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1 Maximum entropy

• Problem setting

– Suppose you want to model an unknown distribution over a (finite) set X (e.g., the set
of all English words).

– Let distribution q0 be the “default model” you would pick absent any other information
(e.g., q0 = uniform over X ).

– Then, you measure some “features” of the distribution.

∗ You get the average (i.e., expected) values of n “feature functions”

Ti : X → R, i = 1, . . . , n

where expectation is with respect to the unknown distribution.

· For example:

T1(x) = 1{x ends in a vowel}
T2(x) = number of characters in x

...

∗ Let bi denote the average value of Ti.

· Note: In typical applications, you won’t have the actual average value of Ti, but
rather just some noisy version of it. For example, we may have an i.i.d. sample
x1, . . . , xm, and we obtain

bi =
1

m

m∑
j=1

Ti(x
j), i = 1, . . . , n.

Let us ignore this detail for now.

– The default model (a.k.a. base measure) q0 is not necessarily consistent with these
measurements.

– What model should you pick?
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• Maximum entropy (maxent) principle: Choose model to be as close to q0 as possible
while being consistent with the measurements:

min
p∈∆

RE(p, q0)

s.t. EX∼p[Ti(X)] = bi, i = 1, . . . , n.

Here, minimization is over probability distributions ∆ over X , and RE(p, q) denotes the
relative entropy (or Kullback-Leibler (KL) divergence) from p to q:

RE(p, q) :=
∑
x∈X

p(x) ln
p(x)

q(x)
= EX∼p

[
ln

p(X)

q(X)

]
.

Note: Shannon used the term “relative entropy” for something else.

– Why the name “maximum entropy”? If q0 is the uniform distribution, then

RE(p, q0) =
∑
x∈X

p(x) ln
p(x)

1/|X |
= −H(p) + ln|X |

where
H(p) := −

∑
x∈X

p(x) ln p(x)

is the (Shannon) entropy of p (switching from logarithm base-2 to natural logarithm).
So minimizing RE(p, q0) is the same as maximizing H(p).

– Important property of p 7→ RE(p, q0): (strict) convexity.

• Theorem: If maxent problem is feasible, then (for almost all measurement values b1, . . . , bn)
solution has the following form:

pλ(x) =
1

Z(λ)
exp

(
n∑

i=1

λiTi(x)

)
q0(x), x ∈ X

for some λ = (λ1, . . . , λn) ∈ Rn. Here, Z(λ) is the normalization factor

Z(λ) :=
∑
x∈X

exp

(
n∑

i=1

λiTi(x)

)
q0(x)

that ensures pλ is a valid probability distribution.

– This parametric form for a probability distribution is called a Gibbs distribution or
Boltzmann distribution. Also related to exponential families.

– Example: If T1(x) = x ends in a vowel and λ1 = −2.10, then a word that ends in a vowel
is exp(−2.10) ≈ 0.12 as likely (according to pλ) as one that does not.

• Some notation:
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– Convenient to collect all Ti into a vector-valued function T : X → Rn.

– Write λ · T for the function x 7→
∑n

i=1 λiTi(x).

– Also write p[f ] =
∑

x∈X p(x)f(x) = EX∼p[f(X)] for any distribution p on X .

– Maxent problem is

min
p∈∆

RE(p, q0)

s.t. p[T ] = b

where b = (b1, . . . , bn).

– A feasible maxent solution has the form

pλ(x) =
1

Z(λ)
exp(λ · T (x))q0(x), x ∈ X

with
Z(λ) := q0[exp(λ · T )].

– Geometric picture

∗ Constraints p[T ] = b define an affine subset of ∆

P = P(T, b) = {p ∈ ∆ : p[T ] = b}.

∗ Maxent = p ∈ P that minimizes RE(p, q0): information projection of q0 onto P
∗ The Gibbs distributions

Q = Q(T, q0) = {pλ : λ ∈ Rn}

form a nonlinear subset of ∆.

∗ It turns out if P ̸= ∅, then |P ∩ Q| = 1, where Q is the closure of Q (i.e., may need
to consider sequences of λ’s)

• Use method of Lagrange multipliers to deal with constraints p[T ] = b.

