, c1, and c2.
Initialize: S0 := ∅.
For t = 1, 2, . . . , n:

1. Obtained unlabeled data point Xt.

2. Let

(a) ht := arg min{err(h, St−1, t − 1) : h ∈ H}, and

(b) h′
t := arg min{err(h, St−1, t − 1) : h ∈ H ∧ h(Xt) 6= ht(Xt)}.

3. Let Gt := err(h′
t, St−1, t − 1) − err(ht, St−1, t − 1), and

Pt :=

{
1 if Gt ≤

√
C0 log t

t−1
+ C0 log t

t−1

s(Gt, t) otherwise

where s(g, t) ∈ (0, 1) is the positive solution s to the equation

g =

(
c1√
s
− c1 + 1

)
·
√

C0 log t

t − 1
+
(c2

s
− c2 + 1

)
· C0 log t

t − 1
.

4. Toss a biased coin with Pr(heads) = Pt.

(a) If heads, then query Yt, and let St := St−1 ∪ {(Xt, Yt, 1/Pt)}.
(b) Else, let St := St−1.

Return: hn+1 := arg min{err(h, Sn) : h ∈ H}.

Figure 5.2: The IWAL-CAL algorithm.
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In the remainder of this chapter, we will use the notation a1:n to denote a sequence
(a1, a2, . . . , an).

5.3.1 Importance Weighted Active Learning

In the IWAL framework, the learner chooses a query probability Pt ∈ (0, 1] after receiving
each new point Xt. Then, a coin with heads bias Pt is tossed; the label Yt is queried if
the coin comes up heads, and otherwise the label is foregone. The query probability Pt can
depend on all previous unlabeled examples, any previously queried labels, the outcomes of
any of the past coin tosses, and the current unlabeled point Xt.

Formally, an IWAL algorithm specifies a rejection threshold function p : (X × Y ×
{0, 1})∗×X → (0, 1] for determining these query probabilities. Let Qt ∈ {0, 1} be a random
variable conditionally independent of the current label Yt

Qt ⊥⊥ Yt | X1:t, Y1:t−1, Q1:t−1

and with conditional expectation

E[Qt|X1:t, Y1:t−1, Q1:t−1] = Pt := p(Z1:t−1, Xt).

where

Zt := (Xt, Yt, Qt).

That is, Qt indicates if the label Yt is queried (the outcome of the coin toss). The query
probability Pt is allowed to depend on a label Yt if and only if it has been queried, i.e., iff
the corresponding Qt = 1.

5.3.2 Importance Weighted Estimators

Let f : X × Y → R be a function over X × Y . The importance weighted estimator of
E[f(X,Y )] from Z1:n ∈ (X × Y × {0, 1})n is

f̂(Z1:n) :=
1

n

n∑

i=1

Qi

Pi

· f(Xi, Yi).

Note that this quantity depends on a label Yi only if it has been queried (i.e., only if Qi = 1;
it also depends on Xi only if Qi = 1). The IWAL-CAL algorithm uses a rejection threshold
function solely based on estimators of this type.
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A basic property of the importance weighted estimator f̂ is unbiasedness :

E[f̂(Z1:n)] =
1

n

n∑

i=1

E

[
Qi · f(Xi, Yi)

Pi

]

=
1

n

n∑

i=1

E

[
E

[
Qi · f(Xi, Yi)

Pi

∣∣∣∣X1:i, Y1:i, Q1:i−1

]]

=
1

n

n∑

i=1

E

[
E [Qi|X1:i, Y1:i, Q1:i−1]

Pi

· f(Xi, Yi)

]

=
1

n

n∑

i=1

E

[
E [Qi|X1:i, Y1:i−1, Q1:i−1]

Pi

· f(Xi, Yi)

]

=
1

n

n∑

i=1

E

[
Pi

Pi

· f(Xi, Yi)

]

=
1

n

n∑

i=1

E[f(Xi, Yi)]

= E[f(X,Y )].

For instance, an unbiased estimator of the error of a hypothesis h : X → Y is

err(h, Z1:n) :=
1

n

n∑

i=1

Qi

Pi

· 1(h(Xi) 6= Yi).

In the notation of Algorithm 5.2 and Eq. (5.8), this is equivalent to err(h, Sn, n), where

Sn := {(Xi, Yi, 1/Pi) : 1 ≤ i ≤ n ∧ Qi = 1}

is the importance weighted data set collected by IWAL-CAL.

5.3.3 A Deviation Bound for Importance Weighted Estimators

As mentioned before, the rejection threshold used by IWAL-CAL is based on importance
weighted error estimates err(h, Z1:n). Even though these estimates are unbiased, they are
only reliable when the variance is not too large. To get a handle on this, we need a deviation
bound for importance weighted estimators. This is complicated by two factors:

1. The importance weighted samples (Xi, Yi, 1/Pi) (or equivalently, the Zi = (Xi, Yi, Qi))
are not iid. This is because the query probability Pi (and thus the importance weight
1/Pi) generally depends on Z1:i−1 and Xi.

2. The effective range of each term in the estimator is, itself, a random variable.

To address these issues, we develop a deviation bound based on a martingale technique
from [Zha05].

Let f : X × Y → [−1, 1] be a bounded function. Consider any rejection threshold
function p : (X × Y × {0, 1})∗ × X → (0, 1] for which Pn = p(Z1:n−1, Xn) is bounded below
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by some quantity (which may depend on n). Equivalently, the query probabilities Pn should
have inverses 1/Pn bounded above by some rmax (which, again, may depend on n). The a
priori upper bound rmax on 1/Pn can be pessimistic, as the dependence on rmax in the final
deviation bound will be very mild: it enters in as log log rmax.

Let

Wi :=
Qi

Pi

· f(Xi, Yi)

be the ith term in the importance weighted estimator

f̂(Z1:n) :=
1

n

n∑

i=1

Wi.

Our goal is to prove a bound on |f̂(Z1:n)−E[f(X,Y )]| that holds with high probability over
the joint distribution of Z1:n.

