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Abstract

This work considers the problem of learn-
ing linear Bayesian networks when some of
the variables are unobserved. Identifiability
and efficient recovery from low-order observ-
able moments are established under a novel
graphical constraint. The constraint con-
cerns the expansion properties of the under-
lying directed acyclic graph (DAG) between
observed and unobserved variables in the net-
work, and it is satisfied by many natural fam-
ilies of DAGs that include multi-level DAGs,
DAGs with effective depth one, as well as cer-
tain families of polytrees.

1. Introduction

It is widely recognized that incorporating latent or hid-
den variables is a crucial aspect of modeling. Latent
variables can provide a succinct representation of the
observed data through dimensionality reduction; the
possibly many observed variables are summarized by
fewer hidden effects. Further, they are central to pre-
dicting causal relationships and interpreting the hid-
den effects as unobservable concepts. For instance in
sociology, human behavior is affected by abstract no-
tions such as social attitudes, beliefs, goals and plans.
As another example, medical knowledge is organized
into casual hierarchies of invading organisms, physical
disorders, pathological states and symptoms, and only
the symptoms are observed.
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In addition to incorporating latent variables, it is also
important to model the complex dependencies among
the variables. A popular class of models for incorpo-
rating such dependencies are the Bayesian networks,
also known as belief networks. They incorporate a set
of causal and conditional independence relationships
through directed acyclic graphs (DAG) (Pearl, 1988).
These models are widely applicable to a number of
fields such as artificial intelligence, computational bi-
ology, and economics, to name a few.

An important statistical task is to learn such latent
Bayesian networks from observed data. This involves
discovery of the hidden variables, structure estima-
tion (of the DAG) and estimation of the model pa-
rameters. Typically, in the presence of hidden vari-
ables, the learning task suffers from identifiability is-
sues since there may be many models which can ex-
plain the observed data. In order to overcome inde-
terminacy issues, one must restrict the set of possi-
ble models. We establish novel criteria for identifi-
ability of latent DAG models using only low order
observed moments (second/third moments). We in-
troduce a graphical constraint which we refer to as
the expansion property. Roughly speaking, expansion
property states that every subset of hidden nodes has
“enough” number of outgoing edges, so they have a
noticeable influence on the observed nodes, and thus
on the samples drawn from the joint distribution of the
observed nodes. This notion implies new identifiability
and learning results for DAG structures. More specif-
ically, we show that under this constraint, some broad
families of DAG models with hidden variables, includ-
ing multi-level DAGs and DAGs with effective depth
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(a) Multi-level DAG

(b) DAG with effective depth one

Figure 1: A multi-level DAG and a DAG with effective
depth one (observed nodes are shaded).

one, which includes (a subset of) trees and polytrees1

satisfy this constraint and are thus, identifiable from
only second and third observed moments. In addition,
we propose novel and efficient algorithms for the learn-
ing task which leverage on the ideas from sparse re-
covery and dictionary learning (Spielman et al., 2012)
as well as from spectral methods for inverse moment
problems (Anandkumar et al., 2012a).

2. Model and outline of the results

2.1. Notation

We write ‖v‖p for the standard `p norm of a vector
v. Specifically, ‖v‖0 denotes the number of non-zero
entries in v. Also, ‖M‖p refers to the induced opera-
tor norm on a matrix M . For a matrix M and set of
indices I, J , we let MI denote the submatrix contain-
ing just the rows in I and MI,J denote the submatrix
formed by the rows in I and columns in J . For a vector
v, supp(v) represents the positions of non-zero entries
of v. We use ei to refer to the i-th standard basis
element, e.g., e1 = (1, 0, . . . , 0). For a matrix M we
let Row(M) (similarly Col(M)) denote the span of its
rows (columns). For a set S, |S| is its cardinality. We
use the notation [n] to denote the set {1, . . . , n}. For
a vector v, diag(v) is a diagonal matrix with the ele-
ments of v on the diagonal. For a matrix M , diag(M)
is a diagonal matrix with the same diagonal as M .

1A polytree is a directed acyclic graph where ignoring
the directions, the graph is a tree.

