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Representation learning

Learned from data
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Unsupervised / semi-supervised learning
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"Self-supervised learning"

1. Learn to solve artificial prediction problems ("pretext task").
2. Use solution to derive a representation ("feature map") ql_5

Predict color channel from grayscale channel Predict missing word in a sentence from context
The quick brown fox over the lazy dog.
(a) hops (c) skips
(b) jumps (d) dunks

[Mikolov, Sutskever, Chen, Corrado, Dean, 2013]




This talk: Contrastive learning

 "Positive" examples: naturally occurring pairs
e "Negative" examples: completely random pairs
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Contrastive learning appears to work!

Linear models over $, learned with only ~10% of labels, are near SOTA

Top-5 error on ImageNet
30

225 For which down-stream prediction tasks
should this be possible?

SIFT (2010)  SIFT + FVs (2011) AlexNet 2012)  ZFNet (2013) VGG (2014) ResNet 152 (2015) SimCLR (2020)



Our main results (1)

[ Contrastive learning is useful when multi-view redundancy holds. ]

Assume unlabeled data has two views X and Z, each with near-optimal
MSE for predicting target Y (possibly via non-linear functions). Then:

3 (low-ish dim.) linear function of qS)(X) that achieves near-optimal MSE.

Input Space Feature Space



Our main results (2)

Assume unlabeled data follow a topic model (e.g., LDA). Then:

representation qB(x) = linear transform of topic posterior moments
(of order up to document length).
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1. Contrastive learning & feature map



[ Steinwart, Hush, Scovel, 2005;
Abe, Zadrozny, Langford, 2006;

Formalizing contrastive learning  cumanm & Hyirinen, 2010

Oord, Li, Vinyals, 2018;

* Learn predictor to discriminate between Arora, Khandeparkar, Khodak,
Plevrakis, Saunshi, 2019 ]

(x,2) ~ Pxz | |
and
(X, Z) ~ PX ® PZ [ ]
 Specifically, estimate odds-ratio
e gy = PrIDOsitive | o)
R T [ (x,2)]
by fitting a model to random & examples

(which are, WLOG, evenly balanced: 0.5 + 0.5 ).



Deriving a representation

* Given an estimate g of g*, construct feature map qB:
b(x) = (G(x, 1) :i=1,..,M) € R

where [4, ..., [, are "landmarks", selected from unlabeled data
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2. Multi-view redundancy



Multi-view data

e Assume (unlabeled) data provides two "views" X and Z, each equally
good at predicting a target Y
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Introduction

Learning useful representations from unlabeled data is a standard problem in machine learning. While there
are many approaches o tackle this problem, self-supervised learning is :umnlly ‘among the most popular.
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L4 L4 !eammg mclhoct\ such as deep learning. The hope s that in solving these problems, a learning algorithm
[ ) — will also create intemnal representations for data that are useful for other downstream learning tasks. Self-
— supervised techniques include de-noising autoencoders (Vincent et al., 2008), image inpainting (Pathak et al,
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2016), and the focus of this work, contrastive learning (Hadsell et al., 2006; Oord et al., 2018; Logeswaran
and Lee, 2018; Hielm et al., 2018; Arora et al., 2019; Bachman et al., 2019; Tian et al., 2019; Tos
2020; Chen etal., 2020).
A common theme among many of these is

of naturally occurring similar points, or multiple views of the same data points. To train a de-noising
autoencoder, one first creates an alternate “view” of data points by corrupting them with added noise and
then trains the autoencoder to reconstruct the original. Image inpainting removes patches of images and
trains models to reconstruct the original image. Contrastive learning trains models to distinguish naturally
occurring similar pairs of points, such as neighboring sentences (Logeswaran and Lee, 2018) or randomly
rmp]wd and blurred versions of images (Chen et l., 2020), from random pairs of point

of data is nota new technique. Canonical correlation
amalysis (CCA) (Hotelng, 1036y v (unsupervised) technique that finds the linear transformation
that aligns two views of data so that the resulting coordinates are uncorrelated. A fascinating line of work
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Multi-view learning methods

e Co-training [Blum & Mitchell, COLT 1998]:
e IfX L Z1|Y,then bootstrapping methods "work"

e Canonical Correlation Analysis [Kakade & Foster, COLT 2007]:

* Suppose there is redundancy of views via linear predictors:
foreachV € {X, 7}

2
Riy = Rixzy —€

 Then CCA-based dimension reduction preserves linear predictability of Y

* (No assumption of conditional independence!)

Q: What if views are redundant only via non-linear predictors?




Multi-view redundancy

e-multi-view redundancy assumption:
E[(E[Y |V]=E[Y|X,Z])?] < eforeachV € {X, Z}.

Surrogate predictor: p(x) == E[E|Y | Z]|| X = x]

I

Best (possibly non-linear) prediction of Y using Z

Lemma: If e-multi-view redundancy holds, then
E[(u(X) —E[Y | X,Z])?*] < 4e.

