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Auto-associative memory

• Purpose of auto-associative memory 𝑀 is to remember "patterns"

• Say pattern 𝑥 is remembered by 𝑀 if, upon prompting 𝑀 with

𝑥 + 𝛿

for "small" corruption 𝛿, the memory 𝑀 returns 𝑥:

𝑀 𝑥 + 𝛿 = 𝑥

• Question: How many patterns can be remembered?
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Hopfield network

• Regard pattern as a particular setting of 𝑑 neurons
𝑥 ∈ −1,1 𝑑

• Hopfield network: "biologically plausible" associative memory where 
𝑀(𝑥) is limiting state of discrete-time dynamics

𝑥 = 𝑥 1 ՜
𝑇

𝑥 2 ՜
𝑇

⋯ ՜ 𝑥 ∞
with update rule 𝑇: −1,1 𝑑 ՜ −1,1 𝑑  defined by a neural net

𝑇 𝑥 = sign 𝑊𝑥

• Theorem: Can remember ~𝑑/ log 𝑑 random patterns with 𝑑 neurons

• Idea: Dynamics = "thresholded" gradient iteration on 𝑥 ↦ −
1

2
𝑥⊤𝑊𝑥
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Related problem (but more relevant)

• Associative memory 𝑀: mechanism for remembering associations

𝑥, 𝑦 ∈ −1,1 𝑑 × −1,1 𝑑

(For simplicity, assume input and output dimensions are the same)

• Say association (𝑥, 𝑦) is remembered if, upon prompting 𝑀 with

𝑥 + 𝛿

for "small" corruption 𝛿, the memory 𝑀 returns 𝑦

• In fact, let's just consider 𝛿 = 0

• Are there any "biologically plausible" solutions?
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Intuition from elementary linear algebra

• Neural network starts with a linear map 𝑥 ↦ 𝑊𝑥 on ℝ𝑑

• If keys are linearly independent, and 𝑊 has full-rank, then keys map 

to linearly independent "values"

• If keys are right singular vectors of 𝑊, and values are left singular 

vectors of 𝑊 (scaled by corresponding singular value), then 𝑊 

correctly maps each key to desired value!
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One-step Hopfield network

• Assume "keys" 𝑥 1 , … , 𝑥 𝑛  are drawn independently and u.a.r. from 

−1,1 𝑑, but allow "values" 𝑦 1 , … , 𝑦 𝑛  to be arbitrary

• One-step Hopfield network:

𝑀 𝑥 = sign 𝑊𝑥 , 𝑊 ≔ 

𝑖=1

𝑛

𝑦 𝑖 𝑥 𝑖 ⊤

• Question: How large can 𝑛 be?

• Answer: 𝑛 ~ 𝑑/ log 𝑑

6



Analysis of one-step Hopfield network

1. One-step Hopfield network:

𝑀 𝑥 = sign 

𝑖=1

𝑛

𝑥, 𝑥 𝑖 𝑦 𝑖

2. Inside sign for 𝑀 𝑥 1
𝑗
:

𝑑𝑦𝑗
1

+ 

𝑖=2

𝑛

𝑥 1 , 𝑥 𝑖 𝑦𝑗
𝑖

3. We have 𝑀 𝑥 1
𝑗

= 𝑦𝑗
1

 iff

− 

𝑖=2

𝑛

𝑥 1 , 𝑥 𝑖 𝑦𝑗
1

𝑦𝑗
𝑖

< 𝑑

4. LHS is sum of 𝑛 − 1 𝑑 
independent Rademacher r.v.'s

5. Probability that LHS is < 𝑑 is

≥ 1 − exp −
𝑑2

2 𝑛 − 1 𝑑

6. Apply union bound
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One-step modern Hopfield network

• Krotov and Hopfield (2021) suggest that the following one-step 
mechanism (proposed and analyzed by Demircigil et al, 2017) is also 
"biologically plausible":

𝑀 𝑥 = sign 

𝑖=1

𝑛

exp 𝑥, 𝑥 𝑖 𝑦 𝑖

• Again, let's assume "keys" 𝑥 1 , … , 𝑥 𝑛  are drawn independently and 

u.a.r. from −1,1 𝑑, but allow "values" 𝑦 1 , … , 𝑦 𝑛  to be arbitrary

• Question: How large can 𝑛 be?

• Answer: 𝑛 ~ exp Ω(𝑑)

8



Analysis of one-step modern Hopfield network

1. With probability at least

1 −
𝑛

2
𝑒−𝜖2𝑑,

for all 𝑖 ≠ 𝑘,

𝑥 𝑖 , 𝑥 𝑘 < 𝜖𝑑

2. Inside sign for 𝑀 𝑥 1
𝑗
:



𝑖=1

𝑛

𝑒 𝑥 1 ,𝑥 𝑖
𝑦𝑗

𝑖

3. Let 𝛼𝑖 ≔ 𝑒 𝑥 1 ,𝑥 𝑖
/ σ𝑘=1

𝑛 𝑒 𝑥 1 ,𝑥 𝑘

4. We have 𝑀 𝑥 1
𝑗

= 𝑦𝑗
1  iff

𝛼1 > − 

𝑖=2

𝑛

𝛼𝑖𝑦𝑗
1 𝑦𝑗

𝑖

5. RHS is at most 1 − 𝛼1

6. So suffices to have 𝛼1 > 1/2, i.e.,

1

1 + σ𝑘=2
𝑛 𝑒 𝑥 1 ,𝑥 𝑘 −𝑑

> 1/2
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Connection to transformers

• One-step modern Hopfield network, again:

𝑀 𝑥 = sign 

𝑖=1

𝑛
𝑒 𝑥,𝑥 𝑖

σ𝑗=1
𝑛 𝑒 𝑥,𝑥 𝑗

𝑦 𝑖

• Inside the sign is the attention mechanism!

• Query: 𝑥

• Keys: 𝑥 1 , … , 𝑥 𝑛

• Values: 𝑦 1 , … , 𝑦 𝑛

• Correct operation for 𝑛 key/value pairs with dimension 𝑑 = Θ log 𝑛
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