To start, we establish bounds on the range and variance of each term Wi in the estimator,
conditioned on (X1:i, Y1:i, Q1:i−1). Write Ei[ · ] to denote E[ · |X1:i, Y1:i, Q1:i−1]. Note that

Ei[Wi] =
Ei[Qi]

Pi

· f(Xi, Yi) =
Pi

Pi

· f(Xi, Yi) = f(Xi, Yi) (5.9)

so if Ei[Wi] = 0, then Wi = 0. Therefore, the (conditional) range and variance are non-zero
only if Ei[Wi] 6= 0. For the range, we have

|Wi| =
|Qi|
Pi

· |f(Xi, Yi)| ≤ 1

Pi

(5.10)

and, for the variance,

Ei[(Wi − Ei[Wi])
2] ≤ Ei[Q

2
i ]

P 2
i

· f(Xi, Yi)
2 =

Pi

P 2
i

· f(Xi, Yi)
2 ≤ 1

Pi

. (5.11)

Our approach is as follows. First, we show via a martingale inequality that
∣∣∣∣∣
1

n

n∑

i=1

Wi −
1

n

n∑

i=1

Ei[Wi]

∣∣∣∣∣ ≤ O

(√
1

Pmin

· log log rmax

n
+

1

Pmin

· log log rmax

n

)

with high probability, where Pmin := min{Pi : 1 ≤ i ≤ n ∧ Ei[Wi] 6= 0} and 1/Pmin ≤ rmax.
As Ei[Wi] = f(Xi, Yi), this is a bound on the difference between the importance-weighted
estimator and the fully-supervised estimator. Next, we use Hoeffding’s inequality to get

∣∣∣∣∣
1

n

n∑

i=1

f(Xi, Yi) − E[f(X,Y )]

∣∣∣∣∣ ≤ O

(√
1

n

)

with high probability. Finally, we combine the two bounds with the triangle inequality.
The techniques here are mostly developed in [Zha05]; for completeness, we detail the

proofs for our particular application. The first two lemmas establish a basic bound in terms
of conditional moment generating functions.
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Lemma 5.6. For all n ≥ 1 and all functionals Ξi := ξi(Z1:i),

E

[
exp

(
n∑

i=1

Ξi −
n∑

i=1

ln Ei[exp(Ξi)]

)]
= 1.

Proof. A straightforward induction on n.

Lemma 5.7. For all t ≥ 0, λ ∈ R, n ≥ 1, and functionals Ξi := ξi(Z1:i),

Pr

(
λ

n∑

i=1

Ξi −
n∑

i=1

ln Ei[exp(λΞi)] ≥ t

)
≤ e−t.

Proof. The claim follows by Markov’s inequality and Lemma 5.6 (replacing Ξi with λΞi).

In order to specialize Lemma 5.7 for our purposes, we first analyze the conditional moment
generating function of Wi − Ei[Wi].

Lemma 5.8. If 0 < λ < 3Pi, then

ln Ei[exp(λ(Wi − Ei[Wi]))] ≤ 1

Pi

· λ2

2(1 − λ/(3Pi))
.

If Ei[Wi] = 0, then
ln Ei[exp(λ(Wi − Ei[Wi]))] = 0.

Proof. Let g(x) := (exp(x) − x − 1)/x2 for x 6= 0, so exp(x) = 1 + x + x2 · g(x). Note that
g(x) is non-decreasing. Thus,

Ei [exp(λ(Wi − Ei[Wi]))]

= Ei

[
1 + λ(Wi − Ei[Wi]) + λ2(Wi − Ei[Wi])

2 · g(λ(Wi − Ei[Wi]))
]

= 1 + λ2 · Ei

[
(Wi − Ei[Wi])

2 · g(λ(Wi − Ei[Wi]))
]

≤ 1 + λ2 · Ei

[
(Wi − Ei[Wi])

2 · g(λ/Pi)
]

= 1 + λ2 · Ei

[
(Wi − Ei[Wi])

2
]
· g(λ/Pi)

≤ 1 + (λ2/Pi) · g(λ/Pi)

where the first inequality follows from the range bound (Eq. (5.10)) and the second follows
from variance bound (Eq. (5.11)). Now the first claim follows from the definition of g(x),
the facts exp(x) − x − 1 ≤ x2/(2(1 − x/3)) for 0 ≤ x < 3 and ln(1 + x) ≤ x.

The second claim is immediate from the facts Ei[Wi] = f(Xi, Yi) (Eq. (5.9)) and Wi =
(Qi/Pi) · f(Xi, Yi).

We now combine Lemma 5.8 and Lemma 5.7 to bound the deviation of the importance
weighted estimator f̂(Z1:n) from (1/n)

∑n
i=1 Ei[Wi].

Lemma 5.9. Pick any t ≥ 0, n ≥ 1, and pmin > 0, and let E be the (joint) event

1

n

n∑

i=1

Wi −
1

n

n∑

i=1

Ei[Wi] ≥
√

1

pmin

· 2t

n
+

1

pmin

· t

3n

and min{Pi : 1 ≤ i ≤ n ∧ Ei[Wi] 6= 0} ≥ pmin.

Then Pr(E) ≤ e−t.
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Proof. With foresight, let

λ := 3pmin ·

√
1

3pmin
· 2t

3n

1 +
√

1
3pmin

· 2t
3n

.

Note that 0 < λ < 3pmin. By Lemma 5.8 and the choice of λ, we have that if min{Pi : 1 ≤
i ≤ n ∧ Ei[Wi] 6= 0} ≥ pmin, then

1

nλ
·

n∑

i=1

ln Ei[exp(λ(Wi − Ei[Wi]))] ≤ 1

pmin

· λ

2(1 − λ/(3pmin))
=

√
1

pmin

· t

2n
(5.12)

and
t

nλ
=

√
1

pmin

· t

2n
+

1

pmin

· t

3n
. (5.13)

Let E ′ be the event that

1

n
·

n∑

i=1

(Wi − Ei[Wi]) −
1

nλ
·

n∑

i=1

ln Ei[exp(λ(Wi − Ei[Wi]))] ≥ t

nλ

and let E ′′ be the event min{Pi : 1 ≤ i ≤ n ∧ Ei[Wi] 6= 0} ≥ pmin. Together, Eq. (5.12)
and Eq. (5.13) imply E ⊆ E ′ ∩E ′′. And of course, E ′ ∩E ′′ ⊆ E ′, so Pr(E) ≤ Pr(E ′ ∩E ′′) ≤
Pr(E ′) ≤ e−t by Lemma 5.7.

