Teaching Dimension COMS 6998-4 Learning Theory

Benjamin Kuykendall

brk2117@columbia.edu

1 November 2017

# Outline

#### 1 Introduction

- Learning model
- Generic bounds

### 2 Examples

- Least Teachable Class
- Axis Aligned Boxes

### 3 Teaching versus Learning

- Disparities
- Bounds

### 4 Recursive Teaching

- Almost maximal Classes
- Recursive Teaching Dimension

# Outline

### 1 Introduction

- Learning model
- Generic bounds

### 2 Examples

- Least Teachable Class
- Axis Aligned Boxes

# **3** Teaching versus Learning

- Disparities
- Bounds

### 4 Recursive Teaching

- Almost maximal Classes
- Recursive Teaching Dimension

# Consistent learners and Helpful Directors [Goldman, Rivest, & Shapire 1993]

### Definition (Consistent learner)

A learner is *consistent* when for all t the is some  $f \in C$  such that

 $\forall i < t, f(x_i) = f^*(x_i)$  and  $f(x_t) = y_t$ 

### Definition (Consistent learner)

A learner is *consistent* when for all t the is some  $f \in C$  such that

 $\forall i < t, f(x_i) = f^*(x_i)$  and  $f(x_t) = y_t$ 

In the online model, after inputs  $x_1, x_2, \ldots, x_i$ :

No consistent learner will make a mistake at t > i  $\Leftrightarrow$ Exactly one consistent hypothesis is consistent with the  $x_{<t}$ 

### Definition (Teaching Sequence)

Inputs  $x_1, \ldots, x_m$  are a *teaching sequence* for f when there is no other function  $g \in C$  such that  $g(x_i) = f(x_i)$  for all  $i \leq m$ .

### Definition (Teaching Sequence)

Inputs  $x_1, \ldots, x_m$  are a *teaching sequence* for f when there is no other function  $g \in C$  such that  $g(x_i) = f(x_i)$  for all  $i \leq m$ .

### Definition (Teaching Dimension)

The class C has *teaching dimension* of t when t is the smallest integer such that each  $f \in C$  has a teaching sequence of length at most t.

# Outline

### 1 Introduction

- Learning model
- Generic bounds

### 2 Examples

- Least Teachable Class
- Axis Aligned Boxes

# **3** Teaching versus Learning

- Disparities
- Bounds

### 4 Recursive Teaching

- Almost maximal Classes
- Recursive Teaching Dimension

# Theorem (Teaching Upper Bound)

Any finite class has a teaching dimension at most

 $t \leq |\mathcal{C}| - 1.$ 

Enumerate  $C = f, f_1, \ldots, f_{|C|-1}$ .

To teach f, choose  $x_i$  such that  $f(x_i) \neq f_i(x_i)$ .

# Theorem (Teaching Lower Bound)

Any finite class C over X has a teaching dimension at least

$$t \leq \frac{\log |\mathcal{C}| - 1}{\log |\mathcal{X}|}.$$

Each f uniquely identified by some  $x_1, \ldots, x_t$  with  $f(x_1), \ldots, f(x_t)$ .

$$|\mathcal{C}| \leq 2^t \binom{|X|}{t} \leq 2|X|^t.$$

# Theorem (Teaching Bounds)

Any finite class C over X has a teaching dimension t such that

$$|\mathcal{C}| - 1 \ge t \ge \frac{\log |\mathcal{C}| - 1}{\log |X|}$$

э

# Outline

#### 1 Introduction

- Learning model
- Generic bounds

# 2 Examples

### Least Teachable Class

Axis Aligned Boxes

# 3 Teaching versus Learning

- Disparities
- Bounds

### 4 Recursive Teaching

- Almost maximal Classes
- Recursive Teaching Dimension

### Example (Least Teachable Class)

Consider the following concept class over  $\{1, 2, \ldots, n\}$ :

$$\mathcal{C} = \{X \smallsetminus \{1\}, X \smallsetminus \{2\}, \ldots, X \smallsetminus \{n\}\} \cup \{X\}.$$

To teach  $X \setminus \{i\}$  use teaching sequence *i*.

To teach X need sequence 1, 2,  $\ldots$ , n.

So teaching dimension is  $n = |\mathcal{C}| - 1$ .