– Lagrange multipliers: λ = (λ1, . . . , λn) ∈ Rn

– Lagrangian function

L(p, λ) = RE(p, q0)− λ · (p[T ]− b)

= RE(p, q0)− p[λ · T ] + λ · b

– Maxent problem is equivalent to

min
p∈∆

sup
λ∈Rn

L(p, λ).

– Properties of Lagrangian:

∗ Lagrangian is convex in p and linear in λ.

∗ Domain for p is convex and compact; domain for λ is convex.
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∗ Therefore we can switch order of min and sup:

min
p∈∆

sup
λ∈Rn

L(p, λ) = sup
λ∈Rn

min
p∈∆

L(p, λ).

The function λ 7→ minp∈∆ L(p, λ) is called the dual (objective) function.

– Donsker-Varadhan inequality: For any function f : X → R,

RE(p, q) ≥ p[f ]− ln q[exp(f)].

(Special case of Fenchel-Young inequality from convex analysis.)

– Claim: For each fixed λ ∈ Rn, function p 7→ L(p, λ) is minimized by pλ.

∗ For any p ∈ ∆, Donsker-Varadhan (with f(x) = λ · T (x)) implies

L(p, λ) = RE(p, q0)− p[λ · T ] + λ · b
≥ p[λ · T ]− ln q0[exp(λ · T )]− p[λ · T ] + λ · b
= − lnZ(λ) + λ · b.

∗ For p = pλ,

L(pλ, λ) = RE(pλ, q0)− pλ[λ · T ] + λ · b

=
∑
x∈X

pλ(x) ln
exp(λ · T (x))

Z(λ)
− pλ[λ · T ] + λ · b

= pλ[λ · T ]− lnZ(λ)− pλ[λ · T ]− λ · b
= − lnZ(λ) + λ · b.

∗ So
min
p∈∆

L(p, λ) = L(pλ, λ).

– So dual function is λ 7→ L(pλ, λ).
– If λ⋆ ∈ Rn achieves

L(pλ⋆ , λ⋆) = sup
λ∈Rn

L(pλ, λ) = sup
λ∈Rn

− lnZ(λ) + λ · b.

then pλ⋆ is maxent solution.

• Connection to maximum likelihood principle for Gibbs distributions {pλ : λ ∈ Rn}

– Suppose we obtain b as the empirical average of T over data set x1, . . . , xm:

b =
1

m

m∑
j=1

T (xj).
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– Consider the log-likelihood of pλ where the data set is treated as an i.i.d. sample:

ln
m∏
j=1

pλ(x
j) =

m∑
j=1

ln pλ(x
j) =

m∑
j=1

ln

(
1

Z(λ)
exp(λ · T (xj))q0(xj)

)

= −m lnZ(λ) + λ ·
m∑
j=1

T (xj) +
m∑
j=1

ln q0(x
j)

= m(− lnZ(λ) + λ · b) +
m∑
j=1

ln q0(x
j).

– Maximizing log-likelihood = maximizing dual function.

– Annoyingly, the log-likelihood does not always have a maximizer.

∗ X = {a,b, c}
∗ q0(a) = q0(b) = q0(c) = 1/3

∗ T1(x) = 1{x = a}, T2(x) = 1{x = b}, T3(x) = 1{x = c}
∗ b = (0, 1/3, 2/3)

∗ Log-likelihood

λ 7→ − ln

(
exp(λ1)

3
+

exp(λ2)

3
+

exp(λ3)

3

)
+

λ2

3
+

2λ3

3

does not attain supremum at any λ

• Proof of Donsker-Varadhan inequality RE(p, q) ≥ p[f ]− ln q[exp(f)]:

– If RE(p, q) = ∞ (i.e., there exists x such that q(x) = 0 but p(x) > 0), then trivially true.

– So assume p ≪ q (i.e., no such x as above).

– Consider any f : X → R, and observe that exp(f) is strictly positive function.

– Define q′ to be the distribution proportional to exp(f)q, i.e.,

q′ :=
exp(f)

Z
q, Z := q[exp(f)].

– Then q ≪ q′, and hence p ≪ q′, so

p

q′
= Z exp(−f)

p

q
< ∞.

– Can write

RE(p, q′) = p

[
ln

p

q′

]
= p

[
lnZ − f + ln

p

q

]
= lnZ − p[f ] + p

[
ln

p

q

]
= ln q[exp(f)]− p[f ] + RE(p, q).