To do away with the joint event in Lemma 5.9, we use the standard trick of taking a
union bound over a geometrical sequence of possible values for pmin.

Lemma 5.10. Pick any t ≥ 0 and n ≥ 1. Assume 1 ≤ 1/Pi ≤ rmax for all 1 ≤ i ≤ n, and
let Rn := 1/ min{Pi : 1 ≤ i ≤ n ∧ Ei[Wi] 6= 0} ∪ {1}. We have

Pr

(∣∣∣∣∣
1

n

n∑

i=1

Wi −
1

n

n∑

i=1

Ei[Wi]

∣∣∣∣∣ ≥
√

2Rnt

n
+

Rnt

3n

)
≤ 2(2 + log2 rmax)e

−t/2.

Proof. The assumption on Pi implies 1 ≤ Rn ≤ rmax. Let rj := 2j for −1 ≤ j ≤ m :=
⌈log2 rmax⌉. Then

Pr

(
1

n

n∑

i=1

Wi −
1

n

n∑

i=1

Ei[Wi] ≥
√

2Rnt

n
+

Rnt

3n

)

=
m∑

j=0

Pr

(
1

n

n∑

i=1

Wi −
1

n

n∑

i=1

Ei[Wi] ≥
√

2Rnt

n
+

Rnt

3n
∧ rj−1 < Rn ≤ rj

)

≤
m∑

j=0

Pr

(
1

n

n∑

i=1

Wi −
1

n

n∑

i=1

Ei[Wi] ≥
√

2rj−1t

n
+

rj−1t

3n
∧ Rn ≤ rj

)

=
m∑

j=0

Pr

(
1

n

n∑

i=1

Wi −
1

n

n∑

i=1

Ei[Wi] ≥
√

2rj(t/2)

n
+

rj(t/2)

3n
∧ Rn ≤ rj

)

≤ (2 + log2 rmax)e
−t/2
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where the last inequality follows from Lemma 5.9. Replacing Wi with −Wi bounds the
probability of deviations in the other direction in exactly the same way. The claim then
follows by the union bound.

Finally, we bound the deviation of the supervised estimator from E[f(X, y)], and combine
this with Lemma 5.10 to give our final deviation bound.

Theorem 5.3. Pick any t ≥ 0 and n ≥ 1. Assume 1 ≤ 1/Pi ≤ rmax for all 1 ≤ i ≤ n,
and let Rn := 1/ min{Pi : 1 ≤ i ≤ n ∧ f(Xi, Yi) 6= 0} ∪ {1}. With probability at least
1 − 2(3 + log2 rmax)e

−t/2,
∣∣∣∣∣
1

n

n∑

i=1

Qi

Pi

· f(Xi, Yi) − E[f(X,Y )]

∣∣∣∣∣ ≤
√

2Rnt

n
+

√
2t

n
+

Rnt

3n
.

Proof. By Hoeffding’s inequality and the fact |f(Xi, Yi)| ≤ 1, we have

Pr

(∣∣∣∣∣
1

n

n∑

i=1

f(Xi, Yi) − E[f(X,Y )]

∣∣∣∣∣ ≥
√

2t

n

)
≤ 2e−t/2.

Since Ei[Wi] = f(Xi, Yi), the claim follows by combining this and Lemma 5.10 with the
triangle inequality and the union bound.

5.3.4 The IWAL-CAL Rejection Threshold

First, we state a deviation bound for the importance weighted error of hypotheses in a finite
hypothesis class H that holds for all n ≥ 1. It is a simple consequence of Theorem 5.3 and
union bounds.

Lemma 5.11. Pick any δ ∈ (0, 1). For all n ≥ 1, let

εn :=
16 log(2(3 + n log2 n)n(n + 1)|H|/δ)

n
= O

(
log(n|H|/δ)

n

)
. (5.14)

Let (Z1, Z2, . . .) ∈ (X × Y × {0, 1})∗ be the sequence of random variables specified in Sec-
tion 5.3.1 using a rejection threshold function p : (X ×Y×{0, 1})∗×X → [0, 1] that satisfies

p(z1:n, x) ≥ 1/nn

for all n ≥ 1 and all (z1:n, x) ∈ (X × Y × {0, 1})n ×X .
The following holds with probability at least 1 − δ. For all n ≥ 1 and all h ∈ H,

|(err(h, Z1:n) − err(h∗, Z1:n)) − (err(h) − err(h∗))|

≤
√

1

Pmin,n(h)
· εn +

1

Pmin,n(h)
· εn (5.15)

where
Pmin,n(h) = min{Pi : 1 ≤ i ≤ n ∧ h(Xi) 6= h∗(Xi)} ∪ {1}.
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We let C0 ≥ 2 be a quantity such that εn (as defined in Eq. (5.14)) is bounded as

εn ≤ C0 · log(n + 1)

n
.

The following constants are used in the description of the IWAL-CAL rejection threshold
and the subsequent analysis:

c1 := 5 + 2
√

2 c2 := 5 c3 := max




(

c1 +
√

2

c1 − 2

)2

,
c2 + 2

c2 − 2





c4 := (c1 +
√

c3)
2 c5 := c2 + c3.

The rejection threshold (line 3 in Algorithm 5.2) is based on the deviation bound from
Lemma 5.11. First, the importance weighted error minimizing hypothesis ht and the “al-
ternative” hypothesis h′

t are found, and their difference in importance weighted errors Gt is
computed. If Gt ≤

√
(C0 log t)/(t − 1) + (C0 log t)/(t − 1), then the query probability Pt is

set to 1. Otherwise, Pt is set to the positive solution s to the quadratic equation

Gt =

(
c1√
s
− c1 + 1

)
·
√

C0 log t

t − 1
+
(c2

s
− c2 + 1

)
· C0 log t

t − 1
. (5.16)

It can be checked that Pt ∈ (0, 1] and that Pt is non-increasing with Gt. It is also useful
to note that log(t + 1)/t is monotonically decreasing with t ≥ 0 (we use the convention
log(1)/0 = ∞).

