Word embedding models

Daniel Hsu COMS 6998-7 Spring 2025

Latent semantic indexing

Latent semantic indexing

(Deerwester, Dumais, Furnas, Landauer, Harshman, 1990)

• <u>Term-document matrix</u> $A \in \{0,1\}^{V \times N}$ (simplified) $A_{i,i} = 1\{\text{term } i \text{ appears in document } j\}$

		document 1	document 2	document 3	•••
terms	aardvark	1	1	1	
	abacus	0	0	1	
	abalone	0	1	0	

documents

- Latent Semantic Indexing (LSI): low-rank SVD factorization $A \approx BC$
 - Terms represented by rows of B, documents represented by columns of C

Problems LSI is intended to address

- Old ideas:
 - document = bag-of-words
 - word = meaning is derived from what documents use it
- Problems:
 - <u>Synonymy</u>: some documents about "cars" only use "automobile"
 - <u>Polysemy</u>: documents about both water sports and internet use "surfing"

Probabilistic analysis of LSI

(Papadimitriou, Raghavan, Tamaki, Vempala, 2000)

- Modeling assumptions for analysis:
 - documents are clustered by topic
 (k = number of topics)
 - terms used by topic t documents are **disjoint** from terms used by topic t' documents

• Eigendecomposition of $A^{\top}A$ is determined by eigendecompositions of the blocks M^1, M^2, \dots, M^k

Using spectral graph theory

- <u>Within cluster t</u>: if documents are sufficiently "well-connected", then $\lambda_1(M^t) \gg \lambda_2(M^t)$
 - Top eigenvector: positive constant on documents in cluster t
 - Additional assumptions ensure well-connectedness is likely!

• <u>Conclusion</u>: top k eigenvectors of $A^{\top}A$ are \approx characteristic vectors for the k clusters

Speed-up using random projection

- Document representation obtained by projecting to k-dimensional subspace of \mathbb{R}^{V} (so document is represented by k coefficients)
- <u>Suggested speed-up</u>:
 - Step 1: project documents to random ℓ -dimensional subspace of \mathbb{R}^V :

$$R^{\mathsf{T}}A \in \mathbb{R}^{\ell \times N}$$

- Step 2: apply LSI to $R^{T}A$
- <u>Main result</u>: If $\ell \gg k + \log N$, then best rank-2k approximation to $RR^{T}A$ is about as good as best rank-k approximation to A
- <u>Modern version of this</u>: "sketch-and-solve methods" from randomized numerical linear algebra

John Rupert Firth: "You shall know a word by the company it keeps!"

T = topic of a length-L document (hidden variable) $W_1, W_2, ..., W_L$ = the L words of the document

Assume: $W_1, W_2, ..., W_L$ conditionally independent given T

$$P(w_1, w_2) = \sum_{t=1}^{k} P(w_1|t)P(t)P(w_2|t)$$

= $(UDU^{\mathsf{T}})_{w_1, w_2}$

where

$$U_{w,t} = P(w|t), \qquad D_{t,t} = P(t)$$

Super-simplified analysis

- Each document has L = 2 words
 - A is term-document matrix based on first word
 - \tilde{A} is term-document matrix based on second word
- Look at $V \times V$ matrix $A\tilde{A}^{\top}$

 $\mathbb{E}\left[A\tilde{A}^{\top}\right] \propto UDU^{\top}$

Skip-gram model