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Basic Settings

Model:

» D: a distribution over X x ) where X is the input space and
Y = {£1} are the possible labels.

» (X,Y) € X x )Y be a pair of random variables with joint
distribution D.

» H be a set of hypotheses mapping from X to ). The error of
a hypothesis h: X — YV is

err(h) := Pr(h(X) # Y).

» Let h* := argmin{err(h) : h € H} be a hypothesis with
minimum error in H.



Basic Settings
Goal: with high probability, we return h € H such that

err(h) < err(h*) +e.

In realizable case, we have err(h*) = 0, hence, we want

err(h) < e



Basic Settings
Passive VS Active:
> Passive setting:

» At time t, observe X; and choose h; € H.
» Make prediction h;(X;) and then observe feedback Y;.

» Minimize the total number of mistakes of h:(X;) # Y.



Basic Settings
Passive VS Active:
> Active setting:
» At time t, observe X;.
» We choose whether we need the feedback Y.

» Minimize the number of mistakes of A and the total number of
queries of the correct label Y;.



Basic Settings
Passive VS Active:
> Active setting:
» At time t, observe X;.
» We choose whether we need the feedback Y.

» Minimize the number of mistakes of A and the total number of
queries of the correct label Y;.

Hence, intuitively, (X:, Y;) does not provide any information if
h(X:) are the same for all the potential hypotheses at time t, and
thus we should not query for such X;.



Concepts
Definition
For a set of hypotheses V|, the region of disagreement R(V) is
R(V) :={x € X : 3h, 0" € V such that h(x) # H'(x)}.
Definition
For a given set of hypotheses H and sample set
ZT — {(Xt, Yt); t = 1 M T},
the uncertainty region U(H, Z7) is

UH,Z7) = {x€X:3h Hh € H such that h(x) # H'(x)
and h(Xt) = h/(Xt) = Yt,Vt S [T]}



Remarks

» Let C ={heH:h(X;)= YVt e[T]}. Then we have
U(H,Zr) = R(C).

» ldeally, the area of the uncertainty region will be monotonically
non-increasing by more training samples.

» |f we can control the sampling procedure over X, it is better
to only sample on U(H, Z;). (Selective Sampling or
Approximate Selective Sampling)

» Correctness of all labels Y; for X; not in the query. Need to
query Xii1 if Xep1 € U(H, Zt).

» The complexity of finding a good set # such that
h* € 7L C H can be intuitively measured by the ratio between
supy,4 err(h) and Pr(R(H)).



Concepts

Definition
We redefine the region of disagreement by R(h, r) of radius r

around a hypothesis h € H in the disagreement metric space (H, p)
is

R(h,r) :={x € X : 30" € B(h,r) such that h(x) # H'(x)}.
where the disagreement (pseudo) metric p on H is defined by
p(h,H') = Pr(h(X) # H'(X)).

Hence, we have err(h) = p(h, h*).



Concepts

Definition
We redefine the region of disagreement by R(h, r) of radius r

around a hypothesis h € H in the disagreement metric space (H, p)
is

R(h,r) :={x € X : 30" € B(h,r) such that h(x) # H'(x)}.
where the disagreement (pseudo) metric p on H is defined by
p(h,H') = Pr(h(X) # H'(X)).

Hence, we have err(h) = p(h, h*).

Remarks: We have R(h*,r) C R(B(h*,r)), but the reverse may
not be true.



Concepts

Definition

The disagreement coefficient (h, H, D) with respect to a

hypothesis h € H in the disagreement metric space (H, p) is
Pr(X € R(h,r))

0(h,H,D) := sup .
r>0 r




Concepts

Definition
The disagreement coefficient (h, H, D) with respect to a
hypothesis h € H in the disagreement metric space (H, p) is

0(h,H,D) := sup Pr(X € R(h, r))
r>0 r

Examples:

» X is uniform on [0,1]. # = {h = Ix>,,Vr > 0}. Then
6(h,H,D) = 2,vhe H.
> Replace H by H = {h = Ix¢[s), V0 < a< b<1}. Then

6(h,H,D) = max(4,1/Pr(h(X)=1)), VheH.



Examples

Proposition

Let Px be the uniform distribution on the unit sphere
S 1= {xeRY: x| = 1} C RY, and let H be the class of
homogeneous linear threshold functions in RY, ie,

H = {hy : hy(x) = sign({w, x)),Yw € ST~}
There is an absolute constant C > 0 such that

O(h,H,Px) < C-Vd.