# Outline

#### 1 Introduction

- Learning model
- Generic bounds

# 2 Examples

- Least Teachable Class
- Axis Aligned Boxes

# **3** Teaching versus Learning

- Disparities
- Bounds

### 4 Recursive Teaching

- Almost maximal Classes
- Recursive Teaching Dimension

## Example (Rectangles in $\mathbb{Z}^2$ )

Two points  $\boldsymbol{x}, \ \boldsymbol{y} \in \mathbb{Z}^2$  define a rectangle

$$R_{\mathbf{x},\mathbf{y}}(\mathbf{z}) = 1 \Leftrightarrow z_1 \in [x_1, y_1] \text{ and } z_2 \in [x_2, y_2].$$

Teaching sequence

Positive examples: **x** and **y** 

Negative examples:  $\mathbf{x} - (1,0), \ \mathbf{x} - (0,1), \ \mathbf{y} + (1,0), \ \mathbf{y} + (0,1)$ 

Teaching dimension 6

# Rectangles in the Plane



.

٠

.

•

•

< 行

•

# Rectangles in the Plane



٠

### Example (Boxes in $\mathbb{Z}^d$ )

Two points  $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{Z}^d$  define a box

$$R_{\mathbf{x},\mathbf{y}}(z) = 1 \Leftrightarrow \forall i \in [d] \ z_i \in [x_i, y_i].$$

Teaching sequence

Positive examples:  $\boldsymbol{x}$  and  $\boldsymbol{y}$ 

Negative examples for each  $i \in [d]$ :  $\mathbf{x} - \mathbf{e}_i$ ,  $\mathbf{y} + \mathbf{e}_i$ 

Teaching dimension 2(1+d)

# Example (Union of Boxes)

Fix k. For  $R_{\mathbf{x}_1,\mathbf{y}_1}, \ldots, R_{\mathbf{x}_k,\mathbf{y}_k}$  disjoint each in  $\mathbb{R}^d$  let

$$U_{\{\mathbf{x}_i,\mathbf{y}_i\}}(z) = \bigcup_{i=1}^k R_{\mathbf{x}_i,\mathbf{y}_i}.$$

Use the union of the teaching sequences for each box (with special case when boxes are adjacent)

Teaching dimension 2k(1+d).

# Union of boxes

(-) $\bigoplus$  $\overline{\phantom{a}}$ (-)(-)(-) (-)  $\oplus$ (-) $\overline{\phantom{a}}$  $\oplus$ (-)• • æ < 47 ▶

# Union of boxes (k = 2)



Benjamin Kuykendall (brk2117)

< 1 k

# Union of boxes (k = ?)



Benjamin Kuykendall (brk2117)

# Union of boxes (k = 2)



< 1 k

# Outline

#### 1 Introduction

- Learning model
- Generic bounds

### 2 Examples

- Least Teachable Class
- Axis Aligned Boxes

# 3 Teaching versus Learning

- Disparities
- Bounds

### 4 Recursive Teaching

- Almost maximal Classes
- Recursive Teaching Dimension

### Definition (Shattered set)

The class C shatters a set  $S \subset X$  when

$$\{S \cap c : c \in \mathcal{C}\} = \mathbb{P}(S).$$

#### Definition (VC dimension)

The integer *d* is the *Vapnik-Chervonenkis dimension* of a class C if it is the minimum *d* such that C shatters no sets of d + 1 points.

# Example (Least Teachable Class)

$$\mathcal{C} = \{X \smallsetminus \{1\}, \ X \smallsetminus \{2\}, \ldots, \ X \smallsetminus \{n\}\} \cup \{X\}.$$

Teaching Dimension n

VC Dimension 2 as no hypothesis induces (1,0,0) on three points

# Example (Dedekind cuts)

Consider the class of sets of rational numbers less than some real

$$\mathcal{C} = \{(-\infty, r) \cap \mathbb{Q} : r \in \mathbb{R}\}.$$

VC Dimension 2 as for  $q_1 < q_2 < q_3$  cannot induce (1,0,1)

Teaching Dimension  $\infty$ 

Set of *n* easy to teach functions:

 $F = \{\{x\} : x \in [n]\}$ 

Set of *n* easy to teach functions:

$$F = \{\{x\} : x \in [n]\}$$

Set of  $2^m$  hard to learn functions:

$$G = 2^{[m]}$$

Set of *n* easy to teach functions:

$$F = \{\{x\} : x \in [n]\}$$

Set of  $2^m$  hard to learn functions:

$$G = 2^{[m]}$$

Choose  $2^m = n$  and construct class over  $[n] \cup [m]$ 

#### Example (Hybrid Concept)

Enumerate  $F = f_1, \ldots, f_n$  and  $G = g_1, \ldots, g_m$  above. Define class

