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Two-layer networks of random RelLUs (“random ReLU networks™)

f € Span{x — max{0, w'” .z —b}:ie [r}} , ((w(i),bm)): ~D

g(i)
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Approximating Lipschitz functions by two-layer networks of random RelLUs
Two-layer networks of random RelUs:

i=1

Fp = span{x — max{0, w'” .z —bP}:ie [r]} , ((wm,b(i)))f ~ D,

g

where D is probability distribution for bottom-level parameters (wm,b(i)) €S xR
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Fp = span{x — max{0, w'” .z —bP}:ie [r]} , ((wm7 b<i)))::1 ~ D,

RE)

where D is probability distribution for bottom-level parameters (w(”,b(i)) €S xR

Question:

What is the minimum width  s.t. F,. can e-approximate any L-Lipschitz functions in £2([—1,1]%)
(with high probability)?

Pr[ﬂinf If— 2oy < 5} >0.9 forall L-Lipschitz f*: [-1,1]* = R
feF,
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Approximating Lipschitz functions by two-layer networks of random RelLUs

Two-layer networks of random RelUs:

Fp = span{x — max{0, w'” .z —bP}:ie [r]} , ((w<i)7b<i)))f ~ D,

i=1

g
where D is probability distribution for bottom-level parameters (w(”,b(i)) €S xR

Question:

What is the minimum width  s.t. F,. can e-approximate any L-Lipschitz functions in £2([—1,1]%)
(with high probability)?

Pr[ﬂinf If— 2oy < 5} >0.9 forall L-Lipschitz f*: [-1,1]* = R
feF,

Our work: upper- and lower-bounds on this minimum width, for all d, €, and L

Hfu,;zq_l,l]d):\/ E [f(x)?]

x~Unif([—1,1]4)
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Motivations

1. Approximation capability of neural networks at (or near) IMPUSSIB[E"
random initialization

[Andoni, Panigrahy, Valiant, & Zhang, '14; Bach, '17;
Ji, Telgarsky, & Xian, '19; Yehudai & Shamir, '19; ...]
and kernel methods

[Aizerman, Braverman, Rozonoer, '64; Cho & Saul, '09; ...]
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random initialization |

[Andoni, Panigrahy, Valiant, & Zhang, '14; Bach, '17;
Ji, Telgarsky, & Xian, '19; Yehudai & Shamir, '19; ...]
and kernel methods

[Aizerman, Braverman, Rozonoer, '64; Cho & Saul, '09; ...]

2. Interplay between dimension d and relative error /L
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Our results (informally)

Question: What width is needed to approximate L-Lipschitz functions up to £2([—1,1]%) error ?
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Our results (informally)

Question: What width is needed to approximate L-Lipschitz functions up to £2([—1,1]%) error ?

Answer: It depends!

poly(d) if L/e =O(1)
poly(L/e) ifd=0(1)
exp(U(d))  if L/e = Q(+/d)

(AR VARVAN
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Some prior work

Question: What width is needed to approximate L-Lipschitz functions up to £2([—1,1]%) error ?

Width

Comments

Maiorov, '99

> exp(€(d))

L/e — o0

Yehudai & Shamir, '19;
Kamath, Montasser, & Srebro, '20

> exp(Q(d))

L/e > poly(d)

Andoni, Panigrahy, Valiant, & Zhang, '14

< dO(L/s)2

exp activation

Bach, '17;
Ji, Telgarsky, & Xian, '19

< (L/e)?

L approx
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L/e > poly(d)

Andoni, Panigrahy, Valiant, & Zhang, '14

< JOL/2)?

exp activation

Bach, '17;
Ji, Telgarsky, & Xian, '19

< (L/e)?

L approx

Maiorov’s bound (for H*([—1,1]%)) applies to networks with arbitrary bottom-level weights,
but only holds asymptotically as L /e — oo
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L°° approx

L:oc

approximation is stronger than £? approximation
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Some prior work

Question: What width is needed to approximate L-Lipschitz functions up to £2([—1,1]%) error ?

Width

Comments

Maiorov, '99

> exp(€(d))

L/e — o0

Yehudai & Shamir, '19;
Kamath, Montasser, & Srebro, '20

> exp(Q(d))

L/e > poly(d)

Andoni, Panigrahy, Valiant, & Zhang, '14

< JOL/2)?

exp activation

Bach, '17;
Ji, Telgarsky, & Xian, '19

< (L/e)?

