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Statistical modeling and maximum entropy
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Statistical modeling

(Berger, Della Pietra, Della Pietra, 1996)

Statistical modeling addresses the problem of constructing a stochastic 
model to predict the behavior of a random process. In constructing this 
model, we typically have at our disposal a sample of output from the 
process. Given this sample, which represents an incomplete state of 
knowledge about the process, the modeling problem is to parlay this 
knowledge into a representation of the process. We can then use this 
representation to make predictions about the future behavior about the 
process.
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Statistical modeling for machine translation

• What's the correct French translation of the English word "in"?
• If you don't know French, all French words might seem equally plausible

• Statistical machine translation: Use data to find the translation

• Data: you see translations produced by an expert

• Observation 1: it is always translated to a word from the set

{ dans, en, à, au cours de, pendant }

• Observation 2: 30% of the times, the translation is from the set

{ dans, en }

• Observation 3: (something about context around English word "in")

• …
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Statistical modeling for species distributions

(Phillips, Dudík, Schapire, 2004)

Where in North America do we find the Yellow-throated Vireo (YV)?
• A priori: all locations in North America seem equally likely to me

• Data: locations of YV sightings in North America

• Also have environmental measurements for all North American locations
(e.g., annual rainfall, average daily temperature, elevation)

• Goal: Construct distribution over North American locations that agrees with 
the environmental measurements of locations where YV was sighted
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General problem setup

• Finite domain 𝒳 (e.g., all locations in North America)
• Let 𝑞0 be the "default model" you would've picked before seeing any data

(e.g., 𝑞0 = uniform distribution on 𝒳), a.k.a. "base measure"

• Measure some "features" of the information source
• Get average (i.e., expected) values of 𝑛 "feature functions"

𝑇𝑖: 𝒳 → ℝ

• Example:
𝑇1 𝑥 = annual rainfall (in inches) at 𝑥
𝑇2 𝑥 =  𝕀 𝑥 is in the forest

• Let 𝑏𝑖  be the average value of 𝑇𝑖  in the information source

• Default model 𝑞0 may not be consistent with these measurements!

• So what model should you choose instead?
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Maximum entropy (maxent) principle

Maxent principle: Choose model as close to default model as possible 

while being consistent with measurements

min
𝑝∈Δ

RE 𝑝, 𝑞0

s.t. 𝑝 𝑇𝑖 = 𝑏𝑖  ∀𝑖 = 1, … , 𝑛

• Recall: RE 𝑝, 𝑞 = σ𝑥∈𝒳 𝑝 𝑥 log
𝑝(𝑥)

𝑞(𝑥)
= 𝑝 log

𝑝

𝑞

• If 𝑞0 is uniform, then RE 𝑝, 𝑞0 = −𝐻 𝑝 + log |𝒳| (hence "maxent")

• Objective function is strictly convex, and constraints are linear!
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New notation:

𝑝 𝑓 ≔ 

𝑥∈𝒳

𝑝 𝑥 𝑓(𝑥)



Form of maxent solutions

Theorem: Whenever the maxent problem is feasible (and excluding a 

measure-zero set of 𝑏1, … , 𝑏𝑛 ), the solution has the form

𝑝𝜆 𝑥 =
1

𝑍 𝜆
exp 

𝑖=1

𝑛

𝜆𝑖𝑇𝑖 𝑥 𝑞0 𝑥

for some "parameter vector" 𝜆 = 𝜆1, … , 𝜆𝑛 , where

𝑍 𝜆 = 

𝑥∈𝒳

exp 

𝑖=1

𝑛

𝜆𝑖𝑇𝑖 𝑥 𝑞0 𝑥

• Distributions of this form are called Gibbs or Boltzmann distributions

• Also related to exponential families (where 𝑞0 need not be probability dist.)
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Gibbs distributions

• The Gibbs distributions (corresponding to 𝑇1, … , 𝑇𝑛 and 𝑞0) form a 

parametric family of distributions 𝑝𝜆: 𝜆 ∈ ℝ𝑛

• Each 𝑝𝜆 is an "exponential tilting" of the base measure 𝑞0

• Suppose 𝑇2 𝑥 =  𝕀 𝑥 is in the forest  and 𝜆2 = −2.1

• Then a location in the forest is exp −2.1 ≈ 0.12 as likely (according to 𝑝𝜆) as 

a location not in the forest (all else being equal):