In order to apply Lemma 5.11 with the IWAL-CAL rejection threshold, we need to
establish the (very crude) bound Pt ≥ 1/tt for all t.

Lemma 5.12. The IWAL-CAL rejection threshold satisfies

p(z1:n, x) ≥ 1/nn

for all n ≥ 1 and all (z1:n, x) ∈ (X × Y × {0, 1})n−1 ×X .

Proof. By induction on n. Trivial for n = 1 (since p(ε, x) = 1 for all x ∈ X ), so now
assume as the inductive hypothesis pn−1 = p(z1:n−2, x) ≥ 1/(n − 1)n−1 for all (z1:n−2, x) ∈
(X × Y × {0, 1})n−2 × X . Fix any (z1:n−1, x) ∈ (X × Y × {0, 1})n−1 × X , and consider
the error difference gn used to determine pn = p(z1:n, x). We only have to consider the
case gn >

√
(C0 log n)/(n − 1) + (C0 log n)/(n − 1). By the inductive hypothesis, we have

gn ≤ 2(n − 1)n−1. Let C ′
0 := C0 log n. Solving the quadratic in Eq. (5.16) implies

√
pn =

c1 ·
√

C′

0

n−1
+

√
c2
1
·C′

0

n−1
+ 4 ·

(
gn + (c1 − 1) ·

√
C′

0

n−1
+ (c2 − 1) · C′

0

n−1

)
· c2·C′

0

n−1

2

(
gn + (c1 − 1) ·

√
C′

0

n−1
+ (c2 − 1) · C′

0

n−1

)

so, very loosely,

pn >
c2 · C ′

0

c1 · (n − 1) · gn

≥ c2 · C ′
0

2c1 · (n − 1) · (n − 1)n−1
>

1

e(n − 1)n
≥ 1

nn

as required.
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5.3.5 Correctness Analysis

We first prove a consistency guarantee for IWAL-CAL that bounds the generalization error
of the importance weighted empirical error minimizer. The proof actually establishes a lower
bound on the query probabilities Pi ≥ 1/2 for Xi such that hn(Xi) 6= h∗(Xi). This offers
an intuitive characterization of the weighting landscape induced by the importance weights
1/Pi.

Theorem 5.4. The following holds with probability at least 1 − δ. For any n ≥ 1,

0 ≤ err(hn) − err(h∗) ≤ err(hn, Z1:n−1) − err(h∗, Z1:n−1) +

√
2C0 log n

n − 1
+

2C0 log n

n − 1
.

This implies, for all n ≥ 1,

err(hn) ≤ err(h∗) +

√
2C0 log n

n − 1
+

2C0 log n

n − 1
.

Proof. We condition on the 1−δ probability event that the deviation bounds from Lemma 5.11
hold. The proof now proceeds by induction on n. The claim is trivially true for n = 1. Now
pick any n ≥ 2 and assume as the inductive hypothesis that

0 ≤ err(hτ )− err(h∗) ≤ err(hτ , Z1:τ−1)− err(h∗, Z1:τ−1) +

√
2C0 log τ

τ − 1
+

2C0 log τ

τ − 1
. (5.17)

for all 1 ≤ τ ≤ n − 1. We need to show Eq. (5.17) holds for τ = n.
Let Pmin := min{Pi : 1 ≤ i ≤ n − 1 ∧ hn(Xi) 6= h∗(Xi)} ∪ {1}. If Pmin ≥ 1/2,

then Eq. (5.15) implies that Eq. (5.17) holds for τ = n as needed. So assume for sake of
contradiction that Pmin < 1/2, and let n0 := max{i ≤ n−1 : Pi = Pmin ∧ hn(Xi) 6= h∗(Xi)}.
By definition of Pn0

, we have

err(h′
n0

, Z1:n0−1) − err(hn0
, Z1:n0−1)

=

(
c1√
Pmin

− c1 + 1

)
·
√

C0 log n0

n0 − 1
+

(
c2

Pmin

− c2 + 1

)
· C0 log n0

n0 − 1
.

Using this fact together with the inductive hypothesis, we have

err(h′
n0

, Z1:n0−1) − err(h∗, Z1:n0−1)

= err(h′
n0

, Z1:n0−1) − err(hn0
, Z1:n0−1) + err(hn0

, Z1:n0−1) − err(h∗, Z1:n0−1)

≥
(

c1√
Pmin

− c1 + 1

)
·
√

C0 log n0

n0 − 1
+

(
c2

Pmin

− c2 + 1

)
· C0 log n0

n0 − 1

−
√

2C0 log n0

n0 − 1
− 2C0 log n0

n0 − 1

=

(
c1√
Pmin

− c1 + 1 −
√

2

)
·
√

C0 log n0

n0 − 1
+

(
c2

Pmin

− c2 − 1

)
· C0 log n0

n0 − 1
(5.18)

> (c1 − 1) · (
√

2 − 1) ·
√

C0 log n0

n0 − 1
+ (c2 − 1) · C0 log n0

n0 − 1
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where the last step uses the fact that Pmin < 1/2. Since this final quantity is positive, we
have err(h′

n0
, Z1:n0−1) > err(h∗, Z1:n0−1). By the definition of h′

n0
, this implies h′

n0
(Xn0

) 6=
h∗(Xn0

). Therefore, hn(Xn0
) = h′

n0
(Xn0

) so err(hn, Z1:n0−1) ≥ err(h′
n0

, Z1:n0−1). Using this
fact, Eq. (5.15), and Eq. (5.18), we have

err(hn, Z1:n−1) − err(h∗, Z1:n−1)

≥ err(hn) − err(h∗) −
√

1

Pmin

· C0 log n

n − 1
− 1

Pmin

· C0 log n

n − 1
≥ err(hn, Z1:n0−1) − err(h∗, Z1:n0−1)

−2 ·
√

1

Pmin

· C0 log n0

n0 − 1
− 2 · 1

Pmin

· C0 log n0

n0 − 1

≥
(

c1 − 2√
Pmin

− c1 + 1 −
√

2

)
·
√

C0 log n0

n0 − 1
+

(
c2 − 2

Pmin

− c2 − 1

)
· C0 log n0

n0 − 1

>
(
(c1 − 1) · (

√
2 − 1) − 2

√
2
)
·
√

C0 log n0

n0 − 1
+ (c2 − 5) · C0 log n0

n0 − 1

where, again, the last step uses the fact that Pmin < 1/2. This final quantity is non-negative,
so we have the contradiction err(hn, Z1:n−1) > err(h∗, Z1:n−1).