2.2. Model

We define a DAG model as a pair (G,Pθ), where Pθ is a
joint probability distribution, parameterized by θ, on n
variables x := (x1, . . . , xn) that is Markov with respect
to a DAG G = (V, E) with V = {1, . . . , n} (Lauritzen,
1996). More specifically, the joint probability Pθ(x)
factors as

Pθ(x) =
n∏
i=1

Pθ(xi|xPAi), (1)

where PAi := {j ∈ V : (j, i) ∈ E} denotes the set of
parents of node i in G.

The learning task involving DAG models can be de-
scribed as: Given i.i.d. samples generated from the
joint distribution Pθ over xS for some S ⊆ V, recover
(some part of) the graph structure G and estimate the
model parameter θ.

We consider DAG G = (Vobs ∪ Vhid, E) with observed
nodes Vobs = {x1, . . . , xn} and hidden nodes Vhid =
{h1, . . . , hk}. Let εi be the noise variable associated
with xi, for i ∈ [n] and denote the variance of εi
by σ2

εi > 0. Throughout we use the notation h :=
(h1, . . . , hk), x := (x1, . . . , xn) and ε := (ε1, . . . , εn).
The noise terms ε are assumed to be uncorrelated.
The class of models considered are specified by the
following assumptions.
Condition 1 (Linear model). The observed and hid-
den variables obey the model2

xi =
∑
j∈PAi

aijhj + εi, for i ∈ [n] , (2)

where {εi} are uncorrelated and are independent from
{hj}. Furthermore, the hidden variables are linearly
independent, i.e., with probability one, if

∑
i∈[k] αihi =

0, then αi = 0, for all i ∈ [k].

We note that without a non-degeneracy assumption on
the hidden variables there is no hope of distinguishing
different hidden nodes.

Notice that the structure of G is defined by the non-
zero coefficients in Eq. (2). Therefore, there is no edge
among the observed nodes. We define A ∈ Rn×k by
letting the (i, j) entry be aij if j ∈ PAi and zero oth-
erwise. We refer to matrix A as the coefficient matrix.
Remark 2.1. The linear relationships described above
can be thought of as linear structural equation models
(SEM). In general, an SEM is defined by a collection
of equations

zi = fi(zPAi , εi), (3)

2Without loss of generality, assume that xi, εi, hj are
all zero mean.
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with zi be the variables associated to the nodes. Re-
cently, there has been some progress on the identi-
fiability problem of SEMs in the fully observed set-
ting (Shimizu et al., 2006; Hoyer et al., 2009; Peters
et al., 2011; Peters & Bühlmann, 2012). This paper
can be viewed as a contribution to the problem of iden-
tifiability and learning SEMs with latent variables.

We now describe sufficient conditions under which the
linear DAG model with hidden variables becomes iden-
tifiable. Given observations x, note that we can only
hope to identify the columns of matrix A up to per-
mutation because the model is unchanged if one per-
mutes the hidden variables h and the columns of A
correspondingly. Moreover, the scale of each column
of A is also not identifiable. To see this, observe that
Eq. (2) is unaltered if we both rescale all the coeffi-
cients {aij}j∈[k] and appropriately rescale the variable
hi. Without further assumptions, we can only hope
to recover a certain canonical form of A, defined as
follows:

Definition 2.2. We say A is in a canonical form if
for each j ∈ [k], σ2

hj
= E[h2

j ] = 1. In particular, the
transformation A← A diag(σh1 , σh2 , . . . , σhk) and the
corresponding rescaling of h place A in canonical form
and the distribution over xi, i ∈ [n], is unchanged.

Furthermore, observe that the canonical A is only
specified up to sign of each column since any sign
change of column i does not alter the variance of hi.

We now discuss a rank condition on the coefficient ma-
trix A.

Condition 2 (Rank condition). There exists a fixed
partition P of [n] such that |P| = 3, and AI has full
column rank for all I ∈ P.

Since rank(AI) = k, for I ∈ P, we have as a conse-
quence n ≥ |P| k = 3k. Therefore, it essentially states
that the number of hidden nodes should be at most
one third of the observed ones. In most applications,
we are looking for a few number of hidden effects that
can represent the statistical dependence relationships
among the observed nodes. Thus the rank condition
is reasonable in these cases. As we will see later, due
to this assumption we can extract the noise term from
the observed moments.

