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Abstract

Suppose the random vectdr € R” has mean zero and finite second moments. We show that thergrés a
cise sense in which almost all linear projections’finto R? (for d < D) look like a scale-mixture of spherical
Gaussians—specifically, a mixture of distributioNg0, > 1,) where theo values follow the same distribution as
|| X||/v/D. The extent of this effect depends upon the ratid tf D, and upon a particular coefficient of eccentricity
of X''s distribution.

1 Introduction

Let X € RP be a random vector with mean zero and finite second moméntthis paper, we examine the behavior
of “typical” linear projections ofX into R, d < D.

The first step is to specify a distributignover linear projections frolR” to R¢. Suppose & x D random matrix
O has entries which are i.i.d. standard normals. It is wetivan that with high probability, the rows of this matrix are
approximately orthogonal and have length approximagély; for more details and proof techniques see, for instance,
Dasgupta and Gupta (2003). The projection we will use is:thus

1
X - — 06X.
VD

An alternative distribution over projection matrices wibbk to take the firs{ basis vectors of a random orthonormal
basis ofR”. The distribution we use is quite close to this, and is momveaient to work with analytically and
algorithmically.

For any specific projectiof, let fo denote the distribution of the projection &f, a probability measure oR“.
As we shall see, for any (measurabfe)- R¢, the expected probability mass of that set under a randoiceld©

is
-

Bofo(S) = [ fu(8)7(8) = [va(S)u(do) 2 F(S)

wherev, is a shorthand for density of the spherical Gauss\i, o%1,), and . is the distribution of|| X||/v/D
(a probability measure oR).? In other words, the average projected distribution is aesoaikture of spherical
Gaussiansf = [ v, u(do).

Given the lack of assumptions df, the individual projected distribution could all, for instance, have discrete
support. We will show, however, that with high probabilityes the choice of, the distributionfy is close tof in the
following sense: it assigns roughly the same probabilitgsita every balB ¢ R as doesf. The precise statement
is in Theorem 13 but reads approximately like this: for altadisd,

- ~ (ecdX)d>\ /!
ow 1B - F(B) < 0(*TE)

balls B in R

1The spaces we consider && for variousk, under the corresponding Boretalgebras. The symbd always denotes a Borel set, and by
“ball” we always mean open ball. We use the notafibn to generically denote the distribution of random variablend likewiseEy- to denote
expectation over’.

2Takev to be a point mass at the origin.
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Figure 1: For each coordinate in the MNIST dataset of harttewri*1” digits, this plot shows the fraction of its
variance unaccounted for by the best affine combinationeptikceding coordinates. The ordering of the coordinates
is chosen greedily, by least variance accounted-for.

where ec¢X) is a specific measure of how eccentric the distributioXdé (A4 /o2 in the theorem statement) and
the O notation hides some lower-order terms. We'll see examgl&sececcentricity value in the next section.

Implications

Apart from its general insights into data distributions dhd enterprise of projection pursuit, we have sought this
result for two rather specific reasons.

The firstis curiosity about a widely-observed empiricat fétat a Gaussian distribution is often an accurate density
model for one-, two-, or three-dimensional data, but verglyefor high-dimensional data. From the birth weight of
babies (Clemens and Pagano, 1999) to the calendar dated ahtidhunder occurrences (Hey and Waylen, 1986),
many natural phenomena follow a normal distribution. And lyigh-dimensional data is unlikely to be Gaussian,
in part because of the high degree of independence this disr(after all, a Gaussian is merely a rotation of a
distribution with completely independent coordinates). altypical application, it might be possible to find a few
features that are roughly independent, but as more feadneesdded, the dependencies between them will inevitably
grow. See Figure 1 for an illustration of this effect.

The result we prove gives a plausible explanation for hovhidgmensional distributions that are very far from
Gaussian can have low-dimensional projections which amostl Gaussian; and moreover, we quantify the rate at
which this effect drops off with increasing

Our second motivation has to do with the analysis of statisfprocedures, and it also explains the particular
notion of closeness in distribution. Many learning aldaris do not look too closely at the data but, rather, look only
at low-order statistics of the data distribution restricte simple geometric regions in space. For instance, censid
the k-means clustering algorithm, whose updates depend onlyeonetro- and first-order statistics of Voronoi regions
determined by the current centers. Its behavior on genatal gkts is hard to characterize, but its performance on
data with Gaussian clusters is much better understood Baggupta and Schulman, 2000). Likewise, there has been
a recent spate of clustering algorithms which are spedifigglared towards data whose clusters look approximately
Gaussian in terms of their zero-order statistics on ballspisce; and which can be rigorously analyzed in this case
(e.g., Dasgupta, 1999; Arora and Kannan, 2001).