𝑝𝜆 𝑥

𝑝𝜆 𝑦
=

exp 𝜆1𝑇1 𝑥 + 𝜆2𝑇2 𝑥 + ⋯

exp 𝜆1𝑇1 𝑦 + 𝜆2𝑇2 𝑦 + ⋯
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Geometric interpretation

• Notation:
• 𝑇 𝑥 = (𝑇1 𝑥 , … , 𝑇𝑛 𝑥 )

• 𝜆 ⋅ 𝑇 𝑥 = 𝜆1𝑇1 𝑥 + ⋯ + 𝜆𝑛𝑇𝑛 𝑥

• 𝑏 = 𝑏1, … , 𝑏𝑛

• Feasible set: 𝒫 = 𝑝 ∈ Δ ∶ 𝑝 𝑇 = 𝑏 , an affine set

• Maxent problem: Find 𝑝 ∈ 𝒫 that minimizes RE(𝑝, 𝑞0)
• Like "projection" of 𝑞0 onto 𝒫, except notion of "distance" is relative entropy

• Gibbs distributions (based on 𝑇, 𝑞0): 𝒬 = 𝑝𝜆 ∶ 𝜆 ∈ ℝ𝑛

• It turns out whenever 𝒫 ≠ ∅, then maxent solution is the unique 
distribution in both 𝒫 and (the closure of) 𝒬
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𝑝𝜆⋆
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Deriving the form of maxent solutions
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Method of Lagrange multipliers

• Maxent: Find 𝑝 ∈ 𝒫 = 𝑝 ∈ Δ ∶ 𝑝 𝑇 = 𝑏  that minimizes RE(𝑝, 𝑞0)

• To each constraint 𝑝 𝑇𝑖 = 𝑏𝑖, associate a Lagrange multiplier 𝜆𝑖

• Lagrangian function: for 𝜆 = (𝜆1, … , 𝜆𝑛)

ℒ 𝑝, 𝜆 = RE 𝑝, 𝑞0 − 

𝑖=1

𝑛

𝜆𝑖 𝑝 𝑇𝑖 − 𝑏𝑖

= RE 𝑝, 𝑞0 − 𝑝 𝜆 ⋅ 𝑇 + 𝜆 ⋅ 𝑏

• Maxent problem is

min
𝑝∈Δ

sup
𝜆∈ℝ𝑛

ℒ(𝑝, 𝜆)
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Convex in 𝑝

Affine in 𝜆



Convex duality

Maxent problem satisfies conditions for a minmax theorem:
min
𝑝∈Δ

sup
𝜆∈ℝ𝑛

ℒ(𝑝, 𝜆) = sup
𝜆∈ℝ𝑛

min
𝑝∈Δ

ℒ(𝑝, 𝜆)

Question: For fixed 𝜆, what 𝑝 ∈ Δ minimizes ℒ(𝑝, 𝜆)?

Donsker-Varadhan inequality: for any 𝑓: 𝒳 → ℝ and all 𝑝, 𝑞 ∈ Δ
RE 𝑝, 𝑞 ≥ 𝑝 𝑓 − log 𝑞 exp 𝑓

• So ℒ 𝑝, 𝜆 ≥ − log 𝑞0 exp 𝜆 ⋅ 𝑇 + 𝜆 ⋅ 𝑏

• Furthermore, ℒ 𝑝𝜆 , 𝜆 = − log 𝑞0 exp 𝜆 ⋅ 𝑇 + 𝜆 ⋅ 𝑏
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Dual objective function
𝜆 ↦ min

𝑝∈Δ
ℒ 𝑝, 𝜆

If 𝜆⋆ maximizes dual objective, then 𝑝𝜆⋆  is maxent solution 

Dual objective function



Connection to maximum likelihood estimation

• Suppose 𝑏 is empirical average of 𝑇 on data set 𝑥1, … , 𝑥𝑚 ∈ 𝒳

𝑏 =
1

𝑚


𝑗=1

𝑚

𝑇 𝑥𝑗

• Consider family of Gibbs distributions 𝒬; how to estimate parameter 𝜆?

