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Consistent learners and Helpful Directors
[Goldman, Rivest, & Shapire 1993]

Definition (Consistent learner)

A learner is consistent when for all t the is some f ∈ C such that

∀i < t, f (xi) = f ∗(xi) and f (xt) = yt

In the online model, after inputs x1, x2, . . . , xi :

No consistent learner will make a mistake at t > i
⇔

Exactly one consistent hypothesis is consistent with the x<t
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Teaching dimension
[Goldman & Kearns 1995]

Definition (Teaching Sequence)

Inputs x1, . . . , xm are a teaching sequence for f when there is no other
function g ∈ C such that g(xi) = f (xi) for all i ≤ m.

Definition (Teaching Dimension)

The class C has teaching dimension of t when t is the smallest integer
such that each f ∈ C has a teaching sequence of length at most t.
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Trivial Teaching Sequence

Theorem (Teaching Upper Bound)

Any finite class has a teaching dimension at most

t ≤ ∣C∣ − 1.

Enumerate C = f , f1, . . . , f∣C∣−1.

To teach f , choose xi such that f (xi) ≠ fi(xi).
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Counting Teaching Sequences

Theorem (Teaching Lower Bound)

Any finite class C over X has a teaching dimension at least

t ≤ log ∣C∣ − 1

log ∣X ∣ .

Each f uniquely identified by some x1, . . . , xt with f (x1), . . . , f (xt).

∣C∣ ≤ 2t(∣X ∣
t
) ≤ 2∣X ∣t .
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Summary of Generic Bounds

Theorem (Teaching Bounds)

Any finite class C over X has a teaching dimension t such that

∣C∣ − 1 ≥ t ≥ log ∣C∣ − 1

log ∣X ∣ .
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Least Teachable Class

Example (Least Teachable Class)

Consider the following concept class over {1, 2, . . . , n}:

C = {X ∖ {1}, X ∖ {2}, . . . , X ∖ {n}} ∪ {X}.

To teach X ∖ {i} use teaching sequence i .

To teach X need sequence 1, 2, . . . , n.

So teaching dimension is n = ∣C∣ − 1.
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Rectangles in the Plane

Example (Rectangles in Z2)

Two points x , y ∈ Z2 define a rectangle

Rx ,y(z) = 1⇔ z1 ∈ [x1, y1] and z2 ∈ [x2, y2].

Teaching sequence

Positive examples: x and y
Negative examples: x − (1,0), x − (0,1), y + (1,0), y + (0,1)

Teaching dimension 6
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Higher Dimensions

Example (Boxes in Zd)

Two points x , y ∈ Zd define a box

Rx ,y(z) = 1⇔∀i ∈ [d] zi ∈ [xi , yi ].

Teaching sequence

Positive examples: x and y
Negative examples for each i ∈ [d]: x − e i , y + e i

Teaching dimension 2(1 + d)
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Unions of boxes

Example (Union of Boxes)

Fix k . For Rx1,y1
, . . . , Rxk ,yk

disjoint each in Rd let

U{x i ,y i}(z) =
k

⋃
i=1

Rx i ,y i
.

Use the union of the teaching sequences for each box
(with special case when boxes are adjacent)

Teaching dimension 2k(1 + d).
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Union of boxes
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Union of boxes (k = 2)
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Union of boxes (k = ?)
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Union of boxes (k = 2)
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VC Dimension

Definition (Shattered set)

The class C shatters a set S ⊂ X when

{S ∩ c ∶ c ∈ C} = P(S).

Definition (VC dimension)

The integer d is the Vapnik-Chervonenkis dimension of a class C if it is the
minimum d such that C shatters no sets of d + 1 points.
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Hard to teach, easy to learn

Example (Least Teachable Class)

C = {X ∖ {1}, X ∖ {2}, . . . , X ∖ {n}} ∪ {X}.

Teaching Dimension n

VC Dimension 2 as no hypothesis induces (1,0,0) on three points
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Infinite Teaching Dimension
[Moran, Shpilka, Wigderson, Yehudayoff 2015]

Example (Dedekind cuts)

Consider the class of sets of rational numbers less than some real

C = {(−∞, r) ∩Q ∶ r ∈ R}.