One of the motivations of the present paper is to givaralomized reductiofrom data distributions with fairly
general clusters to distributions with better-behavedtelts, and thereby generalize results about the perfomranc
learning algorithms which previously applied only to appnoately-Gaussian data. This can be thought of in two
ways. Either: the initial process of feature selection camindeled as being itself a sort of random projection,
and thus yielding data whose clusters resemble scale-rasaf Gaussians in their low-order statistics. Or: random
projection can be used as an explicit preprocessing stgpewfically produce well-behaved data.



Figure 2: The three-dimensional discrete simplex, crasdgtppe, and cube.

Previouswork

Our work follows a string of previous results, and draws ligawpon them. The seminal work of Diaconis and
Freedman (1984) established this same effect in the caseWwhieas independent coordinates and the projection is to
d = 1 dimension; in such cases, the projected distribution isecto a single Gaussian (as opposed to a scale-mixture).
They also gave asymptotic results (b= 1 andD T oo) for a variety of other cases, including general distribos
in which most pairs of data points are approximately orth@yand most data points have approximately unit length.
Sudakov (1978), von Weisacker (1997), Bobkov (2003), aadriind Romik (2003) have studied the problem for
more general distributions of . These works focus upah= 1 (except for Naor and Romik, who consider general
but define a notion of closeness in distribution which makesgroblem essentially one-dimensional), and are based
upon various different assumptions &n We closely follow Bobkov’s method, and also use ideas fromWeisacker
and Sudakov. Our result is more general than the union oétbasier works in two ways, both of which are crucial
for the algorithmic applications mentioned above: (1) weehao constraints, other than finiteness, on the second
moments ofX (this particular generalization is straightforward), §8jilwe accommodate the cage> 1 (this takes
some doing).

2 Examples

Our main result says that most linear projections\oi= R” are close tof, a scale-mixture of Gaussians which is
determined only by the distribution ¢£X || /+/D. We will call this latter distribution th@rofile of X .

2.1 Threediscretedistributions

We start with three particular examples: uniform distribng over the vertices of a simplex, a cross-polytope, and a
cube inR” (Figure 2). In each case, almost all linear projections aa+Gaussian.

Thesmplex

This is perhaps the most surprising of the three exampleiscaedie distribution ilR” whose support is of size just
D + 1, the smallest possible full-dimensional support.

For concreteness, let the verticestbg, x1,...,zp}, where
1-vD+1
To = 7+-1D and z; = VDe; fori=1,...,D.

VD

Here,1p is the all-ones vector iRP ande; is theith coordinate basis vector.

The crucial fact is that each vertex has the same squareahdesb? /(D + 1) to the mean of the distribution
and thus the profile puts all of its mass at a single point (Figure 3). This meanstriioear projections will look
Gaussian, rather than a more general scale-mixture.
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Figure 3: The profile. for the uniform distributions over the discrete simplex& D/(D + 1)), cross-polytope and
cube ¢’ = 1).

Figure 4: One is the plot of a 2-d projection of the verticesdf)00-dimensional simplex; the other is the plot of
1001 points sampled fromV (0, I2). Which is which?

Specifically, the covariance matrix of the high-dimensiatistribution is(D/(D + 1)) Ip, and the coefficient of
eccentricity is 1. A direct application of Theorem 13 regathlat most projections are close to a single Gaussian, in
the sense that the discrepancy on any ball(&i?/D)'/*). Figure 4 illustrates this effect.

Notice that the projected distribution has a discrete stipdsize at mosD + 1. Yet it is almost Gaussian, in the
sense that a random sample from this distribution lookslikesta random sample from a Gaussian, if you count the
number of points in any ball.

In this specific case, we can tighten the bound on the disnogpa random projection of the vertices, zo, ..., xp
(ignorex for now) is distributed a® independent draws frolv (0, 1,): the projection ofx; is

1
ﬁ(—) (\/561') == 67;,
the ith column of©®, which has aN (0, I;) distribution. A standard VC-dimension argument then implihat the
fraction of theseD projected vertices which fall in any ball is withi@(\/d(log D)/D) of the probability mass
assigned to that ball b (0, I;); we use the fact that the class of ball$ifi has VC dimensiod + 1 (Dudley, 1979).
The projection of the remaining vertex can only increase the error l6y(1/D).