• Log-likelihood of 𝑝𝜆 (treating data set as i.i.d. sample) is

log ෑ

𝑗=1

𝑚
𝑝𝜆 𝑥𝑗

𝑞0 𝑥𝑗
= ⋯ = 𝑚 − ln 𝑞0 exp 𝜆 ⋅ 𝑇 + 𝜆 ⋅ 𝑏

• Maximum likelihood estimation for Gibbs distributions = maximum entropy
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Dual objective function!



Recap (so far)

The following are equivalent (for essentially all 𝑏):

• Distribution 𝑝 that minimizes RE 𝑝, 𝑞0  subject to 𝑝 𝑇 = 𝑏

• Gibbs distribution

𝑝𝜆 𝑥 =
1

𝑍 𝜆
exp 𝜆 ⋅ 𝑇 𝑥 𝑞0(𝑥)

satisfying 𝑝𝜆 𝑇 = 𝑏

• Maximum likelihood Gibbs distribution 𝑝𝜆 (when 𝑏 =
1

𝑚
σ𝑗=1

𝑚 𝑇 𝑥𝑗 ) 
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Log partition function
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Log partition function

• Normalization quantity used to ensure 𝑝𝜆 is a probability distribution

𝑍 𝜆 = 

𝑥∈𝒳

exp 𝜆 ⋅ 𝑇 (𝑥) 𝑞0 𝑥

is also called partition function

• Can also write as 𝑍 𝜆 = 𝑞0 exp 𝜆 ⋅ 𝑇

• Can also interpret as moment generating function for 𝑇(𝑋) where 𝑋 ∼ 𝑞0

• Logarithm of partition function is called ______________
𝐺 𝜆 = log 𝑍(𝜆) = log 𝑞0 exp 𝜆 ⋅ 𝑇

• Can write

𝑝𝜆 𝑥 = exp 𝜆 ⋅ 𝑇 𝑥 − 𝐺 𝜆 𝑞0(𝑥)
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Properties of log partition function 𝐺 𝜆

• Convex!
• Proof via Hölder's inequality

• Strictly convex iff 𝑇1, … , 𝑇𝑛 are affinely independent (on 𝑞0's support)
• Affine independence: 𝜆1𝑇1 + ⋯ + 𝜆𝑛𝑇𝑛 is constant  iff  𝜆1 = ⋯ = 𝜆𝑛 = 0
• Proof via equality case of Hölder's inequality

• Gradient of 𝐺(𝜆) w.r.t. 𝜆:

∇𝐺 𝜆 =
1

𝑍(𝜆)


𝑥∈𝒳

𝑇 𝑥 exp 𝜆 ⋅ 𝑇 𝑥 𝑞0(𝑥)

= 

𝑥∈𝒳

𝑇 𝑥 𝑝𝜆(𝑥) = 𝑝𝜆 𝑇

• Note: If 𝐺 is strictly convex, then ∇𝐺 is 1-to-1!
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The link between parameter spaces

Theorem: ∇𝐺 is 1-to-1  and  ∇𝐺 ℝ𝑛 = ℳ∘ ≔ 𝑝 𝑇 ∶ 𝑝 ∈ Δ ∘
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ℝ𝑛

Natural parameter space

𝜆

ℳ∘

Mean parameter space

𝑝[𝑇]

∇𝐺

∇𝐺 −1



Exclusion of boundary points

In previous theorem, boundary points of ℳ are excluded

• Example: 𝒳 = {0,1}, 𝑇 𝑥 = 𝑥, 𝑞0 𝑥 =
1

2

• Suppose 𝑏 = 1, which is a valid "mean parameter":

𝑝[𝑇] = 𝑏

for 𝑝 0 = 0, 𝑝 1 = 1

• Cannot realize 𝑝𝜆 𝑇 = 1 by a Gibbs distribution since

𝑝𝜆 0 > 0

for every 𝜆 ∈ ℝ 
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Information projection
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Information projection