VC Dimension 2 as for q1 < q2 < q3 cannot induce (1,0,1)

Teaching Dimension ∞
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Easy to teach, hard to learn

Set of n easy to teach functions:

F = {{x} ∶ x ∈ [n]}

Set of 2m hard to learn functions:

G = 2[m]

Choose 2m = n and construct class over [n] ⊍ [m]

Example (Hybrid Concept)

Enumerate F = f1, . . . , fn and G = g1, . . . , gm above. Define class

C = {hi = fi ⊍ gi ∶ i ∈ [n]}.
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Easy to teach, hard to learn

x1 x2 x3 . . . xn−1 xn y1 . . . ym−1 ym
h1 + − − . . . − − − . . . − −
h2 − + − . . . − − − . . . − +
h3 − − + . . . − − − . . . + −
⋮
hn−1 − − − . . . + − + . . . + −
hn − − − . . . − + + . . . + +

Still easy to teach: hi identified by positive example xi

Still hard to learn: y1, . . . , ym is shattered

Teaching Dimension 1 but VC Dimension log n
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Bounding Teaching by VC Dimension

Theorem (Lower bound)

t ≥ d − 1

log ∣X ∣ .

Follows directly from previous:

t ≥ log ∣C∣ − 1

log ∣X ∣ and log ∣C∣ ≥ d .
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Bounding Teaching by VC Dimension

Theorem (Upper bound)

t ≤ ∣C∣ − 2d + d .

Learning sequence:

Shattered set of size d

One example to exclude each remaining hypothesis

First step removes 2d − 1 hypotheses with d examples

Second step removes ∣C∣ − (2d − 1) − 1 hypotheses, 1 example each
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Summary of VC Dimension Bounds

Theorem (Teaching versus Learning Bounds)

If C has teaching dimension t and VC dimension d then

∣C∣ − 2d + d ≥ t ≥ d − 1

log ∣X ∣
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Removing one function

Theorem (Concentration of Teaching Dimension)

If the teaching dimension of C is t ≥ ∣C∣ − k, then for some f ∈ C the class
C ∖ {f } has teaching dimension at most k.

Fix f requiring a teaching sequence x1, x2, . . . , xt of length t.

To prove: fix some f1 in the class C ∖ {f } and wlog take f1(x1) ≠ f (x).

Idea: partition C ∖ {f } into

S a large set that disagrees with f1 on x1

T a small set

To teach f1, use sequence xi plus one x to distinguish from each g ∈ T .
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Concentration Theorem (proof)

Construct S and T inductively.
Let C = C ∖ ({f } ∪ S ∪T ) the remaining concepts.
Define D(x) the set of g ∈ C such that g(x) ≠ f (x).

First set S = {f1} and T = D(x1) ∖ {f1}.

Then for i = 2, . . . , t:

Pick an arbitrary fi ∈ D(xi).

Add fi to S .

Add any remaining D(xi) ∖ {fi} to T .
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Concentration Theorem (proof)

First set S = {f1} and T = D(x1) ∖ {f1}.

Then for i = 2, . . . , t:

Pick an arbitrary fi ∈ D(xi).

Add fi to S .

Add any remaining D(xi) ∖ {fi} to T .

Claim 1: fi ∈ S disagrees with f1 on x1

Assume fi(x1) = f1(x1).

fi(x1) ≠ f (x1) by construction.

But then in first step fi ∈ D(x1) so fi ∈ T
T and S are disjoint, so fi /∈ S .
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Concentration Theorem (proof)

First set S = {f1} and T = D(x1) ∖ {f1}.

Then for i = 2, . . . , t:

Pick an arbitrary fi ∈ D(xi).

Add fi to S .

Add any remaining D(xi) ∖ {fi} to T .

Claim 2: ∣T ∣ = k − 1:

D(xi) non-empty at each step, otherwise {xj} ∖ xi a learning sequence

One fi gets added to S each round, have ∣S ∣ = t

C ∖ {f } = S ∪T implies ∣T ∣ = ∣C∣ − 1 − ∣S ∣
Assumed t = ∣C∣ − k so ∣T ∣ = k − 1.
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Recursive Teaching Dimension
[Zilles, Lange, Holte, Zinkevich 2011]

Let MinTD(C) be the set of f ∈ C with the shortest teaching sequences.

Construct levels of C as follows:

Ci = MinTD
⎛
⎝
C ∖ ⋃

j<i
Cj
⎞
⎠
.

Then we can define a robust notion of teaching dimension.

Definition (Recursive Teaching Dimension)

The recursive teaching dimension of C is the maximum of the teaching
dimensions of the levels Ci constructed above.
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