The cross-polytope and cube

The uniform distributions over the discrete cross-polgtégry/De; : i = 1,..., D} and discrete cubé+1}" are
similar: each has covariandg and vertices at squared distan@erom the center. Again, the profile has mass only
at a single point] in these cases (Figure 3). And again the coefficient of edcéwtis 1, so Theorem 13 shows that
most projections are close to a single Gaussian, with treefigncy on any ball bein@((d?/D)'/4).

As with the simplex, a tighter bound for discrepancy can lvemin the case of the cross-polytope. We can think
of a random projection of the verticagDe; as D independent draws fromv (0, 1), call them{6y,...,0p}; the
projections of the remainin@ vertices are the negatiods-61,...,—6p}. With high probability, each half taken

1The second plot shows the Gaussian samples.
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Figure 5: The profilg: for the power-exponential distributions®t°°, parameterized bg. The Gaussian has = 1,
while heavier-tailed distributions haye< 1.

separately is close to Gaussian in the sense of being witkinO(/d(log D)/D) on any ball. So the two halves
together are withirze on any ball.

The uniform distribution over the vertices of the cupel, +1}7 is different from the previous two examples in
that it is a product distribution: its coordinates are ineleglent. Such cases permit special arguments (Diaconis and
Freedman, 1984) which show that for 1-d projections, therdjgancy from Gaussian 3(1/v/D) on any interval of
the real line.

2.2 Spherically symmetric distributions

Next, we consider the general class of spherically symmédisiributions. This class includes distributions sucthas
Gaussian, the power-exponential distribution, and Hiotg8 T-square distribution. Practitioners in the scienaad
engineering often prefer this class over the specific casieeotaussian because it allows for tails that are “heavier”
than that of the Gaussian (e.g. Gales and Olson, 1999; LyradsJones, 2000; and see Figure 5).

If X has a spherically symmetric distribution centered at tiggrarthen it can also be written in the forfd = UT,
whereU is a random vector uniformly drawn from the surface of ixaimensional spher§”~1, andT is a scalar
random variable whose distribution is the profile¥d{scaled appropriately). We've seen that a random projeetith
preserve the profile (and therefore the heavy tailXofThis raises an interesting question: @aylinear projection
can alter the tail” of X? No, because a linear projection (with orthonormal rovs)R” — R? merely sends

X — X L (oU)T

where®U is uniformly distributed oves?~1, so the taill" is preserved exactly.

2.3 Other examples
OCR, text, and speech data

Next, we look at low-dimensional projections of three datts avell-known in the machine learning literature: the
MNIST database of handwritten digits, the Reuters databBsews articles and Mel-frequency cepstral coefficients
of the TIMIT data set. Restricting attention to just one tdusrom each dataset, we note that projecting the data onto
its top principal components suggests the existence of@aussian projections, even though most random projections
still look like scale-mixtures of Gaussians (see Figure 6).

Clustered data

A distribution with well-separated clusters is unlikely ltmk like a single scale-mixture upon projection; indeed,
its high coefficient of eccentricity renders the bound ondtserepancy for a particular ball effectively meaningless



Figure 6: Above: “Typical” two-dimensional projections bandwrittenl’s images, word counts of Reuters news
articles about Canada, and Mel-frequency cepstral cosfiisiof the spoken phoneme ‘s’. Below: The corresponding
two-dimensional PCA projections.

Figure 7: A typical linear projection of a two-cluster (hlgteccentric) distribution.

(Figure 7). In many such cases, the Johnson-Lindenstraesssm (1984) dictates that a typical projection will keep
the clusters apart, and the result of this paper can morellsbe applied to the individual clusters.

3 Proof

3.1 Preiminaries

We assume the random vectsr ¢ R” has mean zero and finite second moments.;Leenote the distribution of
| X||/v/D. Writing v, for the density of thel-dimensional spherical Gaussian0, 021,), let f be the scale-mixture

I= /Va p(do).

For any fixedd x D matrix 6, let fo denote the distribution of the projectio\%@X. And let fy(B) (which we'll

sometimes writef (0, B)) be the probability mass thgj assigns to an open ball ¢ R?.
We will consistently usd - || to denote Euclidean norm:

A2 — >, AZ if Ais avector
A2 if Ais amatrix
14 ={ &% 4 ama

One last piece of jargon: a functign RV — R is C-Lipschitz if for all 2, y € RY,

lg(z) —g)| < Cllz —yl.