We proceed by defining the expansion property of a
graph which plays a key role in establishing our iden-
tifiability results.

Definition 2.3. Let H(V1,V2) be a bipartite DAG
with parts V1 and V2, and edges directed from V1 to V2.
We say that H(V1,V2) satisfies the expansion prop-
erty if for any subset S ⊆ V1, with |S| ≥ 2, we have

|N(S)| ≥ |S| + dmax, where N(S) := {i ∈ V2 : (j, i) ∈
E for some j ∈ S} is the set of the neighbors of S and
dmax is the maximum degree of nodes in V1.

Condition 3 (Graph expansion). Let H(Vhid,Vobs)
denote the graph formed by the edges between Vhid and
Vobs. Then, H(Vhid,Vobs) has the expansion property.

The last condition is a generic assumption on the en-
tries of matrix A. We first define the parameter gener-
icity property for a matrix.

Definition 2.4. We say that matrix M ∈ Rn×k has
the parameter genericity property if for any v ∈ Rk
with ‖v‖0 ≥ 2, the following holds true.

‖Mv‖0 > |NM (supp(v))| − | supp(v)|, (4)

where for a set S ⊆ [k], NM (S) := {i ∈ [n] : Mij 6=
0 for some j ∈ S}.
Condition 4 (Parameter genericity). The coefficient
matrix A has the parameter genericity property.

This is a mild generic condition. More specifically
if the entries of an arbitrary fixed matrix M are
perturbed independently, then it satisfies the above
generic property with probability one.

Remark 2.5. Fix any matrix M ∈ Rn×k. Let Z ∈
Rn×k be a random matrix such that {Zij : Mij 6= 0}
are independent random variables, and Zij ≡ 0 when-
ever Mij = 0. Assume each variable is drawn from a
distribution with uncountable support. Then

P(M + Z does not satisfy Condition 4) = 0. (5)

The proof of Remark 2.5 is available in the long version
of this paper (Anandkumar et al., 2012b).

2.3. Summary of contributions

We establish identifiability of different classes of linear
DAG models from the observed data, and also pro-
pose efficient algorithms for the learning task. In the
following, we summarize our identifiability results and
the proposed algorithms.

Identifiability. Our core result is the following.

Core result. Under the model assumptions in Sec-
tion 2.2, one can identify the coefficient matrix A from
the second order moment E[xx>], without additional
assumptions on the dependency relationships among
the hidden nodes.

This result shows how the graph expansion property
enables the identifiability of connectivity structure be-
tween the set of hidden nodes and the set of observed
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nodes for a general DAG. It is worth noting that the re-
sult is obtained using only the second order moments.
If the hidden nodes obey a Gaussian joint distribution,
then so do the observed nodes and the second moment
completely characterizes their joint distribution. But
in general, the second moment provides strictly smaller
amount of information than the entire joint distribu-
tion. This makes our result robust to the noises in
the observations as it relies on them only through the
second moment.

We next consider two ensembles of DAG models,
namely multi-level DAGs and DAGs with effective
depth one. Building upon our core result, we show
that for these ensembles the induced model among the
hidden nodes is also identifiable.

Multi-level DAGs. This ensemble contains graphs with
a hierarchal structure. The nodes of a multi-level DAG
can be partitioned into levels L1, . . . , Lm, such that
there is no edge within a level and all the edges are
between nodes in level Li and the nodes in the adjacent
levels Li−1 and Li+1 (see Fig. 1(a) for an illustration).
Assuming that the induced model between levels Li
and Li+1 obeys the conditions in Section 2.2 for i ∈
[m− 1], we show that the entire model can be learned
in a sequential manner.

DAGs with effective depth one. A DAG has effective
depth one if any hidden node has at least one observed
neighbor (See Fig. 1(b) for an illustration). Now sup-
pose that the dependence relationships among the hid-
den nodes are also linear and are described as follows:

hj =
∑
`∈PAj

λj`h` + ηj , for j ∈ [k], (6)

where {ηj}j∈[k] denote the noise terms. For mod-
els in this class, we use Excess Correlation Analysis
(ECA) (Anandkumar et al., 2012a) to learn the model
from the third order moment of the observed variables.
Here, we assume that the noise variables at the hidden
nodes are non-Gaussian (e.g., they have non-zero third
moment or excess kurtosis).