$$\mathcal{C}=\{h_i=f_i\cup g_i\ :\ i\in[n]\}.$$

# Easy to teach, hard to learn

|                | $x_1$ | <i>x</i> <sub>2</sub> | <i>x</i> 3 | ••• | $x_{n-1}$ | x <sub>n</sub> | <i>y</i> <sub>1</sub> | ••• | $y_{m-1}$ | Уm |
|----------------|-------|-----------------------|------------|-----|-----------|----------------|-----------------------|-----|-----------|----|
| $h_1$          | +     | -                     | -          |     | -         | -              | -                     |     | -         | -  |
| $h_2$          | -     | +                     | -          |     | _         | -              | -                     |     | -         | +  |
| h <sub>3</sub> | -     | -                     | +          |     | _         | -              | -                     |     | +         | -  |
| ÷              |       |                       |            |     |           |                |                       |     |           |    |
| $h_{n-1}$      | _     | _                     | _          |     | +         | _              | +                     |     | +         | _  |
| h <sub>n</sub> | _     | _                     | -          |     | -         | +              | +                     |     | +         | +  |

2

・ロト ・四ト ・ヨト ・ヨト

|                | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>x</i> 3 | ••• | $x_{n-1}$ | x <sub>n</sub> | <i>y</i> <sub>1</sub> | ••• | <i>Y</i> <sub><i>m</i>-1</sub> | Уm |
|----------------|-----------------------|-----------------------|------------|-----|-----------|----------------|-----------------------|-----|--------------------------------|----|
| $h_1$          | +                     | -                     | -          |     | _         | -              | -                     |     | _                              | -  |
| $h_2$          | -                     | +                     | -          |     | _         | -              | -                     |     | _                              | +  |
| h <sub>3</sub> | -                     | _                     | +          |     | _         | _              | -                     |     | +                              | _  |
| :              |                       |                       |            |     |           |                |                       |     |                                |    |
| $h_{n-1}$      | _                     | _                     | _          |     | +         | _              | +                     |     | +                              | _  |
| h <sub>n</sub> | -                     | _                     | -          |     | -         | +              | +                     |     | +                              | +  |

Still easy to teach:  $h_i$  identified by positive example  $x_i$ 

Still hard to learn:  $y_1, \ldots, y_m$  is shattered

Teaching Dimension 1 but VC Dimension  $\log n$ 

# Outline

#### 1 Introduction

- Learning model
- Generic bounds

### 2 Examples

- Least Teachable Class
- Axis Aligned Boxes

# 3 Teaching versus Learning

- Disparities
- Bounds

#### 4 Recursive Teaching

- Almost maximal Classes
- Recursive Teaching Dimension

### Theorem (Lower bound)

$$t\geq \frac{d-1}{\log|X|}.$$

Follows directly from previous:

$$t \ge rac{\log |\mathcal{C}| - 1}{\log |X|}$$
 and  $\log |\mathcal{C}| \ge d$ .

< 47 ▶

э

#### Theorem (Upper bound)

$$t\leq |\mathcal{C}|-2^d+d.$$

Learning sequence:

Shattered set of size d

One example to exclude each remaining hypothesis

First step removes  $2^d - 1$  hypotheses with *d* examples

Second step removes  $|\mathcal{C}| - (2^d - 1) - 1$  hypotheses, 1 example each

イロト 不得下 イヨト イヨト 二日

# Theorem (Teaching versus Learning Bounds)

#### If $\ensuremath{\mathcal{C}}$ has teaching dimension t and VC dimension d then

$$|\mathcal{C}| - 2^d + d \ge t \ge \frac{d-1}{\log|X|}$$

э

# Outline

#### 1 Introduction

- Learning model
- Generic bounds

### 2 Examples

- Least Teachable Class
- Axis Aligned Boxes

# **3** Teaching versus Learning

- Disparities
- Bounds

### 4 Recursive Teaching

- Almost maximal Classes
- Recursive Teaching Dimension

# Theorem (Concentration of Teaching Dimension)

If the teaching dimension of C is  $t \ge |C| - k$ , then for some  $f \in C$  the class  $C \setminus \{f\}$  has teaching dimension at most k.

# Theorem (Concentration of Teaching Dimension)

If the teaching dimension of C is  $t \ge |C| - k$ , then for some  $f \in C$  the class  $C \setminus \{f\}$  has teaching dimension at most k.

Fix f requiring a teaching sequence  $x_1, x_2, \ldots, x_t$  of length t.

To prove: fix some  $f_1$  in the class  $C \setminus \{f\}$  and wlog take  $f_1(x_1) \neq f(x)$ .