3.2 Overview

The first part of our proof, following Bobkov (2003), restsicially upon recent results on concentration of measure,
so we start with a brief overview of these.

The familiar Chernoff and Hoeffding bounds say that élverageof n i.i.d. random variablex(;, Xs, ..., X, is
tightly concentrated around its mean, provided ¥yeare bounded and is sufficiently large. But what is so special
about the average; what about other functig(X,, ..., X,,)? It turns out that the relevant feature of the average
yielding tight concentration is that it Ispschitz

The following concentration bound appliesanyLipschitz function of i.i.d. normal random variables. Oreod
reference for this is Ledoux (2001, page 41, 2.35).

Theorem 1 (Concentration bound) Let~yy denote the distributiodV (0, ). Suppose the functign: RY — R is
C-Lipschitz. Then
iz :g(2) = Elg] +7} < e /2

(To bound the probability that(z) < E[g] — r, use—g, which is alsaC-Lipschitz.)
In our case, the random variable witiNg0, I ) distribution is the matri¥© (soN = dD). Here is an outline of
our argument.

1. Fix a ballB C R? The first observation is thdte fo (B) = f(B): in expectation fo assigns the desired
probability mass ta3.

2. We would like to conclude thaty(B) is very close tof (B) for typical §, but this doesn’t immediately follow
from the concentration bound sing¢éd, B) may not be Lipschitz ir.

3. Soinstead, as was done for one-dimensional projectivBelbkov (2003), we introduce a smoothed version of
fo. We call it fy, and we show that is concentrated around its expected value.

4. Then we need to relapé to fp; this is the main technical portion of the proof.

5. So for a fixed ballB, for almost allg, fy(B) ~ f(B). But we want to show thaf,(B) ~ f(B) for all balls

B Cc R? simultaneously. To do so, we explicitly construct a finite @eballs B, . .., By with the property
that if fy is close tof on these balls, then it is close foon all balls. We finish by taking a union bound over the
B;.

3.3 The expectation of fo

Let © be ad x D matrix with i.i.d. N (0, 1) entries; we will denote this distribution over matricesyRecall fy is
the distribution of the projected random variable

1
X —» —60X.

vD
Lemma?2 Fix anyx € R”. The distribution O%@x (for © chosen at random according t9 is N (0, %Id).

Proof. Any linear transformation of a Gaussian is Gaussian%gd—)a: has a Gaussian distribution. Its mean and
second moments are easily checkid.
For any ballB c RY, definef,(B) to be the probability mass d@# under projectiord, that is,

F(0,B) 2 Py {% GB} - Ex [1 <% EB)],

wherel(-) is the indicator function.

>

fo(B)



Lemma 3 Fix any ball B ¢ R?%. ThenEg fo(B) = f(B).

Proof. Applying Fubini’'s theorem, and using for the distribution ofX,

Eof(©, B) // (— € B) P(dz)v(df) = //1 (% € B) ~v(db) P(dzx).

By the previous lemma, the inner expectationis, , 7 (B), a function only of|z||. Thus

Eef(©,B) = /’/nmn/\/B(B)P(dﬂi) = /VU(B)M(dO’)

under the change of variabbe= ||z||/v/D. I

Fix some ballB. We can't directly apply the concentration bound to showt th@ B) is tightly concentrated
around its expectation because this function may not bechifisin §. To see this, suppose that is uniformly
distributed overk support points, and that under projectinexactly one of these support points fallsith Then
f(8,B) = 1/k. However, if this projected point is right at the boundaryfeven a tiny perturbatiofi — ¢’ could
cause it to fall outside3, whereuponf(¢’, B) = 0. So|f(#, B) — f(¢', B)| cannot be upper-bounded in terms of
16— ']l

3.4 A smoothed version of f

Fix a ball B ¢ R? and a projectio. Consider an experiment in which a poikitis randomly drawn and is assigned
a score oft if its projection happens to fall if8; and a score dj otherwise. Therf (0, B) = Ex []l( \"/)i € B)} is the

expected score achieved. To get a smoother version of thesifun, we will assign a fractional score if the projected
point doesn't fall exactly inB but is nonetheless close by.
For some valué\ > 0 to be determined, define the functibp : R¢ — [0, 1] as follows:

1 if d(z,B)=0
hp(z) = { 1—(d(z,B)/A) f0<d(z,B) <A
0 if d(z,B) > A

whered(z, B) = inf ¢ ||y — z|| is the distance from pointto ball B. Clearlyh s is (1/A)-Lipschitz.
Now, define the smoothed functigiid, B) as

o - (3]

A one-dimensional version of the following lemma was use&hbgakov (1978).