5.3.6 Label Complexity Analysis

We now bound the number of labels requested by IWAL-CAL after n iterations. First, we
establish a property about the query probabilities that relates error deviations (via Pmin)
to empirical error differences (via Pn). Both quantities play essential roles in bounding the
label complexity through the disagreement metric structure around h∗.

Lemma 5.13. Assume the bounds from Eq. (5.15) holds for all h ∈ H and n ≥ 1. For any
n ≥ 1, we have Pn ≤ c3·Pmin, where Pmin := min({Pi : 1 ≤ i ≤ n−1 ∧ h(Xi) 6= h∗(Xi)}∪{1})
and

h :=

{
hn if h′

n(Xn) = h∗(Xn)
h′

n if hn(Xn) = h∗(Xn).

Proof. Assume for sake of contradiction that Pmin < Pn/c3 ≤ 1/c3, and let n0 := max{i ≤
n− 1 : Pi = Pmin ∧ h(Xi) 6= h∗(Xi)}. Then, an argument similar to that from Theorem 5.4
(with the fact c3 ≥ 2) implies

err(h, Z1:n0−1) − err(h∗, Z1:n0−1)

≥
(

c1√
Pmin

− c1 + 1 −
√

2

)
·
√

C0 log n0

n0 − 1
+

(
c2

Pmin

− c2 − 1

)
· C0 log n0

n0 − 1
.
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Therefore (again, similar to the proof of Theorem 5.4),

err(h, Z1:n−1) − err(h∗, Z1:n−1)

≥
(

c1 − 2√
Pmin

− c1 + 1 −
√

2

)
·
√

C0 log n0

n0 − 1
+

(
c2 − 2

Pmin

− c2 − 1

)
· C0 log n0

n0 − 1

≥
(

c1 − 2√
Pmin

− c1 + 1 −
√

2

)
·
√

C0 log n

n − 1
+

(
c2 − 2

Pmin

− c2 − 1

)
· C0 log n

n − 1
(5.19)

> 0.

If h = hn, then by the definition of hn and h′
n,

err(h, Z1:n−1) − err(h∗, Z1:n−1) = err(hn, Z1:n−1) − err(h∗, Z1:n−1)

≤ err(hn, Z1:n−1) − err(h′
n, Z1:n−1)

≤ 0,

a contradiction of the lower bound from above. Otherwise h = h′
n, so the definitions of hn,

h′
n, and Pn imply that

err(h, Z1:n−1) − err(h∗, Z1:n−1)

= err(h′
n, Z1:n−1) − err(h∗, Z1:n−1)

≤ err(h′
n, Z1:n−1) − err(hn, Z1:n−1)

=

(
c1√
Pn

− c1 + 1

)
·
√

C0 log n

n − 1
+

(
c2

Pn

− c2 + 1

)
· C0 log n

n − 1
. (5.20)

Combining the lower bound in Eq. (5.19) and upper bound Eq. (5.20), and using the as-
sumption Pmin < Pn/c3 gives

(
c1 −

√
c3(c1 − 2)√
Pn

+
√

2

)
·
√

C0 log n

n − 1
+

(
c2 − c3(c2 − 2)

Pn

+ 2

)
· C0 log n

n − 1
> 0.

But Pn ≤ 1, so each of the parenthesized terms is non-positive. This is a contradiction.

The next lemma bounds the probability of querying the label Yn; this is subsequently
used to establish the final bound on the expected number of labels queried.

Lemma 5.14. Assume the bounds from Eq. (5.15) holds for all h ∈ H and n ≥ 1. Let
η := err(h∗). For any n ≥ 1,

E[Qn] ≤ θ ·
(

2η +

√
6c4 ·

C0 log n

n − 1
+

(
1 +

1

2
log

1
3
2
c4 · C0 log n

n−1

)
· 3

2
c5 ·

C0 log n

n − 1

)

for all λ > 0.

Proof. Define

h :=

{
hn if h′

n(Xn) = h∗(Xn)
h′

n if hn(Xn) = h∗(Xn).
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By Lemma 5.13, we have

min ({Pi : 1 ≤ i ≤ n − 1 ∧ h(Xi) 6= h∗(Xi)} ∪ {1}) ≥ Pn/c3.

If h = h′
n, then by Eq. (5.15) and the definitions of hn, h′

n, and Pn,

err(h) − err(h∗)

= err(h′
n) − err(h∗)

≤ err(h′
n, Z1:n−1) − err(h∗, Z1:n−1) +

√
c3

Pn

· C0 log n

n − 1
+

c3

Pn

· C0 log n

n − 1

≤ err(h′
n, Z1:n−1) − err(hn, Z1:n−1) +

√
c3

Pn

· C0 log n

n − 1
+

c3

Pn

· C0 log n

n − 1

=

(
c1 +

√
c3√

Pn

− c1 + 1

)
·
√

C0 log n

n − 1
+

(
c2 + c3

Pn

− c2 + 1

)
· C0 log n

n − 1

≤
√

c4

Pn

·
√

C0 log n

n − 1
+

c5

Pn

· C0 log n

n − 1

where the last inequality follows because c1 ≥ 1 and c2 ≥ 1. If instead h = hn, then again
using the definitions of hn, h′

n, and Pn,

err(h) − err(h∗)

= err(hn) − err(h∗)

≤ err(hn, Z1:n−1) − err(h∗, Z1:n−1) +

√
c3

Pn

· C0 log n

n − 1
+

c3

Pn

· C0 log n

n − 1

≤ err(hn, Z1:n−1) − err(h′
n, Z1:n−1) +

√
c3

Pn

· C0 log n

n − 1
+

c3

Pn

· C0 log n

n − 1

≤
√

c3

Pn

· C0 log n

n − 1
+

c3

Pn

· C0 log n

n − 1

≤
√

c4

Pn

·
√

C0 log n

n − 1
+

c5

Pn

· C0 log n

n − 1
.