– On the other hand, by Gibbs’ inequality, RE(p, q′) ≥ 0.

– Conclude
ln q[exp(f)]− p[f ] + RE(p, q) ≥ 0.
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2 Log partition function

• Consider Gibbs distributions Q = Q(T, q0) = {pλ : λ ∈ Rn} generated by T : X → Rn and
q0 ∈ ∆:

pλ(x) =
1

Z(λ)
exp(λ · T (x))q0(x), x ∈ X .

• “Normalization constant” (as function of λ)

Z(λ) =
∑
x∈X

exp(λ · T (x))q0(x)

is also called partition function.

– May also interpret as moment generation function for random vector Y := T (X) where
X ∼ q0.

• Main object of interest: log partition function G(λ) := lnZ(λ).

– G is convex: for any λ0, λ1 ∈ Rn and α ∈ (0, 1),

G(αλ0 + (1− α)λ1)

= ln

(∑
x∈X

exp
(
(αλ0 + (1− α)λ1) · T (x)

)
q0(x)

)

= ln

(∑
x∈X

exp
(
(αλ0) · T (x)

)
exp
(
((1− α)λ1) · T (x)

)
q0(x)

)

≤ ln

[∑
x∈X

exp
(
(αλ0) · T (x)

) 1
α q0(x)

]α[∑
x∈X

exp
(
((1− α)λ1) · T (x)

) 1
1−α q0(x)

]1−α


= αG(λ0) + (1− α)G(λ1).

Key step uses Hölder’s inequality.

– When is G strictly convex?

∗ Key step based on Hölder’s inequality holds with equality for λ0 ≠ λ1 if and only if

exp(λ0 · T ) = c exp(λ1 · T )

(as functions) for some constant c > 0 on the support of q0.

∗ This is equivalent to
(λ0 − λ1) · T = ln(c).

∗ This means there is a non-trivial linear combination of T1, . . . , Tn that results in a
constant function.

∗ Conclusion: G is strictly convex if and only if T1, . . . , Tn are affinely independent (on
the support of q0).

· Affine independence: If
∑n

i=1 λiTi is constant, then λ1 = · · · = λn = 0.
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– The gradient ∇G : Rn → Rn maps the λ parameter to the mean of T under pλ:

∇G(λ) =
1

Z(λ)

∑
x∈X

exp(λ · T (x))T (x)q0(x)

= pλ[T ].

– If G is strictly convex, then ∇G is 1-to-1.

∗ Consider any distinct λ0, λ1 ∈ Rn, and let λ(t) = (1− t)λ0 + tλ1 for t ∈ [0, 1] specify
the line segment between λ0 and λ1.

∗ Strict convexity of G implies strict convexity of G(λ(t)).

∗ Direct computation shows{
d

dt
G(λ(t))

}∣∣∣∣
t=0

= (λ1 − λ0) · pλ0 [T ] = (λ1 − λ0) · ∇G(λ0),{
d

dt
G(λ(t))

}∣∣∣∣
t=1

= (λ1 − λ0) · pλ1 [T ] = (λ1 − λ0) · ∇G(λ1).

∗ Strict convexity of G(λ(t)) implies d
dtG(λ(t)) is strictly increasing in t.

∗ Hence
(λ1 − λ0) · ∇G(λ0) ̸= (λ1 − λ0) · ∇G(λ1).

Since λ1 − λ0 ̸= 0, this implies

∇G(λ0) ̸= ∇G(λ1).

∗ (In fact, converse statement is also true.)

– Let M := {b : ∃p ≪ q0 � p[T ] = b} be the set of possible “T -means”.

∗ It can be shown that the image of ∇G

{∇G(λ) : λ ∈ Rn}

is equal to the interior M◦ of M (i.e., all of M except the boundary points).

∗ Proof: see Theorem 3.3 in Wainwright and Jordan’s “Graphical Models . . . ” FnTML
monograph

– Upshot: Two ways to parameterize the Gibbs distributions.

∗ “Natural parameterization”: λ ∈ Rn.

∗ “Mean parameterization”: mean of T .

∗ ∇G is the link between these parameter spaces (or interiors thereof).

• Similar for general exponential families (where q0 may be a general σ-finite measure on a
measure space).