Claim 4 Fix a ball B ¢ R?. Thenf S \/ Amaz/DA2-Lipschitz, where\,, ... is the largest eigenvalue of the
covariance matrid x [XX7].



Proof. For anyé, ¢,
o)~ 7.2 = [ex [ (75) =0 (75|

VD VD
o ()1 )
< % Ex H% - % ’ (hs is (1/A)-Lipschitz)
- o5 Ex 0= 0)X]
< = VA=K

S V0O = X222 o g,
AVD AVD

as claimedl
The concentration bound (Theorem 1) gives

Claim 5 Fix any ballB ¢ R¢, and any0 < € < 1. When® is picked at random according tg
Po [lf(@,B) —Eof(©,B)| >e| < 2 <A D/2Amaz,

The problem is that we are interested in the original fumify rather than their smoothed counterparts. To relate the
two, we use:

fo(B) < fo(B) < fo(Ba)

whereB is a shorthand for the Minkowski suB+ B(0, A) (to put it simply, grow the radius aB by A). By abuse
of notation, letB_ A be the ball with the same center Bsbut whose radius is smaller ky (this might be the empty
set). Then:

Corollary 6 Fix any ballB ¢ R?, and any0 < ¢ < 1. When® is picked at random according tg,

Po [f(B-a) — ¢ < f(©,B) < F(Ba)+¢| > 1—2e7 AP 2Amas,

It is necessary, therefore, to relgteB) to f(Ba).

3.5 Relatingthe probability massof B tothat of Ba

Recallf is the scale-mixture
f = /VJ p(do)

wherev, is the spherical Gaussia¥(0, 021,). As a first step towards relating B) and f(Ba ), we relatev, (B) and
Vo (BA).

If A'is small enough, then, (Ba) will not be too much larger tham, (B). But how small exactly doe& need to
be? There are two effects that come into play.

1. The Gaussiam, has significant mass at radius/d. So it is important to deal properly with balls of radius
approximatelyrv/d.
2. If B has radius then vo{ BA) = vol(B) - (T+A)d. Therefore, if we want the probability massBh to be at

T

most(1 + ¢) times that ofB, we need\ = O(re/d).




These two considerations tell us that we néed es/v/d. The second also implies that any value/oive choose
will only work for balls of radius> Ad. To get around this, we make sure tiats sufficiently small that any ball of
radius less thar\d has insignificant (less thad) probability mass.

The following key technical lemma is proved in the appendliatice that the bound oA is roughlyeos /v/d.

Lemma7 Pick any0 < € < 1 and anyo > 0. If

Ag%-m(1+§)-ﬁ,

ISUIN]
o Ik

thenv,(Ba) < v,(B) + € for any ball B.
Finally, we consider the scale-mixture rather than jusividdial components,,.

Corollary 8 Pick any0 < e < 1 and a thresholdr. > 0 such thatu{c : 0 < 0.} <. If

Oc €
A< \/E-ln(l—i—z)-i7
thenf(Ba) < f(B) + 2¢ for any ball B.

Proof. We can rewritef asE, [v,], where the expectation is taken owedrawn according tq.

f(Ba) — f(B)

EU[VU(BA)] - EU[VU(B)]
Ey[vo(Ba) —vo(B) | 0 > 0] + Py(0 < 0¢)
2¢

IN N

)

as claimedl

At this stage, we have shown that for any giv@nalmost all projectiong have fy(B) ~ f(B). Putting together
Corollaries 6 and 8, we get:

Theorem 9 Pick any0 < e < 1/2 ando, > 0 such thatu{c : 0 < 0.} < e. Pick any ballB ¢ R?. Then

Pa lfa(8) - TB) > d <o {-0 (22 1))

It remains to prove this for all balimultaneously

3.6 Uniform convergence for all balls

We follow a standard method for proving uniform convergenee carefully choose a small finite set of balls
Bo,...,By € R? such that if the concentration property (Theorem 9) holdshaseB;’s, then it holds forall
balls inR?. Specifically, ourB;'s have the following property:

For any ballB C R¢ there existB;, B; such thatB; C B C B; andf(B;) — f(B;) < 2e.