• Maxent solution also called information projection of 𝑞0 onto 𝒫
𝑝⋆ = argmin

𝑝∈𝒫
RE 𝑝, 𝑞0

• In fact, for any other 𝑝 ∈ 𝒫, we have a "Pythagorean identity"
RE 𝑝, 𝑞0 = RE 𝑝, 𝑝⋆ + RE 𝑝⋆, 𝑞0
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𝒫

𝒬

𝑝⋆

𝑞0

𝑝



Proof of Pythagorean identity

For simplicity, assume 𝑝⋆ = 𝑝𝜆 ∈ 𝒬 (a Gibbs distribution)

RE 𝑝, 𝑞0 − RE 𝑝𝜆, 𝑞0 = RE 𝑝, 𝑞0 − 𝑝𝜆 log
𝑝𝜆

𝑞0

= RE 𝑝, 𝑞0 − 𝑝𝜆 𝜆 ⋅ 𝑇 − 𝐺 𝜆

= RE 𝑝, 𝑞0 − 𝑝 𝜆 ⋅ 𝑇 − 𝐺 𝜆

= RE 𝑝, 𝑞0 − 𝑝 log
𝑝𝜆

𝑞0

= 𝑝 log
𝑝

𝑞0
− log

𝑝𝜆

𝑞0

= 𝑝 log
𝑝

𝑝𝜆
= RE 𝑝, 𝑝𝜆
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Iterative projection algorithm

• Start with 𝑝0 = 𝑞0

• For 𝑡 = 1,2, …:
• Pick some 𝑖 ∈ {1, … , 𝑛}, and let 𝒫𝑖 = 𝑝 ∈ Δ ∶ 𝑝 𝑇𝑖 = 𝑏𝑖

• Let 𝑝𝑡 = argmin
𝑝∈𝒫𝑖

RE 𝑝, 𝑝𝑡−1

• By Pythagorean identity,
RE 𝑝⋆, 𝑝𝑡 = RE 𝑝⋆, 𝑝𝑡−1 − RE 𝑝𝑡 , 𝑝𝑡−1

24

𝒫𝑖

𝒬

𝑝𝑡

𝑝𝑡−1

𝑝⋆



Regularized maxent

25



Relaxing the expectation constraints

(Dudík, Phillips, Schapire, 2004)

• Suppose 𝑏 =
1

𝑚
σ𝑗=1

𝑚 𝑇(𝑥𝑗) for data set 𝑥1, … , 𝑥𝑚 ∈ 𝒳

• Even if 𝑥1, … , 𝑥𝑚  is i.i.d. sample from true information source 𝑝true,

we typically will not have 𝑏 = 𝑝true 𝑇 , so doesn't make sense to require 𝑝 𝑇 = 𝑏

• Relaxed maxent problem: Find 𝑝 ∈ Δ that minimizes RE 𝑝, 𝑞0  while satisfying

𝑝 𝑇𝑖 − 𝑏𝑖 ≤ 𝛽𝑖  ∀𝑖 = 1, … , 𝑛

• Regard 𝛽𝑖 ≥ 0 as "tuning parameters", based on deviation bounds for sample averages

• Dual objective (again, derived using method of Lagrange multipliers):

sup
𝜆∈ℝ𝑛

− log 𝑞0 exp(𝜆 ⋅ 𝑇) + 𝜆 ⋅ 𝑏 − 

𝑖=1

𝑛

𝛽𝑗 𝜆𝑗
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Original dual objective Regularizer



Performance guarantee

• Pick any 𝛿 ∈ (0,1), and assume:

• 𝑇𝑖: 𝒳 → [0,1] and 𝛽𝑖 = 𝛽 ≥ log 2𝑛/𝛿 /(2𝑚) for all 𝑖 = 1, … , 𝑛

• 𝑥1, … , 𝑥𝑚 is i.i.d. sample from 𝑝true

• 𝑏𝑖 =
1

𝑚
σ𝑗=1

𝑚 𝑇𝑖 𝑥𝑗  for all 𝑖 = 1, … , 𝑛

• With probability at least 1 − 𝛿, solution to relaxed maxent problem 
𝑝𝜆⋆  satisfies

𝑝true log 𝑝𝜆⋆ ≥ sup
𝜆∈ℝ𝑛

𝑝true log 𝑝𝜆 − 2 𝜆 1𝛽
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