L approx

Upshot: Prior work doesn't reveal the correct minimum width for arbitrary d and L/e
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Outline for rest of talk

1. Upper- and lower-bounds on the minimum width
2. Proof sketches

3. Some consequences
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Part 1. Upper- and lower-bounds on the minimum width




Our main results

MinWidthe a,p(f*) := min{rEN : Pr[Ainf ||f_f*||[:2([_1,1]d) < E] 20.9}
fEF,

smallest width 7 s.t. 7, (with bottom-level weights ~ D) e-approximates f* with probability > 90%
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Our main results

MinWidthe a,p(f*) := min{r eN : Pr[ﬂinf ||f—f*||£2([_1,1]d) < 8] > 0.9}
feFr
smallest width r s.t. 7, (with bottom-level weights ~ D) e-approximates f* with probability > 90%

Qra = {a €Z%:||all2 <k}| number of integer lattice points in radius k ball in R?
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Our main results

MinWidthe a,p(f*) := min{r eN : Pr[Ainf ||f—f*||£2([_171]d) < 6] > 0.9}
feFr
smallest width r s.t. 7, (with bottom-level weights ~ D) e-approximates f* with probability > 90%
Qra = {a €Z%:||all2 <k} number of integer lattice points in radius k ball in R¢

Theorem 1 (upper bound). For any L,e,d, there exists a parameter distribution D such that

sup MinWidth. 4 p(f*) < Q5
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L-Lipschitz f*: [—-1,1]% - R
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Qra = {a €Z%:||all2 <k} number of integer lattice points in radius k ball in R¢

Theorem 1 (upper bound). For any L,e,d, there exists a parameter distribution D such that

sup MinWidth. 4 p(f*) < Q5

2L/e,d
L-Lipschitz f*: [—-1,1]% - R

Theorem 2 (lower bound). For any L, e, d, and parameter distribution D,

sup MinWidthe ¢ p(f*) > Q(Ql—lsL/s,d)

L-Lipschitz f*: [-1,1]* - R
Lower-bound, in fact, applies to any target-independent F, (not just span of random RelLUs)
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Counting integer lattice points in a ball

Qra = [{a €Z%:||all2 < k}| number of integer lattice points in radius k Euclidean ball
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Counting integer lattice points in a ball
Qra = {a€Z%: |lalla <k}| number of integer lattice points in radius k Euclidean ball
Generalized Gauss Circle Problem: As & — oo,

2\ d/2
Qra = vol(Ba) - k*- (1+0(1)) =~ \/%?d(%;k ) “(1+0(1))

(GGCP is to show “o(1)" is actually O(k~2%?) for all § > 0)
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Counting integer lattice points in a ball

Qra = [{a €Z%:||all2 < k}| number of integer lattice points in radius k Euclidean ball

Generalized Gauss Circle Problem: As k — oo,

Qra = vol(By) - k% (14 0(1)) ~ =

1 (%;k? ) 2 L o)

(GGCP is to show “o(1)" is actually O(k~2%?) for all § > 0)

But when d is large compared to k?, more favorable bounds are obtained via (simple) combinatorics:

d E2+2d—1
(S k2> S Qk?d S ( k2 )

poly(d) if L/e =0(1)
Theorems 1 & 2 — sup  MinWidthe a,p(f*) = < poly(L/e) if d = O(1)
fotipsenitz 1 exp(©(d)) if L/e = O(Vd)
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Part 2. Proof sketches




Proof of upper-bound (sketch)
Theorem 1 (upper bound). For any L, ¢, d, there exists a parameter distribution D such that

sup MinWidthe 4,0 (f*) < Q;)L(})s,d
L-Lipschitz f*: [—1, 1]d —R
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Theorem 1 (upper bound). For any L, ¢, d, there exists a parameter distribution D such that

sup MinWidthe,a,p(f*) < Q97 ,
L-Lipschitz f*: [—1, 1]d —R

Follow standard recipe [e.g., Andoni, Panigrahy, Valiant, & Zhang, '14] with some tweaks:
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9/14



Proof of upper-bound (sketch)

Theorem 1 (upper bound). For any L, ¢, d, there exists a parameter distribution D such that

sup MinWidthe 4,0 (f*) < Q?L(})e,d
L-Lipschitz f*: [—1, 1]d —R

Follow standard recipe [e.g., Andoni, Panigrahy, Valiant, & Zhang, '14] with some tweaks:

1. Get e/2-approximation of L-Lipschitz f* using orthonormal basis functions
V2sin(ra - z/2) and V2cos(ma - x/2)

for a € Z% with ||a||2 < 2L/e

2. Construct suitable parameter distribution D, so every trigonometric polynomial
p" € span{sin(ﬁa -z), cos(ra-z) : aeZ a2 < k}
with bounded coefficients has

MinWidth. /2,40 (p*) < poly(d, k,1/¢) - Qg
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Proof of upper-bound (sketch)