If err(h) − err(h∗) = γ > 0, then solving the above quadratic inequality for Pn gives the
bound

Pn ≤ 3

2
·
(

c4

γ2
+

c5

γ

)
· C0 log n

n − 1
.

If err(h) − err(h∗) ≤ γ, then by the triangle inequality we have

ρ(h∗, h) ≤ err(h∗) + err(h) ≤ 2 err(h∗) + γ

which in turn implies Xn ∈ R(h∗, 2η + γ). Note that Pr(Xn ∈ R(h∗, 2η + γ)) ≤ θ · (2η + γ).
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Fix γ0 > 0. We have

E[Qn] = Pr(err(h) − err(h∗) ≤ γ0) · E[Qn| err(h) − err(h∗) ≤ γ0]

+

∫ 1

γ0

∂ Pr(err(h) − err(h∗) ≤ γ)

∂γ
· E[Qn| err(h) − err(h∗) = γ] · dγ

≤ θ · (2η + γ0) +

∫ 1

γ0

θ · 3

2
·
(

c4

γ2
+

c5

γ

)
· C0 log n

n − 1
· dγ

≤ θ ·
(

2η + γ0 +
3

2
· C0 log n

n − 1
·
(

c4

γ0

+ c5 · log
1

γ0

))
.

Optimizing with respect to γ0 completes the proof.

Theorem 5.5. Conditioned on an event that occurs with probability at least 1 − δ, the
expected number of labels queried by IWAL-CAL after n iterations is at most

1 + 2 · θ · err(h∗) · (n − 1) + θ
√

6c4C0n log n + θ

(
1 +

1

2
log

n

C0

)
3

2
c5 log2 n.

Proof. Follows from assuming Y1 is always queried; applying Lemmas 5.11, 5.14, and linearity
of expectation.

This label complexity bound has the same leading terms 1+2 · θ · err(h∗) · (n− 1) as that
of Agnostic CAL; the remaining terms somewhat worse than that of Agnostic CAL, but are
still sublinear.

5.3.7 Labeling Rates Under Low Noise Conditions

Some recent work on active learning has focused on improved label complexity under certain
noise conditions [CN06, BBZ07, CN07, Han09, Kol09]. Specifically, it is assumed that there
exists constants κ > 0 and 0 < α ≤ 1 such that

ρ(h, h∗) ≤ κ · (err(h) − err(h∗))α (5.21)

for all h ∈ H. This is related to Tsybakov’s low noise condition [Tsy04]. Essentially, this
condition requires that low error hypotheses not be too far from the optimal hypothesis h∗

under the disagreement metric. Under this condition, Lemma 5.14 can be improved.
In the remainder of this section, we assume that for some value of κ > 0 and 0 < α ≤ 1,

the condition in Eq. (5.21) holds for all h ∈ H.

Lemma 5.15. Assume the bounds from Eq. (5.15) hold for all h ∈ H and n ≥ 1. For any
n ≥ 1,

E[Qn] ≤ θ · κ · cα ·
(

C0 log n

n − 1

)α/2

where cα is a constant that depends only on α.
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Proof. For the most part, the proof is the same as that of Lemma 5.14, so we just show
where the noise condition from Eq. (5.21) enters. For α < 1,

E[Qn] = Pr(err(h) − err(h∗) ≤ γ0) · E[Qn| err(h) − err(h∗) ≤ γ0]

+

∫ 1

γ0

∂ Pr(err(h) − err(h∗) ≤ γ)

∂γ
· E[Qn| err(h) − err(h∗) = γ] · dγ

≤ θκγα
0 +

∫ 1

γ0

θκ

α
· 1

γ1−α
· 3

2
·
(

c4

γ2
+

c5

γ

)
· C0 log n

n − 1
· dγ

≤ θκγα
0 +

3θκ

2α
· C0 log n

n − 1
·
(

c4

2 − α
· 1

γ2−α
0

+
c5

1 − α
· 1

γ1−α
0

)
.

The case α = 1 can be handled similarly. Optimizing over γ0 completes the proof.

This lemma immediately implies the following bound on the number of label queries,
which is sublinear for all 0 < α ≤ 1.

Theorem 5.6. Conditioned on an event that occurs with probability at least 1 − δ, the
expected number of labels queried by IWAL-CAL after n iterations is at most

θ · κ · cα · (C0 log n)α/2 · n1−α/2

where cα is a constant that depends only on α.

5.3.8 Discussion

In this chapter, we have demonstrated that the strict version space approach can be relaxed
with two different methods. The first (Oracular CAL) achieves this by relying on a more
pessimistic threshold function ∆, while the second (IWAL-CAL) uses importance weights.
These algorithms have qualitative advantages over Agnostic CAL that may be useful in
practice.

The work of [BDL09], which originally introduced the IWAL framework, also presents a
rejection threshold method called loss-weighting based on differences in importance weighted
errors. In fact, the method is more general in that it works for other loss functions such as
logistic loss, which can be efficiently optimized in certain cases. However, loss-weighting is
unsatisfactory in two ways. First, computing the query probabilities requires an optimiza-
tion over a strictly defined version space (similar to that used in an algorithm studied by
[Kol09]). Second, the label complexity bound established in [BDL09] actually only holds for
a hypothesis selected from this version space, rather than from the entire hypothesis class.
In comparison, IWAL-CAL only requires optimizations over the entire hypothesis class, and
its performance guarantees avoid any reliance on a version space.

5.4 Bibliographic Notes

This chapter is based on unpublished joint work with Alina Beygelzimer, John Langford,
and Tong Zhang. The dissertation author was the primary investigator and author of this
material.



Chapter 6

Experimental Evaluation

We report empirical results of applying the IWAL-CAL algorithm from Chapter 5 to various
classification tasks.