– Example: Poisson distribution X ∼ Poi(µ) for µ > 0
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∗ Probability mass function and mean:

Pr(X = x) =
µx exp(−µ)

x!
, x ∈ N0

E[X] = µ.

∗ Let q0(x) = 1/x!, T (x) = x, so

pλ(x) = exp(λx−G(λ))q0(x)

where

G(λ) = ln

( ∞∑
x=0

exp(λ)x
1

x!

)
= ln(exp(exp(λ))) = exp(λ)

dG

dλ
(λ) = exp(λ) = pλ[x].

∗ Link between natural parameter λ and “mean parameter” µ:

µ = exp(λ).

– Example: unit variance normal distribution X ∼ N(µ, 1) for µ ∈ R
∗ Probability density function and mean:

p(x) =
1√
2π

exp

(
−(x− µ)2

2

)
, x ∈ R

E[X] = µ.

∗ Let q0(x) = exp(−x2/2)/
√
2π, T (x) = x, so

pλ(x) = exp(λx−G(λ))q0(x)

where

G(λ) = ln

∫ ∞

−∞
exp(λx)

exp(−x2/2)√
2π

dx = ln exp(λ2/2) =
λ2

2

dG

dλ
(λ) = λ.

∗ Link between natural parameter λ and “mean parameter” µ:

µ = λ.

– Example: multinomial distribution (X1, . . . , Xk) ∼ Mult(N ;π1, . . . , πk)

∗ Probability mass function and mean:

Pr((X1, . . . , Xk) = (x1, . . . , xk)) =

(
N

x1, . . . , xk

) k∏
i=1

πxi
i

E[Xi] = Nπi.
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∗ Let q0(x1, . . . , xk) =
(

N
x1,...,xk

)
, Ti(x1, . . . , xk) = xi for i ∈ {1, . . . , k − 1}, so

pλ(x) = exp

(
k−1∑
i=1

λixi −G(λ)

)
q0(x)

where

G(λ) = ln
∑

x1+···+xk=N

(
N

x1, . . . , xk

)
exp(λ1)

x1 · · · exp(λk−1)
xk−11xk

= ln(exp(λ1) + · · ·+ exp(λk−1) + 1)N

= N ln(exp(λ1) + · · ·+ exp(λk−1) + 1)

dG

dλi
(λ) = N

exp(λi)

exp(λ1) + · · ·+ exp(λk−1) + 1
, i ∈ {1, . . . , k − 1}.

∗ Link between natural parameters λ and “mean parameters”:

Nπi = N
exp(λi)

exp(λ1) + · · ·+ exp(λk−1) + 1
, i ∈ {1, . . . , k − 1}.

∗ Note that if we had used k feature functions, Ti(x1, . . . , xk) = xi for all i ∈ {1, . . . , k},
then they would not be affinely independent: we would have

∑k
i=1 Ti ≡ N .

∗ Try to invert ∇G: given b = (b1, . . . , bk−1) ∈ Rk−1
+ (where b1 + · · ·+ bk−1 ≤ N),

(∇G)−1(b)i = ln
bi

N − (b1 + · · ·+ bk−1)
.

This fails at the “boundary” where some bi ∈ {0, N}, but works everywhere else.

3 Information geometry

• Solution p⋆ to maxent problem

min
p∈∆

RE(p, q0)

s.t. p[T ] = b

is information projection of base measure q0 onto P(T, b) = {p ∈ ∆ : p[T ] = b}.

• In fact, for any other p ∈ P(T, b), we have

RE(p, q0) = RE(p, p⋆) + RE(p⋆, q0).

This is the Pythagorean theorem for relative entropy.
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– Proof is especially simple when p⋆ = pλ for some λ ∈ Rn:

RE(p, q0)− RE(pλ, q0) = RE(p, q0)− pλ

[
ln

pλ
q0

]
= RE(p, q0)− pλ[λ · T − lnZ(λ)]

= RE(p, q0)− p[λ · T − lnZ(λ)]

= RE(p, q0)− p

[
ln

pλ
q0

]
= p

[
ln

p

q0
− ln

pλ
q0

]
= p

[
ln

p

pλ

]
= RE(p, pλ).

– General version: For any P ⊆ ∆ closed and convex, any q0 ∈ ∆, the information
projection p⋆ := argminp∈P RE(p, q0) of q0 onto P satisfies

RE(p, q0) ≥ RE(p, p⋆) + RE(p⋆, q0), p ∈ P,

with equality if P is an affine set.