It follows that if fo(B;) ~ f(B;) for the finite set of balls3;, thenf,(B) ~ f(B) for all balls B ¢ R¢.

Actually, things are just slightly more complicated thaistfThere is no finite collection aB;’s that can possibly
satisfy this criterion given that the bali$ can be arbitrarily far from the origin. The saving grace stifmost all the
probability mass off lies within B(0, ¢v/d) for some suitable constaatand so we need only make sure that for all
balls B c RY, there existB; C Bj such that:

e B; C BandBN B(0,cVd) C B;.

10



o [(Bj) - [(Bi) < 2e.
The ballsB; will be centered at grid points i-Cv/d, Cv/d]¢, for someC > c.
Here’s the construction aBy, . . ., By, for some parameters, ¢, to be determined:
1. Place a grid with resolution (spaciriy, on [—-C+/d, C/d]“.
2. Ateach point on the grid, create a set of balls centerdthapbint, with radii,/d, 2¢,Vd, . . ., (2C 4 2¢,)V/d.
d
The total number of balls is theld = (Cé—ﬁ + 1) - 2042 For good measure, add in two final ballsandR*.
The first step is to confirm that most ¢findeed lies close to the origin.
Lemma 10 Suppose > \/\u., /€, Wherel,,, is the average eigenvalue BfX X*|. Thenf(B(0,cVd)) > 1 —e.

Proof. Let Z be a random draw fronfi = [ v, u(do).
2 2 d 2
E|Z|]? = [ o%du(do) = SEIX|* = dAauy.

Sincec? > Aavg/ €, Dy Markov’s inequality

B|Z)? _
c2d  —

€

P[|Z] > evd] <

and sof (B(0,¢vd)) =1 —P[||Z| > ¢Vd] > 1 —e. 1
Now we show that all ball& ¢ R¢ centered inB(0, C'v/d) are well approximated by thB;.
Lemma 1l Suppose > /., /€ ande, < A/(4y/d). Pick any ballB c R? centered inB(0, Cv/d). Then there

existB;, B; such that
B, C BC B;j

and f(B;) — f(Bi) < 2e.
Proof. SayB = B(z,r), with 2 € B(0,C+/d). There are two cases to consider.
Case 17 < 2CVd.
By construction, there is a grid poifitwhich differs fromz by at mostk, on each coordinate, §a: — Z|| < e,/d.
Let B™ = B(&,r) be the largest of thé3;’s centered afr and contained inside3 (if necessary take; = 0 so

that B = ()). Likewise letB°“! = B(Z,r;) be the smallest of thé,’s centered af andcontainingB. Again by
construction,

r— 260\/3
r+260\/3

r— ||z — | —e,Vd
r+ ||z —Z| +e,Vd

r1 >
ro <

Sincee, < A/(4V/d), we haveB°"* C BY' and thus, by corollary 8 (B°*) — f(B™) < 2e.

Case 27 > 2CVd.
In this casepB is contaiged irR? and contains the bal; which is centered at the origin and has radiugd. The
previous lemma shows thg{B;) > 1 —e. 1

Finally, we handle balls centered outsiB¢0, C'v/d).

11



Lemma 12 Suppose that > /Aaug/c, €0 < A/(5V/d), andC > ¢ + (c?/2¢,). For any ball B centered outside
B(0,CV/d), there existB; C B; such that

B;c B and BN B(0,eVd) C B,
and f(B;) — f(B;) < 2e.

Proof. Suppose3 = B(x, ) for ||z|| > CV/d. If B either containg3(0, cv/d) or doesn'tintersect it at all, then we're
done: in the first case, take, = B(0, C\/E), B; = R4, and in the second case, take = B; = (.

So assumé intersectsB(0, cv/d) but doesn’t contain it. This means:V/d < ||z|| —r < ¢v/d. We'll approximate
B by a ballB(z’, ") centered on the surface 80, C+v/d). To this end, let:’ = ﬁT‘/HE:v andr’ =r — ||z —2/|. In
particular,|z’|| = CvVd andr’ = r — ||z|| + ||| € (C — e)Vd, (C + ¢)V/d).