Our presentation focuses on using exact (population)
observed moments to emphasize the correctness of the
methodology. However, “plug-in” moment estimates
can be used with sampled data.

Learning algorithm. The above results already im-
ply identifiability of the aforementioned DAG models
through exhaustive search. We also present some con-
ditions on the coefficient matrix A, under which we
can efficiently learn the columns of A from the second
order moment, by solving a set of convex optimization
problems. This leads to efficient algorithms for learn-

(a) Full ternary tree (b) Caterpillar tree

in a document

Topics

Word counts

(c) Graph representation for topic model

Figure 2: Examples of graphs from the ensembles of
multi-level DAGs and DAGs with effective depth one.

ing multi-level DAGs and DAGs with effective depth
one (Algorithm 1 and Algorithm 2).

Examples. It is useful to consider some concrete ex-
amples of multi-level DAGs and DAGs with effective
depth one, which satisfy the expansion property. Us-
ing the results of this paper, under the rank condition
and the parameter genericity property for matrix A,
these models are identifiable.

Full d-regular trees. These are tree structures in which
every node other than the leaves has d children. These
are included in the ensemble of multi-level DAGs and
it is immediate to see that for d ≥ 3, the model
can be identified under the described model in Sec-
tion 2.2. (Note that d ≥ 2 suffices for expansion prop-
erty but d ≥ 3 is necessary for the rank condition.)
See Fig. 2(a) for an illustration of a full ternary tree
with latent variables.

Caterpillar trees. These are tree structures in which
all the leaves are within distance one of a central path.
See Fig. 2(b) for an illustration. These structures have
effective depth one. Let dmax and dmin respectively de-
note the maximum and the minimum number of leaves
connected to a fixed node on the central path. It is im-
mediate to see that if dmin ≥ dmax/2+1, the structure
has the expansion property.

Random bipartite graphs. Consider bipartite graphs
with hidden nodes in one part and observed nodes in
the other part. Each edge (between the two parts) is
included in the graph with probability θ, independent
from every other edge. It is easy to see that, for any
set S ⊆ [k], the expected number of its neighbors is
E|N(S)| = n(1− (1− θ)|S|). Also, the expected degree
of the hidden nodes is θn. Now, by applying a Cher-
noff bound, one can show that these graphs have the
expansion property with high probability, if k ≤ θn/2,
i.e., with probability converging to one as n→∞.

Application to correlated topic models. An im-
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portant application of the results of this paper is in
estimating topic models with correlated topics. Topic
models are a popular family of mixture models that
incorporate latent variables, the topics, to explain the
observed co-occurrences of words in documents. Each
document has a mixture of active topics and each ac-
tive topic determines the occurrence of words in the
document. A topic model can be viewed as a bipartite
DAG with topics in one part and the observed nodes
in the other part. See Fig. 2(c) for an illustration.
(As an example, one may think of the i-th observed
variable as the word counts in the i-th sentence of a
document.) Using this representation, estimating the
topics from the document is exactly the learning prob-
lem of the corresponding DAG. Existing work on esti-
mating topic models provide results for certain distri-
butions over the topics. For instance, in independent
component analysis (ICA), the topics are assumed to
be independent, while in Latent Dirichlet Allocation
(LDA), a Dirichlet prior is assigned to the distribution
of topics in documents. However, it has been observed
empirically that correlated topic models provide bet-
ter fit for document modeling (Blei & Lafferty, 2007;
Li & McCallum, 2006). A popular correlated topic
model, termed as Pachinko allocation involves multi-
level DAGs for modeling word dependencies. We can
now efficiently learn a rich class of similar correlated
topic models.

2.4. Our techniques

Our proof techniques rely on ideas and tools devel-
oped in dictionary learning, matrix decomposition,
and method of moments. We briefly explain our tech-
niques and their relations to these areas.

Matrix decomposition into diagonal and low-
rank parts. To prove our core result, we first observe
that under the linear model, E[xx>] is the sum of a
low-rank matrix and a diagonal one:

E[xx>] = AE[hh>]A> + E[εε>].