We'll show:
Learned feature map qg(x) satisfies 1(x) = linear function of $(x)



Approximating the surrogate predictor

) =E[E[YV [ Z]]1X =x]

= E[E[Y | Z]g"(x, Z)]

g (x,z) =

Pr[pos|x,z]  Pxgz[x, 2]

Prineg | x,z]  Pylx]P;[z]

since g°(x, 2)Pz(dz) = Pz x=x(dz)

M
z (Y1 Z=11g"Cl)  withly . ly ~ua Py
=1

=W ¢" (%)

using " (x) = (g (x,11), .., 9" (x, 1))

Theorem: Under e-multi-view redundancy assumption, w.h.p.,
R 2
min E [(W $ X)) —E[Y1X,2]) ] < 4e + 0(1/M)
w




Error transform theorem

The learned (/_5 is based on odds-ratio estimate g that only approximately
solves contrastive learning problem (say, with respect to cross entropy loss).

Theorem: Under e-multi-view redundancy assumption, w.h.p.,
R 2
min [E [(v_v’ - p(X) — E[Y | X,Z]) ] = O(error(ﬁ)) +4e+ 0(1/M)
| J

| W
\

J

| |

Error in down-stream prediction task Contrastive learning error
(excess cross entropy loss)




3. Interpreting the representation
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Contrastive estimation revea

Using unlabeled data to
find useful embeddings is
a central challenge in the
field of representation
leaming,. Classical
approaches to this task
often start by fitting some
type of structure to the
unlabeled data, such as a
generative model or a
dictionary.  and  then
embed future data by
performing inference
using the fitted structure
(Blei et al., 2003; Raina et
al.,  2007). While ' this
approach has sometimes

enjoyed good ' empirical
performance, " it is not
without its drawbacks.
One issue is that leaming
structures and performing
inference is often hard in
general (Sontag and Roy.
2011; Arora et al., 2012).
Another issue is that we
must a priori choose a
structure and method for
fitting the unlabeled data,
and unsupervised methods
for learning these
structures can be sensitive
to model misspecification
(Kulesza et al., 2014).

Rer
foll
imp

The
that
rela
the
beh
ofa
exp
inl
its
beh
con
orv

T

What's in the representation?.coCo




TOpiC mOdE| [Hofmann, 1999; Blei, Ng, Jordan, 2003; ...]

* K topics, each specifies a distribution over the vocabulary
A document is associated with its own distribution w over K topics

 Words in document (BoW): i.i.d. from induced mixture distribution
* Assume they are arbitrarily partitioned into two halves, x and z

11d = |I||||||II +— II|||||I.| tz ||||||||I| +0 IIIIlIIllI

oy 1™ SpOTts science pohtlcs business

For now, assume document is about single topic (one of {t{, t,, ..., tx })



Interpreting the density ratio...

Conditional independence assumption + Bayes rule
K

Py x(x, z) & z Pr(t, | x) Pr(z | t;)

Py (x)Pz(z) - = P;(z)

S

Posterior over topics given x Likelihoods of topics given z

Density ratio




Inside the feature map

* Embedding: gg*(x) =(g"(x, ;) :i=1,..,M) where

amEmgoEn
i ) S
~

=

—/

g*(x,2) x 7E(x) - 1(2)
* Therefore
CB)*(X) = D[/T(ll) /T(lM)]Tﬁ(x)

(for some diagonal matrix D)

Likelihoods of topics given [;'s Posterior over topics given x



Interpretation

* In the "one topic per document” case, document feature map is a
linear transformation of the posterior over topics

¢*(x) = L 7(x)
* Theorem: If | is full-rank, every linear function of topic posterior can
be expressed as a linear function of ¢*(+)

For more general models, get theorem in terms of posterior moments.



4. Experimental study



Study dataset and comparisons

 AG News [Del Corso, Gulli, Romani, 2005; Zhang, Zhao, LeCun, 2015]:
Four categories (world, sports, business, sci/tech) of news articles

e 16,700 words in vocabulary after removing rare words; avg. ~45 wgrds/document
* Use 4 x 29,000 unlabeled examples for contrastive learning to get ¢

e Use (up to) 4 x 1,000 labeled examples to train linear classifier (multi-class logreg)
e Use 4 x 1,900 labeled examples for test set

* Our feature map ql_; (called "NCE" for Noise Contrastive Embedding):

* Three-layer ReLU networks with ~300 nodes/layer
* Dropout regularization, batch normalization, PyTorch initialization
* Trained using RMSProp

* Baseline feature maps ¢:
* word2vec [Mikolov et al, 2013], Latent Dirichlet Allocation [Blei et al, 2003], BoW



Accuracy on supervised task vs # sample size

$(x) € RM for M = 100
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Performance on contrastive task vs accuracy

0.9

0.8

0.7
0.6 \ Metric

o
= —— Contrastive loss
® 05
= Accuracy at 1400
04
0.3
0.2

0 100 200 300 400 500 600
Epochs



In closing...

Broader theme: Study "deep learning"-style representation learning
through the lens of probabilistic models

e Multi-view redundancy (a la CCA)

* Topic models and other multi-view mixture models
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Related / complementary analyses

 Steinwart, Hush, Scovel (2005), Abe, Zadrozny, Langford (2006)

» Use NCE to for estimating density level sets / outlier detection

e Gutmann & Hyvarinen (2010)

* Use NCE to fit statistical models with intractable partition functions

* Arora, Khandeparkar, Khodak, Plevrakis, Saunshi (2019)

* If X, Z are conditionally independent given class label, then contrastive
learning gives linearly useful representations