Algorithm (CAL)

» Initialize: Zy := 0,V := H.
» Fort=1,2,---
» Obtain unlabeled data point X;.
> If Xt S R(Vt_l):
(a) Then: QueNry Y:, and set Z; := Z,—1 J{(X:, Y2)}-
(b) Else: Set Y := h(X.) for any h € Vi_1, and set
Zt = Zt71 U{(Xt, Yt)} OR
Set Z; == Z;_1.
» Set Vy:={heH: h(X;) =Y, ,V(X,Y:) € Z}.

» Return: any h € V).



Algorithm (Reduction-based CAL)

» Initialize: Zy := 0.

» Fort=1,2,---
» Obtain unlabeled data point X;.
» If there exists both:

o h' € H consistent with Z,_1 U{(X¢, +1)}
e h™ € H consistent with Z,_1 [J{(X¢, —1)}

(a) Then: Query Yt, and set Z; := Z.—1 U{(X:, Y:)}.
(b) Else: only h” exists for some y € {£1}: Set Y; := y and set
Zi = Z 1 U{(Xe, Vi) }

» Return: any h € H consistent with Z,.



Algorithm (Reduction-based CAL)

» Initialize: Zy := 0.
» Fort=1,2,---

» Obtain unlabeled data point X;.
» If there exists both:

o h' € H consistent with Z,_1 U{(X¢, +1)}
e h™ € H consistent with Z,_1 [J{(X¢, —1)}

(a) Then: Query Yt, and set Z; := Z.—1 U{(X:, Y:)}.
(b) Else: only h” exists for some y € {£1}: Set Y; := y and set
Zi = Z 1 U{(Xe, Vi) }

» Return: any h € H consistent with Z,.
Remark: Reduction-based CAL is equivalent to CAL.



Label Complexity Analysis

Theorem
The expected number of labels queried by Reduction-based CAL
after n iterations is at most

0 (H(h*,%, D)d log? n) ,

where d is the VC-dimension of class H. For any ¢ > 0 and § > 0,
if we have

1 1 1
n=0 <G(d|og6+|og5)> )

then with probability 1 — 8, the return of Reduction-based CAL h
satisfies that A
err(h) < e.



Proof

Note that, with probability 1 — d;, any h € H consistent with Z;
has error err(h) at most

1 1
@) (t <d log t + log 5t>> = rt,

where d; > 0 will be chosen later. (case when P,f, = 0, Pf = 0).
This also implies that n = O (1(dlog 1 + log 3))



Proof

Note that, with probability 1 — d;, any h € H consistent with Z;
has error err(h) at most

1 1
@) (t <d|ogt+ log 5t>> = ry,

where d; > 0 will be chosen later. (case when P,f, = 0, Pf = 0).
This also implies that n = O (1(dlog 1 + log 3))

Let G; is the event that described above happens. Hence, condition
on G;, we have

{h € H : his consistent with Z;} C B(h*, r).



Proof
Note that, we query Y;y1 if and only if
Jh € H consistent with Z; U{(XtH, —h*(Xt+1))}s

(i.e., there is h disagree with h*)

Hence, condition on G, if we query Yii1, then Xiy11 € R(h*, rt).
Therefore, we have

Pr(Yet1 is queried|G;) < Pr(Xes1 € R(h*, 12)|Gy).



Proof

Let Qr = Iy, is queried}- T he expected total number of queries is

Y Q) <
t=1

IA

IN

n—1
1+ Pr(Qu1 = 1)
t=1

n—1

1+ Y Pr(Qu1 = 1/G)Pr(Gy)

n—1
+> Pr(Qer1 = 1] not Gi)(1 — Pr(Gy))
t=0
n—1
1 + Z PI’(QH_]_ = lth)Pr(Gt) + (St
t=1
n—1
1+ Pr(Xe1 € R(h*, )| Ge)Pr(Gy) + 6.

t=1



Proof
By definition of the coefficient of disagreement, we have

Pr (Xt+l € R( )’Gt)Pr(Gt) < Pr(Xt_l,_]_ € R(h rt)) < Fe- (h*,H, D)
Hence, we have

n—1

ED) Q] < 14> r-0(h*,H,D)+6:
t=1

t=
n—1

1
= O(ah %, D) (dlogt—i—log;)—l—ét).
t=1 t



Proof
By definition of the coefficient of disagreement, we have

Pr (Xt+l € R( )’Gt)Pr(Gt) < Pr(Xt_l,_]_ € R(h rt)) < Fe- (h*,H, D)
Hence, we have

n—1

ED) Q] < 14> r-0(h*,H,D)+6:
t=1

t=
n—1

1
= O(ah %, D) (dlogt—i—log;)—l—ét).
t=1 t

Choose §; = 7, we have

E[i Q] < O(G(h*,?—t, D)d log® n>.

t=1