• Relative entropy of a Gibbs distribution pλ0 from another pλ:

RE(pλ0 , pλ) = pλ0

[
ln

pλ0

pλ

]
= pλ0

[
ln

exp(λ0 · T −G(λ0))

exp(λ · T −G(λ))

]
= pλ0

[
(λ0 − λ) · T −G(λ0) +G(λ)

]
= G(λ)−

(
G(λ0) + (λ− λ0) · pλ0 [T ]

)
= G(λ)−

(
G(λ0) + (λ− λ0) · ∇G(λ0)

)
.

– Difference between G and its affine approximation at λ0.

– Since G is convex, this difference is always non-negative.

– Gap is called Bregman divergence BG(λ, λ
0) generated by G.

(Requires convexity of G, and differentiability of G at the second argument of BG.)

• Can express Gibbs distribution pλ in terms of a Bregman divergence

– pλ(x) should be a function of x (or T (x)), but BG is a divergence for comparing natural
parameters λ

– There is a Bregman divergence BF : M×M◦ → R+

BF (µ, µ
0) = F (µ)−

(
F (µ0) + (µ− µ0) · ∇F (µ0)

)
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corresponding to another convex function F : M → R such that

pλ(x) = exp(−BF (T (x),∇G(λ))qF (x)

where qF is a different base measure

– So what is this function F? (And what is qF ?)

• Convex duality: convex functions come in pairs G,G∗

G∗(µ) := sup
λ∈Rn

λ · µ−G(λ)

G∗ is the convex conjugate (or Fenchel conjugate) of G

– G∗ is supremum of affine functions (indexed by λ), so G∗ is convex (even if G isn’t
convex!)

– Example: G(λ) = 1
2∥λ∥

2
2

G∗(µ) = sup
λ∈Rn

λ · µ− 1

2
∥λ∥22

= sup
λ∈Rn

−1

2
∥λ− µ∥22 +

1

2
∥µ∥22

=
1

2
∥µ∥22

where the supremum is achieved by λ = µ

– Example: G(λ) = ln(1 + exp(λ))

G∗(µ) = sup
λ∈Rn

λµ− ln(1 + exp(λ))

= µ lnµ+ (1− µ) ln(1− µ)

where the supremum is achieved by λ = ln µ
1−µ

– Example: G(λ) = ln(1 + exp(λ1) + · · ·+ exp(λn))

G∗(µ) =
n∑

i=1

µi lnµi +

(
1−

n∑
i=1

µi

)
ln

(
1−

n∑
i=1

µi

)

– In general, assuming differentiability of G,

G∗(µ) = sup
λ∈Rn

λ · µ−G(λ)

has supremum “achieved” by λ satisfying µ = ∇G(λ)

– Letting g = ∇G, for µ ∈ g(Rn), we have

G∗(µ) = g−1(µ) · µ−G(g−1(µ)).
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– What is gradient of G∗ (at µ ∈ g(Rn))? Let J denote the Jacobian map for g−1, so

∇G∗(µ) = J(µ)µ+ g−1(µ)− J(µ)∇G(g−1(µ))

= J(µ)µ+ g−1(µ)− J(µ)g(g−1(µ))

= g−1(µ).

• Let F := G∗, so ∇F = g−1,
F (g(λ)) = λ · g(λ)−G(λ),

and

pλ(x) = exp(λ · T (x)−G(λ))q0(λ)

= exp(λ · T (x)− (λ · g(λ)− F (g(λ))))q0(λ)

= exp(λ · (T (x)− g(λ)) + F (g(λ)))q0(λ)

= exp(∇F (g(λ)) · (T (x)− g(λ)) + F (g(λ)))q0(x)

= exp(−BF (T (x), g(λ))) exp(F (T (x)))q0(x)︸ ︷︷ ︸
qF (x)

.

• Log-likelihood of Gibbs distribution parameter λ given data x1, . . . , xm ∈ X :

m∑
j=1

log pλ(x
j) = −

m∑
j=1

BF (T (x
j), g(λ)) + terms not involving λ

So MLE can be interpreted as minimizing a sum of Bregman divergences over the data.

12


	Maximum entropy
	Log partition function
	Information geometry