We prove that under the rank condition (Condition 2),
E[xx>] can be decomposed into its low-rank compo-
nent AE[hh>]A> and its diagonal component E[εε>].
This means that we can remove the noise contri-
bution from the second order moment. Moreover,
rank(AE[hh>]A>) = k gives the number of hidden
nodes. We propose a simple algorithm (Subroutine)
for this decomposition.3

Dictionary learning. We proceed by showing that
3It should be noted that additive matrix decomposi-

tions into low-rank and diagonal (or sparse) terms have
been considered in previous work (Chandrasekaran et al.,

using the graph expansion property (Condition 3), one
can recover A from the low-rank part AE[hh>]A>,
obtained from the decomposition of the observed co-
variance matrix, as described above. To prove this
claim, we leverage the ideas developed by Spielman
et al. (2012) for the dictionary learning problem. Spiel-
man et al. consider the problem of learning sparsely
used dictionaries with an invertible dictionary and a
random, sparse coefficient matrix, Bernoulli-Gaussian
and Bernoulli-Radamacher models. They establish
that the dictionary and the coefficient matrix can be
learned from exact measurements. The gist of the idea
is that under the above conditions, the row space of the
coefficient matrix is the same as that of the measure-
ments matrix. The rows of the coefficient matrix are
then the sparsest vectors in the corresponding space.

Notice that here we are in the same situation. Since
E[hh>] and A have full column rank, we have Col(A) =
Col(AE[hh>]A>). However, in contrast to the dic-
tonary learning setting of Spielman et al. (2012), the
coefficient matrix A is not generated from a probabilis-
tic model. We introduce the graph expansion property
as the underlying notion which makes the recovery of
A possible. In fact, it can be shown that the proba-
bilistic models considered by Spielman et al. possess
this property almost surely. Our core result (identifi-
ability of A) is established by showing that, under the
expansion property for the model, the columns of A
are the sparsest vectors in Col(AE[hh>]A>).

Method of moments.

For DAGs with effective depth one, observe that the
hidden variables are related to each other and to the
noise terms {ηj}j∈[k] via linear equations (6). Define
Λ ∈ Rk×k by letting the (i, j) entry be λij if j ∈ PAi
and zero otherwise. Solving for the hidden variables
hj , we have h = (I − Λ)−1η, with η := (η1, . . . , ηk).
The observed variables are also related to the hidden
ones via the coefficient matrix A. The idea is to con-
sider an equivalent DAG model obtained by suppress-
ing the hidden nodes hj and treating the noise terms
ηj as the new uncorrelated hidden variables. The ob-
served variables xi are then related to the new hid-
den variables through the matrix A(I − Λ)−1. Next,
we apply ECA method of Anandkumar et al. (2012a)
to learn A(I − Λ)−1 from the second and third or-
der moments of the observed variables. ECA is based
on two singular value decompositions: the first SVD
whitens the data (using second moment) and the sec-

2011; Hsu et al., 2011; Saunderson et al., 2012). Using the
techniques of Saunderson et al. (2012), we can relax Condi-
tion 2 to k ≤ n/2, but only by imposing additional strong
incoherence conditions on the low-rank component.
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Expansion

x1 x2 x3 x4 x5 x6 x7 x8 x9

h1 h2 h3

x1 x2 x3 x4 x5 x6 x7 x8 x9

η1 η2 η3

ECA Learn
A(I − Λ)−1

Extract
A and Λ

property

Figure 3: The high-level idea of the technique used for learning DAGs with effective depth one. In the leftmost
graph (original DAG) the hidden nodes depend on each other through the matrix Λ and the observed variables
depend on the hidden nodes through the coefficient matrix A. We consider an equivalent DAG with new
uncorrelated hidden variables ηj (these are in fact the noise terms at the hidden nodes in the previous model).
Here, the observed variables depend on the hidden ones through the matrix A(I−Λ)−1. Applying ECA method,
we learn this matrix from the (second and third order) observed moments. Finally, using the expansion property
of the connectivity structure between the hidden part and the observed part, we extract A and Λ from A(I−Λ)−1.

ond SVD uses the third moment to find directions
which exhibit information that is not captured by the
second moment. Finally, in order to identify the de-
pendence structure among the hidden nodes (matrix
Λ), we use the expansion property to extract A and Λ
from A(I − Λ)−>. The high-level idea is depicted in
Fig. 3.