To see thatB(2/,r’) is a close approximation t&(z, ), notice first thatB(«’,r’) C B(z,r) because for any
z € B(2',r"),

Iz =2l < llz =2l + [l = 2" < ' +e—2'|] =

In the other directionB(x, ) N B(0,cv/d) C B(z',r" + €,1/d). To see this, pick any € B(z,r) N B(0, ¢\/d), and
examine the components of— 2’ in the direction ofz and perpendicular te. Letting & be the unit vector in the
direction ofz,

(@ —2)- =G —a)-2+@—2)- 2|2 |z + |z =z <0 —r+r=1".

And the component of — 2’ perpendicular ta@ is the same as the componentqderpendicular ta:, which is in turn
at most|z|| < ¢v/d. Combining both components, we get

2 c2d A2d
-2 < VJOI2+2d = o /1—|—C—§7’/<1—|——)ST’+7§T/+€O\/E-
H H ( ) (7") 2(7")2 2(0_0)\/3

Since||2’|| < CVdandr’ < (C 4+ ¢)Vd < 2CV/d, we can proceed as in case 1 of the previous lemma. This gives
us a grid pointz and radiir;, > which are multiples oé,+/d such that

B(jvrl) - B(I/,’I’/) C B('rlvrl +€0\/E) C B(:E7T2)

andry — 71 < 5e,1/d. Sincee, < A/(5v/d), we have from Corollary 8 that(B(z,15)) — f(B(&,71)) < 2¢. 1

All the pieces are now in place. We apply Theorem 9 to eacheob#ilsB;, taking an union bound over the error
probabilities. And then, using the last three lemmas, welkate uniform convergence for all balls c R<.

Theorem 13 SupposeX has mean zero and finite second moments. Défine, f as above. Pick an§ < ¢ < 1/2
ando, > 0 such thatu{c : 0 < 0.} <e. Then

B a2\ 1\\¢ D o? 1
B < @~ Aavg 4 _ - . .
]P)e Sup |f@(B) f(B)| > 61 - (O <53 052 lne)) GXP{ @ ( d )\maz 1111/6)}

balls B C R?

wherel,,, and .4, are the average and maximum eigenvalues of the covariapgex 7.
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4 Appendix: proof of Lemma7

Let B = B(z,r), sothatBa = B(x,r + A), and fix anyo > 0. We will comparev,,(B) with v,(Ba). First, note
that

Ve(Ba) = / Vo(x + 2)dz
B(0,r+A)

< / vz +2)ds + ve(R1\ B(0,C))
z€B(0,r+A)

lz+z<C

A AN
_ / v, <x+y+—y> <T+ > dy + vo(RY\ B(0,0))
y€B(0,r) r r

lzt+y+(A/r)yl|<C

under the change of variabje= = - .. This integral can be upper-bounded in termsofB).

Lemmal4 If ||y|| < rand|lz +y + £y|| < Cthenv,(z +y + 2y) < vo(z +y) ce(CFa)A/o?

Proof. The length bounds tell us tha€y|| < A and that|z + y|| < [z +y + 2y| + | 2yl| < C + A. Therefore,

lz+y+ 291> > |o+yl? —2llz+yll]|2y]
> lz+yl*-2(C+A)A
whereupon
1 2 2
A _ ety Ayl 20
VU(I + Yy + - y) = O—d(Qﬂ-)d/Ze Yy Y
1 2 2 2
< —[lz+yll*/20% (C+A)A/o
= gd2mydz© e ,
as claimedl

We also need to bound the tee(R? \ B(0, C)).

Lemma 15 If the random variableZ is distributed asV (0, ), then for anye > 0,

P|Z|| > cVd] < e (emD?d/2,

Proof. This is just a chi-squared tail bound, but can also be quidklyved from Theorem 1, sind || is 1-Lipschitz

andE|| Z|| < /E|Z]? = Vd.l
Lemma 16 For any0 < e < 1, choose

1

Ag%-ln(1+e)~ .
1 2 1

1+3+ Eln;

Then for allz € R? and all > 0, we havey, (B(z,r + A)) < (1 +¢) (”A)dug(B(ac, 7)) + €.

T

14



Proof. Continuing from our earlier expression faf(B(x, r + A)),

d
Vo(B(z,r + A)) < / Vg (w—l—y—i—%) (T+A) dy + ug(Rd\B(O,C))
yeB(0,r) r r

lz4+y+(A/r)yl|<C

d
o(C+A)A/o? (ﬂ) / volx +y)dy + v, (Rd \ B(0,0))
yEB(0,r)

IN

T
lz+y+(A/r)yl|<C

AN

< (C+R)A/0? (L) vo(Bz,r)) + e—(Clov—1iarz
T

where the last two inequalities follow from Lemmas 14 andr&Spectively. Now set’ = (1 + ,/%111 %)o—\/ﬁ. |

This bound is reasonablerifis large. On the other hand,qfis tiny, thenv, (B(x,r + A)) is less thare and the
whole point is moot anyway. We now establish this formally.