6.1 Introduction

We are interested in experimentally comparing the practical performance of active learn-
ing to that of passive learning. It has previously been reported that some active learning
algorithms actually perform worse than their passive learning counterparts [Set09]. This
can likely be attributed to the mismanagement of the sampling bias that active learning
introduces [SVP06, DH08]. Therefore, active learning has represented a risky endeavor by
machine learning practitioners, who may simply opt for the safer approach of passive learn-
ing. On the other hand, the active learning algorithms presented in the previous chapters
come with safety guarantees which roughly state that the algorithms enjoy label complexity
bounds comparable to those of their passive learning counterparts. This mitigates the risk
of employing active learning to some degree. However, an experimental study is still needed
because

1. the label complexity bounds of active learning hide constants and logarithmic factors,
which may be significant in practice, and

2. the algorithms described are often not implemented exactly, due to computational and
other practical limitations.

In this chapter, we describe experiments using two instantiations of the IWAL-CAL
algorithm (Algorithm 5.2) which differ in their (approximate) implementation of the error
minimization oracle. The first uses a soft-margin support vector machine, and the second
uses a standard decision tree learning algorithm. We compare their performance to that of
a passive learner using the same base learning methods.

6.2 Algorithms

As mentioned above, we used two simple base learning algorithms to approximately imple-
ment the required error minimization oracle used by IWAL-CAL. In both cases, the unla-
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beled data space X is a d-dimensional Euclidean space R
d, so each x ∈ X is represented by

d real-value features.

6.2.1 Soft-Margin Support Vector Machine

The first base learning algorithm trains a linear classifier hw represented by a weight vector
w ∈ R

d (hw(x) = 1 iff w⊤x ≥ 0) to optimize the soft-margin support vector machine (SVM)
objective [CV95], suitably modified to handle importance weights. For S ⊆ R

d×{±1}×R+,
we select w to minimize

1

2
· ‖w‖2

2 +
1

|S|
∑

(x,y,1/p)∈S

1

p
· max

(
0, 1 − y · x⊤w

)
(6.1)

(the regularization parameter typically denoted by λ is fixed to 1). To enforce a single
example constraint (x, y), we minimize the objective in Eq. (6.1) subject to the linear con-
straint y · x⊤w ≥ 0. We used a dual Gauss-Seidel method for solving the optimization
problems [Zha02].

6.2.2 Decision Tree

The second base learning algorithm uses the J48 decision tree learning algorithm imple-
mented in the Weka v3.6.2 data mining software [HFH+09], with all default parameters. J48
is a Java implementation of the popular C4.5 procedure [Qui93] for growing (and pruning) a
decision tree, and it readily accommodates importance weights. To enforce a single example
constraint (x, y), we use a simple heuristic: we learn a decision tree using the J48 algorithm
as is, and then change the label of the leaf node that predicts on x to y.

6.2.3 Rejection Threshold

We used the IWAL-CAL rejection threshold described in Chapter 5 (with different constants
and logarithmic factors) for setting the query probabilities for both the SVM and decision
tree methods. Recall, given the hypotheses ht and h′

t in iteration t, the query probability Pt

is determined in the following manner. Let Gt := err(h′
t, St−1)−err(ht, St−1) be the difference

of empirical importance weighted errors. If Gt ≤
√

C0/(t − 1) + C0/(t − 1), then the query
probability Pt is set to 1. Otherwise, Pt is set to the positive solution s to the quadratic
equation

Gt =

√
1

s
· C0

t − 1
+

1

s
· C0

t − 1
,

which is

s =
C0

t − 1
·
(

1 +
√

1 + 4Gt

2Gt

)2

.

We still have to specify the bound constant C0. Our theoretical analysis uses

C0 = O

(
log

|H|n
δ

)
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where H is the hypothesis class, n is the total number of data, and δ is the confidence param-
eter. However, it is well-known that theoretical generalization bounds are loose in practice,
even when they account for various data-dependent factors such as the margin [SFBL98].
Therefore, we use much more optimistic settings of C0. Our results are reported using
C0 = 1/4 for the SVM method, and C0 = 8 for the decision tree method. Of course, using
significantly smaller settings of C0 results in overly-aggressive algorithms, while using larger
choices of C0 results in overly-conservative algorithms. We found that our algorithm is some-
what robust to the setting of C0, and a single setting of C0 worked well across different data
sets with different characteristics (except for the extrinsic dimension, which was fixed in the
experiments). One might imagine tuning C0 using held-out (labeled) data, but (i) it is not
obvious how to do so, and (ii) held-out data may be costly to obtain anyway. Therefore, it
is an important open problem to develop a practical method of parameter tuning in active
learning.

6.3 Experimental Setup

6.3.1 Binary Classification Tasks

We used the following data sets for binary classification experiments.

1. ADULT [AN07]: income prediction (> $50000 vs ≤ $50000) from census data. We
randomly chose 4000 of the 48842 data for training, and used the rest for testing.

2. KDDCUP99 [AN07]: network intrusion detection (“bad” vs “good” connection) from
network usage statistics and connection features. We randomly choose 5000 of the
4000000 data for training, and another 5000 for testing.

3. MNIST3v5 [LBBH98]: handwritten digit classification (“3” vs “5”) from pixel intensity
values. We randomly chose 4000 of the 11552 training images for training, and used
all of the 1902 testing images for testing.

These data sets were selected because they roughly correspond to three different levels of
achievable error rate, with ADULT having the highest error rate, followed by MNIST3v5,
and then KDDCUP99. We reduced the dimension of each data set to 25 using PCA and
randomized the order of the training data. For the SVM base learner, we also normalized
the length of each data vector.

6.3.2 Multi-Class Classification Task

We also conducted a multi-class classification experiment using the entire MNIST data set
(all 10 digits). We only used the decision tree base learner for this experiment, since it
naturally accommodates multi-class. The “alternative hypothesis” h′

t is forced to disagree
with ht on xt by changing the label of the leaf node that predicts on xt to the next best
label. For this experiment, the number of training data is 60000 and the number of testing
data is 10000. We reduced the dimension of the data to 40 using PCA and randomized the
order of the training data.
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6.3.3 Evaluation Procedure

We compared the performance of IWAL-CAL to a passive learner using the same base learn-
ing algorithm. The passive learner can be thought of as an active learner that simply chooses
unlabeled data at random to label; alternatively, in the “online” framework in which the un-
labeled data arrive one at a time, the passive learner simply queries every label.

