Neural computation models

Daniel Hsu COMS 6998-7 Spring 2025

Recap: neural language models

- Shannon 1948, 1951: Compute $P(x_t | x_1, ..., x_{t-1})$
- <u>Bengio et al, 2003</u> (and others): Maybe it can be done using a neural network
 - Maybe just the *n*-gram approximation, i.e., only a function of x_{t-n+1}, \dots, x_t
- <u>Neural language models</u>:
 - Embed discrete tokens into vector space
 - Consider function of vectors in this space
 - There are interesting computations to be done in this vector space!

Computation

Computational task

...

- Evaluate functions
- Execute algorithms

Models of computation

- Circuits
- Automata (i.e., "machines")
 - E.g., finite state automata, pushdown automata, Turing machines

• ...

Circuit model

- Boolean functions $f: \{0,1\}^n \rightarrow \{0,1\}$
 - There are 2^{2^n} such functions
- How many Boolean circuits (using AND, OR, NOT gates) of size m? $\leq (3 \cdot 2^{m+n})^m$
- So cannot compute all Boolean functions using poly(n)-size circuits
- <u>Circuit complexity</u>: Which functions have small circuits?

Function approximation

- Consider arbitrary continuous $f: [0,1]^n \rightarrow [0,1]$
- How can you (approximately) compute it?
 - <u>Weierstrass approximation theorem</u>: for any $\epsilon > 0$, there is a (multivariate) polynomial p such that $\max_{x \in [0,1]^n} |f(x) - p(x)| \le \epsilon$
 - Caveat: degree of p might be large!
 - <u>Cybenko; Hornik-Stinchcombe-White; Barron; ...</u>: Can also achieve this approximation using a neural network with a single layer of "hidden units"
 - Caveat: number of "hidden units" might be large!
 - Saving grace?: for some "nice" functions, number of "hidden units" can be relatively small

Decidability of languages

- A subset of strings $L \subseteq \{0,1\}^*$ is called a *language*
 - E.g., L = valid encodings of 3-CNF formulas that are satisfiable
- A machine *M* decides the language *L* if, on input $x \in \{0,1\}^*$, the machine *M* halts and returns $1_{\{x \in L\}}$
- <u>Church-Turing thesis</u>: the following are equivalent
 - There is an algorithm for deciding *L*
 - There is a *Turing machine* that decides *L*
- Many other types of "machines" are equivalent to Turing machines in computational power (at least up to polynomial factors in "runtime")
 - E.g., multi-tape Turing machines, Random Access Machines
 - <u>Siegelmann and Sontag</u>: also Recurrent Neural Networks (over Q)

Things to think about

- How do neural nets perform computation?
- Does it "simulate" a more "classical" type of machine?
 - How are the components of the classical machine being simulated?
 - Why might a neural net be preferable to the classical machine?