2.5. Related work

The problem of identifiability and learning graphical
models from distributions has been the object of in-
tensive investigation in the past years and has been
studied in different research communities. This prob-
lem has proved important in a vast number of appli-
cations, such as computational biology, economics, so-
ciology, and computer vision (see, e.g., Durbin et al.,
1998; Zellner, 1971; Bollen, 1989; Choi et al., 2010).
The learning task has two main ingredients: structure
learning and parameter estimation.

Structure estimation has been extensively studied in
the recent years. It is well known that maximum
likelihood estimation in fully observed tree models
is tractable (Chow & Liu, 1968). However, for gen-
eral models, structure learning is NP-hard even when
there are no hidden variables. The main approaches
for structure estimation are score-based methods, lo-
cal tests, and convex relaxation methods. Score-based
methods (e.g., Chickering, 2003) find the graph struc-
ture by optimizing a score, like Bayesian Indepen-
dence criterion (BIC), in a greedy manner. Local test
approaches attempt to build the graph based on lo-
cal statistical tests on the samples, both for directed
and undirected graphical models (e.g., Spirtes et al.,
2000; Bresler et al., 2008). Convex relaxation ap-
proaches have also been considered for structure es-
timation (e.g., Ravikumar et al., 2010).

In the presence of latent variables, structure learn-

ing becomes more challenging. A popular class of
latent variable models are latent trees, for which ef-
ficient algorithms have been developed (e.g., Erdös
et al., 1999; Anandkumar et al., 2011). Recently, ap-
proaches have been proposed for learning (undirected)
latent graphical models with long cycles in certain
parameter regimes (Anandkumar & Valluvan, 2012).
Chandrasekaran et al. (2012) estimate latent Gaussian
graphical models using convex relaxation approaches
via sparse + low rank matrix decomposition. Silva
et al. (2006) study linear latent DAG models and pro-
pose methods to (1) find clusters of observed nodes
that are separated by a single latent common cause;
and (2) find features of the Markov Equivalence class of
causal models for the latent variables. Their model al-
lows for undirected edges between the observed nodes.
Ali et al. (2005) characterizes equivalence classes of
DAG models when there are latent variables. How-
ever, the focus is on constructing an equivalence class
of DAG models, given a member of the class. In con-
trast, we focus on developing efficient learning meth-
ods for latent DAGs.

For parameter estimation with hidden variable mod-
els, the traditional approach is expectation maximiza-
tion (EM) algorithm, which finds a local maximizer
of the likelihood. Unfortunately, optimality and re-
covery guarantees are generally lacking for EM, even
when the model is correct. Another approach is to
constrain the dependency structure among the hidden
nodes. For instance, in independent component analy-
sis (ICA) (Hyvärinen et al., 2001), it is assumed that
the latent variables obey a product distribution and
hence in the corresponding graph model there is no
edge between the latent variables (there are only di-
rected edges from latent nodes to the observed nodes).
Several generalizations of ICA have also been devel-
oped that allow some dependent components (e.g.,
Bach & Jordan, 2003; Theis, 2007). Anandkumar et al.
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(2012a) considers latent variables to be drawn from a
Dirichlet distribution, relevant in topic modeling (Blei
et al., 2003), and obtains parameter estimates via the
method of moments. In this work, we also use the
method of moments to establish identifiability and ef-
ficient recovery for DAG models.

3. Main results

In this section, we state our identifiability results and
algorithms for learning the DAG models with latent
variables. Due to space limitations, we omit proofs and
most technical details, and refer the interested reader
to (Anandkumar et al., 2012b).

3.1. Learning the coefficient matrix A

Our core identifiability result is the following theorem.

Theorem 3.1. Let Σ := E[xx>] be the second or-
der moment of the observed variables. For the model
described in Section 2.2 (Conditions 1, 2, 3, 4), all
columns of A are identifiable from Σ.