Lemma 17 Foranyr > 0ando > 0,

Vo (B(0,r)) < (%)d.

Proof. This is surely known, but as we haven't been able to find aeefs, we are including a quick proof. Without
loss of generality = 1, sov,, is N(0, I;). The squared length of a random point from this distributiaa chi-squared

density withd degrees of freedom,
S(d/2)=1,—2/2

p(z) = 24/20(d/2)
Therefore,

™ (d/2)=1,—2/2

Ul(B(O,T')) = ‘/O W(d/z)dz

2

1 T
< - (d/2)-14
= 2d/2r<d/2>/o : :

(2/d)r
24/2T(d/2)

rd

24/20((d/2) + 1)

- rd B 21\ ¢
= 2d/2(d/8)d/2 - Vd ’
where the last inequality is a consequence of the followaug. f

Fact.I'((d/2) + 1) > (d/8)%/? for any integex] > 1.

One way to see this is by induction. The base cé@sesl, 2 are trivially checked, and faf > 2,

(d-2)/2
d d d d(d—2
- - Z - > 2 (2=
r(3+1) = 5r(3) = 3 (5)
INY2 g9\ (/21 4 /d\ Y2 g\ 42
= 4= | — > -z > |z ;
8 d e\ 8 8

15



where the second-last inequality relies on one last fact.

Fact. (1 — %)(d/Z)fl > 1/eforanyd > 2.
This comes from rewriting the familia® > 1 + x usingz = 2/(d — 2):

22 5 12 4

= d—2  d-2

e a(de (@/2)-1 [ _oja_an(@/D-1 _ _
Flipping this,e=%/(4=2 <1 — 2 and so(1 — 2) > (e~ #/(d=2) =e L1

As mentioned earlier, the cases wheis very large or very small are easy to handle. The more imtbase is
whenr is of intermediate size. Together, they complete the proégframa 7.

Lemma7 Pick any0 < € < 1 and anyo > 0. If

AS%'ln(1+§)'ﬁ’

ISUIN]
o Ik

thenv,(Ba) < v,(B) + € for any ball B.
Proof. Pick anyB = B(z,r). By Lemma 16, the choice @k implies that

r+ A

d
Vo(B(z, 7+ A)) < (14¢/4) ( > Vo(B(z,7)) + €/4.
We'll look at three cases for the value af

Case 1 (large valuesy: > %a\/ﬁ.
The lower bound om impliesAd < rIn(1 + ¢/4), and thus that

<TJ;A>‘1 3 (HM)CI < 14¢/4,

whereupon, (Ba) < (1 + €/4)?v,(B) + €¢/4 < v,(B) +e.

Case 2 (small values):+ A < LeoV/d.
From Lemma 17:

A
<
2
=
_l’_
)

2(r—|—A)>d -

UG-(BA) S VU(B(O,T'+A)) S (0—7\/a

Case 3 (intermediate value)sv'd > r > Leavd — A.
First observe thad < eo/(8v/d). This means

1 3
r > —eoVd— 9> —eoVd,

= 2 8vd — 8
(52 = (o) - () ==

16
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Using the inequality1 + 2)? < 1 + dx(1 + x)? for integersd > 1 and0 < = < 1/d (see Lemma 18 below), we can

also write 4 J
<T+A> . 1+g<r+A> Y]
r r r 5r
Thus
€ r+ A d €
_ < e —
Vo(Ba) — vo(B) < (1+4)< . >VU(B)+4 vo(B)
r+ A r+ A d ¢ €
—1|v,(B — 4=
a << r > )V()+< r )4+4
_ TAd( 2 d+z €L c
= b \oVd 5 4 ' 4
O MAVA [ 2r N\ 3e
B 50 oV 5
< Moe 3
= 5% 5 ¢
|

There is one last technical detail to tie up.

Lemma 18 For any integerd > 1 and any0 < z < 1/d,

1
1—dz’

(142)¢ <

Proof. This is immediate from the series expansions of both sides:

1+2)! = 1+dx+ (;l)$2+ (g)x3+---+ (Z)xd

1+ dz + (dz)* + (dz)® + - -
1
1—dz’

IN
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