We consider two different error rates. First, we consider the test error after each learner
has observed n unlabeled data. We call this the unlabeled error rate. Second, we consider
the test error after each learner has queried n labels. We call this the labeled error rate.
Note that the unlabeled and labeled error rates are the same for the passive learner.

6.4 Results

6.4.1 Binary Classification Experiments

The unlabeled error rates for both base learners are plotted in Figure 6.1. In most of the
cases, the plots for active and passive learning are similar, which is in accord with the safety
guarantee of IWAL-CAL—that the active learner enjoys roughly the same unlabeled error
rate as a passive learner. The error rate somewhat more variable for the active learner, which
may be due to the use of an importance weighted sample. As discussed in Chapter 5, the
importance weighted sample provides unbiased estimates of the error, but the variance of
these estimates are larger than the usual fully-supervised estimates.

The labeled error rates for both base learners are plotted in Figure 6.2, with close-ups
in Figure 6.3. The active learner dramatically improves over the passive learner on the
KDDCUP99 data set with both the base learners. The improvement is very modest on
ADULT and MNIST3v5 using the decision tree base learner, and non-existent on ADULT
and MNIST3v5 using the SVM base learner. Note that the error rate on KDDCUP99
is also very small, so the good performance there relative to the other two data sets is
explained by the dependence on the noise rate in the label complexity bounds for IWAL-
CAL (Theorems 5.5 and 5.6). It seems that the benefits of active learning are most apparent
with learning problems with low levels of noise.

Finally, we also plot the labeling rates (the number of labels queried versus the number
of unlabeled data seen) in Figure 6.4. These plots confirm the dramatic improvement of the
active learner over the passive learner on KDDCUP99, where the labeling rate appears very
sublinear, and the modest improvements on ADULT and MNIST3v5 using the decision tree
base learner, where the labeling rate appears linear or only slightly sublinear. The labeling
rate on ADULT and MNIST3v5 using the SVM base learner is almost exactly the same as
that for passive learning, i.e., the active learner queries almost every label. Therefore, the
degraded (and more variable) test error may be due to the increased variance in the error
estimates due to the non-unitary importance weights.

6.4.2 Multi-Class Classification Experiment

The plots for the multi-class classification experiment are in Figure 6.5. Here, we observe a
modest improvement of the active learner over the passive learner in the labeled error rate.
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The active learner queried a little over 2/3 of the labels. While this may be seen as a sizable
fraction of the data set, it does correspond to noticeable savings. For instance, the passive
learner required over 6500 more label queries than the active learner to achieve an error rate
of 0.175.

6.5 Bibliographic Notes

This chapter is based on unpublished joint work with Alina Beygelzimer, John Langford,
and Tong Zhang. The dissertation author was the primary investigator and author of this
material.



72 CHAPTER 6. EXPERIMENTAL EVALUATION

0 1000 2000 3000 4000
0.16

0.17

0.18

0.19

0.2

number of points seen

te
st

 e
rr

or

 

 
Passive
Active

0 1000 2000 3000 4000
0.18

0.2

0.22

0.24

0.26

number of points seen

te
st

 e
rr

or

 

 
Passive
Active

SVM Decision Tree
ADULT

0 1000 2000 3000 4000 5000
0

0.02

0.04

0.06

0.08

number of points seen

te
st

 e
rr

or

 

 
Passive
Active

0 1000 2000 3000 4000 5000
0

0.01

0.02

0.03

0.04

0.05

number of points seen

te
st

 e
rr

or

 

 
Passive
Active

SVM Decision Tree
KDDCUP99

0 1000 2000 3000 4000
0.05

0.06

0.07

0.08

0.09

0.1

number of points seen

te
st

 e
rr

or

 

 
Passive
Active

0 1000 2000 3000 4000
0.05

0.1

0.15

0.2

0.25

number of points seen

te
st

 e
rr

or

 

 
Passive
Active

SVM Decision Tree
MNIST3v5

Figure 6.1: Unlabeled error rates for the binary classification experiments.
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Figure 6.2: Labeled error rates for the binary classification experiments.
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Figure 6.3: Labeled error rates (close-ups) for the binary classification experiments.
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Figure 6.4: Labeling rates for the binary classification experiments.
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Figure 6.5: Error rates and labeling rates for the multi-class experiment.



Appendix A

Deviation Bounds

A.1 Finite Families of Functions

The following lemma summarizes basic Chernoff bounds estimating the bias of a coin.

Lemma A.1. Pick any n ≥ 1, η ∈ (0, 1), and function f : Z → {0, 1}. Let

εn :=
log(2/η)

n
.

Let Z1, . . . , Zn be n iid copies of a random variable Z ∈ Z, and define

µn(f) :=
1

n

n∑

i=1

f(Zi).

With probability at least 1 − η,

|µn(f) − E[f(Z)]| ≤
√

εn/2.

Also, with probability at least 1 − η,

µn(f) − E[f(Z)] ≤ min
(√

3E[f(Z)] · εn, 4εn + 2
√

µn(f) · εn

)

and

E[f(Z)] − µn(f) ≤ min
(√

2E[f(Z)] · εn, 2εn +
√

2µn(f) · εn

)
.

To get a uniform bound for a finite family F of functions f : Z → {0, 1}, we can simply
apply a union bound.

A.2 Infinite Families of Functions

The following lemma gives a uniform bound for an infinite family of functions with finite VC
dimension.
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Lemma A.2 ([VC71]). Pick any n ≥ 1, η ∈ (0, 1), and family F of functions f : Z → {0, 1}
with finite VC dimension. Let

εn :=
4

n
·
(

lnS(F , 2n) + ln
8

η

)
.

Let Z1, . . . , Zn be n iid copies of the random variable Z ∈ Z, and define

µn(f) :=
1

n

n∑

i=1

f(Zi).

With probability at least 1 − η,

µn(f) − E[f(Z)] ≤ min
(
εn +

√
E[f(Z)] · εn,

√
µn(f) · εn

)

and
E[f(Z)] − µn(f) ≤ min

(√
E[f(Z)] · εn, εn +

√
µn(f) · εn

)

for all f ∈ F .
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