As shown in the proof, columns of A are in fact the
sparsest vectors in the space Col(AE[hh>]A>). This
result already implies identifiability of A via an ex-
haustive search, which is an interesting result in its
own right. The following theorem provides some con-
ditions under which the columns of A can be identified
by solving a set of convex optimization problems. Be-
fore stating the theorem, we need to establish some
notations.

For i ∈ [n], we define Ni := {j ∈ [k] : Aij 6= 0} and
N2
i := {l ∈ [n] : Alj 6= 0 for some j ∈ Ni}. Similarly,

for j ∈ [k], define Nj := {i ∈ [n] : Aij 6= 0} and
N2
j := {l ∈ [k] : Ail 6= 0 for some i ∈ Nj}. We use

superscript c to denote the set complement.

Theorem 3.2. Suppose that in each row of A, there is
a gap between the maximum and the second maximum
absolute values. For i ∈ [n], let πi be a permutation
such that |ai,πi(1)| ≥ |ai,πi(2)| ≥ · · · ≥ |ai,πi(k)|, and
|ai,πi(2)|/|ai,πi(1)| ≤ 1 − γi, for some γi > 0. Fur-
ther suppose that [k] ⊆ {π1(1), . . . , πn(1)}. In words,
each column contains at least one entry that has the
maximum absolute value in its row. If the following
conditions hold true for i ∈ [n], then Algorithm 1
returns the rows of A in canonical form.

(i) ‖A(N2
i )
c,(Ni)c v‖1 > ‖AN2

i ,(Ni)
c v‖1 for all non-zero

vectors v ∈ R|(Ni)c|.

(ii) ‖A(Nj)c,Ni\j v‖1 > ‖ANj ,Ni\j v‖1 +(1−γ)‖ANj ,j‖1
‖v‖1 for all j ∈ Ni and all non-zero vectors v ∈
R|Ni|−1.

Subroutine: Decomposition of a matrix into its low-
rank and diagonal parts.
Input: Matrix C = AB> + D, with A,B ∈ Rn×k,

D ∈ Rn×n diagonal, and partition P of [n].
Output: Diagonal D and low-rank L = AB> parts.
1: for each I ∈ P do
2: Choose distinct J,K ∈ P\{I}.
3: Let UI ∈ R|I|×k be the matrix of left singular

vectors of CI,J .
4: Let VJ ∈ R|J|×k be the matrix of right singular

vectors of CI,J .
5: Let UK ∈ R|K|×k be the matrix of left singular

vectors of CK,J .
6: Set AIB>I = CI,JVJ(U>KCK,JVJ)−1U>KCK,I .
7: Set DI,I = CI,I −AIB>I .
8: return D and L = C −D.

Algorithm 1: Recovering columns of coefficient ma-
trix A from the second order moment Σ.
Input: Second order moment of observed variables Σ.
Output: Columns of A up to permutation.
1: Find a partition P of [n] such that |P| = 3 and

rank(ΣI,J) = k for distinct I, J ∈ P.
2: Let L be the low-rank part returned by

Subroutine(Σ,P).
3: for each i ∈ [n] do
4: Solve the optimization problem

min
w
‖L1/2w‖1 subject to (e>i L

1/2)w = 1.

5: Set si = L1/2w, and let S = {s1, . . . , sn}.
6: for each j = 1, . . . , k do
7: repeat
8: Let vj be an arbitrary element in S.
9: Set S = S\{vj}.

10: until rank([v1| · · · |vj ]) = j

11: Set Ã = [v1| · · · |vk].
12: Let B̃ be a left inverse for Ã, i.e., B̃Ã = Ik×k.
13: return Columns of Ã(diag(B̃LB̃>))1/2.

Algorithm 1 is essentially the ER-SpUD algorithm of
Spielman et al. (2012) for exact recovery of sparsely-
used dictionaries, but the technical result and applica-
tion in Theorem 3.2 are novel.

According to Theorem 3.1, we can learn the coefficient
matrix A of the model without any assumption on
the dependence relationships among the hidden nodes.
(We only need the non-degeneracy assumption in Con-
dition 1, which requires the hidden variables to be lin-
early independent with probability one.)

