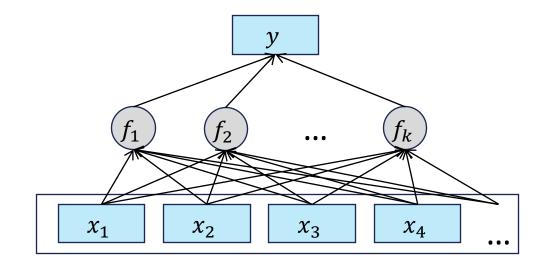
Learning theory for neural computation models

Daniel Hsu

COMS 6998-7 Spring 2025

What is a neural net?


- Straight-line program (a.k.a. circuit)
 - Each line of program assigns a value to a new variable
 - Value can be a constant
 - Or, value can be result of an operation applied to other variables
 - Other variables are either previously-defined or "free variables" (inputs to program)
 - Some variables designated as outputs
- Neural net: operations are various differentiable functions (in pytorch)
- Arithmetic circuit: operations are + and ×
 - Computes polynomials
- " $\mathcal{A}_{k,n}$ w/o jumps" from Goldberg & Jerrum: operations are +,-,×,÷
 - Computes rational functions

What is a two-layer neural networks?

• Two-layer neural net is a linear combination of hidden units $\frac{1}{\nu}$

$$y = \sum_{i=1}^{\kappa} w_i f_i(x)$$

• Each "hidden unit" is some function of the input $x = (x_1, ..., x_N)$

Statistical theory for learning

- Training data, test data: iid samples from same distribution
- <u>Learning</u>: pick hypothesis from hypotheses class using training data
- <u>Successful generalization</u>: good performance on test data
- <u>Why is generalization possible?</u> Many plausible reasons
 - Learning theory 101 (COMS 4252, COMS 4773) reason: uniform convergence
 - But many other plausible reasons are known!
 - E.g., different learning criteria, distribution-specific learning, leveraging dependence structures, alternative models of supervision/teaching
- Many tools for understanding uniform convergence
 - VC dimension
 - Metric entropy (i.e., log of covering number)
 - .

Sparsity and norm bounds

- Linear classifiers $f_{w,b}$: $\{0,1\}^n \to \{-1,1\}$ $f_{w,b}(x) = \operatorname{sign}(w \cdot x - b)$
 - <u>Monotone disjunction over variables x_i for $i \in S$ </u>: Represent as linear classifier with b = 1/2, $w_i = 1$ for $i \in S$, $w_i = 0$ for $i \notin S$
 - L^1 norm of *w* is $||w||_1 = |S|$
 - Winnow mistake bound:

 $O(b\|w\|_1\log n)$

• Sample complexity for learning:

$$O\left(\frac{b\|w\|_1\log n}{\epsilon}\right)$$

• Can also derive uniform convergence bounds of this form using Rademacher complexity, covering numbers, etc.