Neural computation models II

Daniel Hsu COMS 6998-7 Spring 2025

Transformers [Vaswani et al, 2017]

<u>Transformer</u>: a kind of sequence-to-sequence map, formed by compositions of <u>self-attention heads</u>

Ingredients:

- 1. Ways to embed tokens into vector space
- 2. Way to for embedded tokens to "interact" and produce new vectors

Self-attention head

<u>Token embeddings</u> created using "trained" multilayer Perceptrons (MLPs)

- 1. Independently create N query/key/value vectors from $x_1, ..., x_N$
- 2. For each $i \in [N]$: i^{th} output y_i = weighted average of all N values, where weights = "softmax" of $\langle i^{\text{th}} \text{ query}, j^{\text{th}} \text{ key} \rangle$ for all $j \in [N]$

Outputs y_1, \ldots, y_N can be produced in <u>parallel</u>

Comparison to feedforward neural networks

Self-attention head

Shared parameterized mapping $x_i \mapsto (q^{(i)}, k^{(i)}, v^{(i)})$ Weights $\alpha_j^{(i)}$ determined via softmax <u>Universal approximation</u> if embedding dimension $D \to \infty$

Feedforward neural network

Each "weight" is a separate parameter
$y_{i} = \sum_{j=1}^{H} A_{i,j} \sigma \left(\sum_{k=1}^{N} W_{j,k} x_{k} \right)$
Universal Approximation Bounds for Superpositions
of a Sigmoidal Function
Andrew R. Barron, Member, IEEE (if width $H \to \infty$)

Transformers as compositions

<u>Transformers</u>: compositions of self-attention layers

(layer = one self-attention head, or sum of several self-attention heads)

Use for predicting the next word

 $\widehat{P}(x_{N+1}|x_{1:N}) \propto \exp(T(x_{N+1}) \cdot U(x_{1:N}))$

Other bells-and-whistles

- Self-attention is permutation-equivariant
 - To break permutation-equivariance, typically use positional embeddings
 - Embedding of i^{th} input token x_i may also depend on the position i
- <u>Masked self-attention</u>: To determine "weights" for i^{th} output, only consider subset $S_i \subseteq [N]$ of input tokens (the "unmasked" tokens)
 - <u>Causally-masked self-attention</u>:

 $S_i = \{1,2,\ldots,i\}$

- <u>Skip-connection</u>: Input to next layer is
 - output of current layer ...
 - ... plus input to current layer

Questions

- What, if anything, is special about the function form of self-attention?
- Two ways to break permutation-equivariance: position embeddings and (causal) masking. Are they interchangeable?
- What is the role of the skip-connection?