Theorem 1 (upper bound). For any L, ¢, d, there exists a parameter distribution D such that

sup MinWidthe 4,0 (f*) < Q?L(})e,d
L-Lipschitz f*: [—1, 1]d —R

Follow standard recipe [e.g., Andoni, Panigrahy, Valiant, & Zhang, '14] with some tweaks:
1. Get e/2-approximation of L-Lipschitz f* using orthonormal basis functions
V2sin(ra - z/2) and V2cos(ma - x/2)
for a € Z% with ||a||2 < 2L/e
2. Construct suitable parameter distribution D, so every trigonometric polynomial
p" € span{sin(ﬁa -z), cos(ra-z) : aeZ a2 < k}
with bounded coefficients has

MinWidth. /2,40 (p*) < poly(d, k,1/¢) - Qg

Basis of “sinusoidal ridge functions” are especially convenient for this step
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Proof of lower-bound (sketch)

Theorem 2 (lower bound). For any L, e, d, and parameter distribution D,

sup MinWidthsyd,'D(‘f*) > Q(Q%L/s,d)
L-Lipschitz f*: [-1,1]7 - R
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Proof of lower-bound (sketch)
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We generalize a dimension argument of [Barron, '93]:
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Proof of lower-bound (sketch)
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L
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We generalize a dimension argument of [Barron, '93]:
1. If o1,...,0n € L? are orthonormal with N >, then F, is /1 — +-far from at least one ¢;
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Theorem 2 (lower bound). For any L, e, d, and parameter distribution D,

sup MinWidthe ¢ p(f*) > Q(Q

L/E,d)
L-Lipschitz f*: [-1,1]7 - R

L
18

We generalize a dimension argument of [Barron, '93]:

1. If o1,...,on € L? are orthonormal with N > r, then F, is /1 — --far from at least one ¢;
» F, (or any dimension r subspace of £?) cannot approximate them all if » < N

2. The N = Qg,q sinusoidal ridge functions (from upper-bound proof) are O(k)-Lipschitz

3. Combine these facts + scaling argument, with k = ©(L/¢)

If Dweights is invariant to coordinate permutations, then the hard-to-approximate function is explicit:

z — esin(w(zy+a2+---))
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Key lemma

Lemma. Let H be a Hilbert space, and fix orthonormal ¢1,...,pon € H. Let W be (possibly random)
finite-dimensional subspace of H with r := E[dim(W)] < co. Then there is some ¢ € [N] such that

E| inf lg— @il%| > 1- —.
Ling o= o] = 1- %
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Key lemma

Lemma. Let H be a Hilbert space, and fix orthonormal ¢, .
finite-dimensional subspace of H with r := E[dim(

E| inf |lg — ¢ill7
Ling o sonH}

Proof. Let uy,...

N
1 . Y
& 2| gl — el

,uq be ONB for W, with d :=d

N
NZ
1
1-—=E
N
1
1-—E
N
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..,oN € H. Let W be (possibly random)

W)] < co. Then there is some i € [N] such that

N

im(W), and let IIw be orthoprojector for W.
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Part 3. Some consequences
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Depth separation

» Recent line-of-inquiry on separations between poly-size “shallow” nets and poly-size “deep” nets
[Telgarsky, '16; Eldan & Shamir, '16; Daniely, '17; Safran & Shamir, '17; Safran, Eldan, & Shamir, '19; ...]
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» [Safran, Eldan, & Shamir, '19]: Is there a 1-Lipschitz function that separates poly(d)-size depth-2
nets from poly(d)-size depth-3 nets?
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Depth separation

» Recent line-of-inquiry on separations between poly-size “shallow” nets and poly-size “deep” nets
[Telgarsky, '16; Eldan & Shamir, '16; Daniely, '17; Safran & Shamir, '17; Safran, Eldan, & Shamir, '19; ...]

All known “hard” functions exhibiting the separation have been highly oscillatory

Telgarsky's iterated tent map Oscillatory radial function

» [Safran, Eldan, & Shamir, '19]: Is there a 1-Lipschitz function that separates poly(d)-size depth-2
nets from poly(d)-size depth-3 nets?

Our results = No, for constant £? approximation error
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> Let ¢1,...,on be the N = 27 parity functions on {—1,1}%, which is ONB for £2({—1,1}%)
» Proposition [B/AZL, '20]: Every kernel method, even if allowed non-adaptive MQs, needs

n > (1-g)-2°
examples to guarantee mean squared error < & when any of the (; could be the true target

» Easy consequence of the key lemmal
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Recap and closing

1. Width needed to approximate L-Lipschitz functions up to £%([—1,1]%) error &:

poly(d) if L/e =0(1)
sup  MinWidthe a,p(f") = Qg&)/sm = (poly(L/e) ifd=0(1)
frbipschitz 1 exp(©(d)) if L/e = ©(VA)
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Thank you!
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