# Theorem (Concentration of Teaching Dimension)

If the teaching dimension of C is  $t \ge |C| - k$ , then for some  $f \in C$  the class  $C \setminus \{f\}$  has teaching dimension at most k.

Fix f requiring a teaching sequence  $x_1, x_2, \ldots, x_t$  of length t.

To prove: fix some  $f_1$  in the class  $C \setminus \{f\}$  and wlog take  $f_1(x_1) \neq f(x)$ .

- Idea: partition  $C \setminus \{f\}$  into
  - S a large set that disagrees with  $f_1$  on  $x_1$
  - T a small set

To teach  $f_1$ , use sequence  $x_i$  plus one x to distinguish from each  $g \in T$ .

< □ > < □ > < □ > < □ > < □ > < □ >

Construct *S* and *T* inductively. Let  $C = C \setminus (\{f\} \cup S \cup T)$  the remaining concepts. Define D(x) the set of  $g \in C$  such that  $g(x) \neq f(x)$ . Construct S and T inductively.

Let  $C = C \setminus (\{f\} \cup S \cup T)$  the remaining concepts. Define D(x) the set of  $g \in C$  such that  $g(x) \neq f(x)$ .

First set  $S = \{f_1\}$  and  $T = D(x_1) \setminus \{f_1\}$ .

Construct S and T inductively. Let  $C = C \setminus (\{f\} \cup S \cup T)$  the remaining concepts. Define D(x) the set of  $g \in C$  such that  $g(x) \neq f(x)$ .

```
First set S = \{f_1\} and T = D(x_1) \setminus \{f_1\}.
```

```
Then for i = 2, ..., t:

Pick an arbitrary f_i \in D(x_i).

Add f_i to S.

Add any remaining D(x_i) \setminus \{f_i\} to T.
```

Construct S and T inductively. Let  $C = C \setminus (\{f\} \cup S \cup T)$  the remaining concepts. Define D(x) the set of  $g \in C$  such that  $g(x) \neq f(x)$ .

```
First set S = \{f_1\} and T = D(x_1) \setminus \{f_1\}.
```

```
Then for i = 2, ..., t:

Pick an arbitrary f_i \in D(x_i).

Add f_i to S.

Add any remaining D(x_i) \setminus \{f_i\} to T.
```

# Concentration Theorem (proof)

```
First set S = \{f_1\} and T = D(x_1) \setminus \{f_1\}.
Then for i = 2, ..., t:
Pick an arbitrary f_i \in D(x_i).
Add f_i to S.
Add any remaining D(x_i) \setminus \{f_i\} to T.
```

Claim 1:  $f_i \in S$  disagrees with  $f_1$  on  $x_1$ Assume  $f_i(x_1) = f_1(x_1)$ .  $f_i(x_1) \neq f(x_1)$  by construction. But then in first step  $f_i \in D(x_1)$  so  $f_i \in T$ T and S are disjoint, so  $f_i \notin S$ .

# Concentration Theorem (proof)

```
First set S = \{f_1\} and T = D(x_1) \setminus \{f_1\}.
Then for i = 2, ..., t:
Pick an arbitrary f_i \in D(x_i).
Add f_i to S.
Add any remaining D(x_i) \setminus \{f_i\} to T.
```

Claim 2: |T| = k - 1:  $D(x_i)$  non-empty at each step, otherwise  $\{x_j\} \setminus x_i$  a learning sequence One  $f_i$  gets added to S each round, have |S| = t  $C \setminus \{f\} = S \cup T$  implies |T| = |C| - 1 - |S|Assumed t = |C| - k so |T| = k - 1.

# Outline

#### 1 Introduction

- Learning model
- Generic bounds

### 2 Examples

- Least Teachable Class
- Axis Aligned Boxes

# **3** Teaching versus Learning

- Disparities
- Bounds

### 4 Recursive Teaching

- Almost maximal Classes
- Recursive Teaching Dimension

Let MinTD(C) be the set of  $f \in C$  with the shortest teaching sequences.

Construct levels of C as follows:

$$C_i = \operatorname{MinTD}\left(C \times \bigcup_{j < i} C_j\right).$$

Let MinTD(C) be the set of  $f \in C$  with the shortest teaching sequences.

Construct levels of  $\mathcal{C}$  as follows:

$$C_i = \operatorname{MinTD}\left(C \times \bigcup_{j < i} C_j\right).$$

Then we can define a robust notion of teaching dimension.

#### Definition (Recursive Teaching Dimension)

The *recursive teaching dimension* of C is the maximum of the teaching dimensions of the levels  $C_i$  constructed above.