Note that the coefficient matrix A does not completely
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specify the distribution, as the hi’s are not necessar-
ily statistically independent, and we can hope to learn
the correlation structure among the hi’s. We next con-
sider two families of DAG models, namely multi-level
DAGs and DAGs with effective depth one. For these
families, we proceed further and prove identifiability
of the entire model.

3.2. Multi-level DAGs

We first formally define multi-level DAGs.

Definition 3.3. A multi-level DAG model is a model
with the following graph structure. The nodes of the
graph can be partitioned into levels L1, . . . , Lm such
that there is no edge between the nodes within one level
and all the edges are between nodes in adjacent levels,
(Li, Li+1) for i ∈ [m− 1]. Furthermore, the edges are
directed from Li to Li+1. The nodes in level Lm cor-
respond to the observed nodes and other levels contain
the hidden nodes.

The next theorem concerns identifiability of linear
multi-level DAGs. More specifically, consider a multi-
level DAG model and let Gi be the induced graph with
nodes Li ∪ Li+1 and suppose that the induced model
between levels Li and Li+1 satisfies the model condi-
tions described in Section 2.2 with coefficient matrix
Ai, for i ∈ [m − 1]: Ai has the rank condition (Con-
dition 2) and parameter genericity property (Condi-
tion 4), and (bipartite) graph Gi has the expansion
property (Condition 3).

Theorem 3.4. Consider a multi-level DAG with lev-
els L1, . . . , Lm and suppose that the induced model be-
tween levels Li and Li+1 satisfies the model conditions
described in Section 2.2 with coefficient matrix Ai, for
i ∈ [m−1]. Then all columns of Ai are identifiable for
i ∈ [m − 1] from the second order moment of the ob-
served variables Σ. Therefore, the entire DAG is iden-
tifiable up to permuting the nodes within each level.

Remark 3.5. By the definition of a multi-level DAG,
the hidden nodes in level L1 are independent. Now
consider the case that the nodes in L1 have arbitrary
dependence relationships. By using the same argument
as in the proof of Theorem 3.4, we can still learn all the
coefficient matrices Ai and the second order moment
of the nodes in L1.

3.3. DAGs with effective depth one

Another important subclass of DAGs are those with
effective depth one.

Definition 3.6. The effective depth of a DAG model
with hidden nodes is the maximum graph distance be-
tween a hidden node and its closest observed node.

In particular, in a DAG with effective depth one every
hidden node has at least one observed neighbor.

Recall that the observed and the hidden nodes obey
the linear model in Eq. (2), which in vector form reads
x = Ah + ε. Let Λ = (λij) ∈ Rk×k be the matrix
with λij = 0 if j /∈ PAi. We assume further that the
hidden variables obey the linear model in Eq. (6), i.e.,
h = Λh+ η.

As described in Section 2.2, without loss of generality,
we assume that hidden variables hj , the observed vari-
ables xi and the noise terms εi, ηj are all zero mean.
We also denote the variances of εi and ηj by σ2

εi and
σ2
ηj , respectively. Let µεi and µηj respectively denote

the third moment of εi and ηj , i.e., µεi := E[ε3i ] and
µηj := E[η3

j ]. Define the skewness of ηj as γηj :=
µηj
σ3
ηj

.

Finally, denote the second and third order correla-
tions of the observed variables by Σ := E[xx>] and
Ψ := E[x ⊗ x ⊗ x], where ⊗ denotes the tensor prod-
uct.

Theorem 3.7. Consider a DAG model with effec-
tive depth one, which satisfies the model conditions
described in Section 2.2 and the hidden variables are
related through linear equations (6). If the noise vari-
ables ηj have non-zero skewness for j ∈ [k], then the
DAG model is identifiable from Σ and Ψ.

Furthermore, under the assumptions of Theorem 3.2,
there is an efficient algorithm that returns matrices
A and Λ up to a permutation of hidden nodes. The
algorithm basically combines the Excess Correlation
Analysis method of (Anandkumar et al., 2012a) and
Algorithm 1. The details of the algorithm are given
in the full version of the paper under the name of
Algorithm 2.

3.4. Remark on finding the partition P

In the full version of the paper, we show that under a
weak incoherence assumption about A, a random par-
titioning of its rows into three groups satisfies Condi-
tion 2, with fixed positive probability.
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