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Basic Settings

Model:
I D: a distribution over X × Y where X is the input space and
Y = {±1} are the possible labels.

I (X ,Y ) ∈ X × Y be a pair of random variables with joint
distribution D.

I H be a set of hypotheses mapping from X to Y. The error of
a hypothesis h : X → Y is

err(h) := Pr(h(X ) 6= Y ).

I Let h∗ := argmin{err(h) : h ∈ H} be a hypothesis with
minimum error in H.



Basic Settings

Goal: with high probability, we return ĥ ∈ H such that

err(ĥ) ≤ err(h∗) + ε.

In realizable case, we have err(h∗) = 0, hence, we want

err(ĥ) ≤ ε.



Basic Settings

Passive VS Active:

I Passive setting:

I At time t, observe Xt and choose ht ∈ H.

I Make prediction ht(Xt) and then observe feedback Yt .

I Minimize the total number of mistakes of ht(Xt) 6= Yt .
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Basic Settings

Passive VS Active:

I Active setting:

I At time t, observe Xt .

I We choose whether we need the feedback Yt .

I Minimize the number of mistakes of ĥ and the total number of
queries of the correct label Yt .

Hence, intuitively, (Xt ,Yt) does not provide any information if
h(Xt) are the same for all the potential hypotheses at time t, and
thus we should not query for such Xt .



Concepts

Definition
For a set of hypotheses V , the region of disagreement R(V) is

R(V) := {x ∈ X : ∃h, h′ ∈ V such that h(x) 6= h′(x)}.

Definition
For a given set of hypotheses H and sample set

ZT = {(Xt ,Yt), t = 1 · · ·T},

the uncertainty region U(H,ZT ) is

U(H,ZT ) := {x ∈ X : ∃h, h′ ∈ H such that h(x) 6= h′(x)

and h(Xt) = h′(Xt) = Yt ,∀t ∈ [T ]}.



Remarks

I Let C = {h ∈ H : h(Xt) = Yt ,∀t ∈ [T ]}. Then we have

U(H,ZT ) = R(C ).

I Ideally, the area of the uncertainty region will be monotonically
non-increasing by more training samples.

I If we can control the sampling procedure over Xt , it is better
to only sample on U(H,Zt). (Selective Sampling or
Approximate Selective Sampling)

I Correctness of all labels Yt for Xt not in the query. Need to
query Xt+1 if Xt+1 ∈ U(H,Zt).

I The complexity of finding a good set Ĥ such that
h∗ ∈ Ĥ ⊆ H can be intuitively measured by the ratio between
suph∈Ĥ err(h) and Pr(R(Ĥ)).
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Definition
We redefine the region of disagreement by R(h, r) of radius r
around a hypothesis h ∈ H in the disagreement metric space (H, ρ)
is

R(h, r) := {x ∈ X : ∃h′ ∈ B(h, r) such that h(x) 6= h′(x)}.

where the disagreement (pseudo) metric ρ on H is defined by

ρ(h, h′) := Pr(h(X ) 6= h′(X )).

Hence, we have err(h) = ρ(h, h∗).
Remarks: We have R(h∗, r) ⊆ R(B(h∗, r)), but the reverse may
not be true.



Concepts

Definition
The disagreement coefficient θ(h,H,D) with respect to a
hypothesis h ∈ H in the disagreement metric space (H, ρ) is

θ(h,H,D) := sup
r>0

Pr (X ∈ R(h, r))

r
.



Concepts

Definition
The disagreement coefficient θ(h,H,D) with respect to a
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Examples:
I X is uniform on [0, 1]. H = {h = IX≥r , ∀r > 0}. Then
θ(h,H,D) = 2, ∀h ∈ H.

I Replace H by H = {h = IX∈[a,b], ∀0 < a < b < 1}. Then

θ(h,H,D) = max(4, 1/Pr(h(X ) = 1)), ∀h ∈ H.



Examples

Proposition
Let PX be the uniform distribution on the unit sphere
Sd−1 := {x ∈ Rd : ‖x‖2 = 1} ⊂ Rd , and let H be the class of
homogeneous linear threshold functions in Rd , i.e,

H = {hw : hw (x) = sign(〈w , x〉),∀w ∈ Sd−1}.

There is an absolute constant C > 0 such that

θ(h,H,PX ) ≤ C ·
√
d .



Algorithm (CAL)

I Initialize: Z0 := ∅,V0 := H.
I For t = 1, 2, · · · , n:

I Obtain unlabeled data point Xt .
I If Xt ∈ R(Vt−1):

(a) Then: Query Yt , and set Zt := Zt−1
⋃
{(Xt ,Yt)}.

(b) Else: Set Ỹt := h(Xt) for any h ∈ Vt−1, and set
Zt := Zt−1

⋃
{(Xt , Ỹt)} OR

Set Zt := Zt−1.
I Set Vt := {h ∈ H : h(Xi ) = Yi ,∀(Xi ,Yi ) ∈ Zt}.

I Return: any h ∈ Vn.



Algorithm (Reduction-based CAL)

I Initialize: Z0 := ∅.
I For t = 1, 2, · · · , n:

I Obtain unlabeled data point Xt .
I If there exists both:

• h+ ∈ H consistent with Zt−1
⋃
{(Xt ,+1)}

• h− ∈ H consistent with Zt−1
⋃
{(Xt ,−1)}

(a) Then: Query Yt , and set Zt := Zt−1
⋃
{(Xt ,Yt)}.

(b) Else: only hy exists for some y ∈ {±1}: Set Ỹt := y and set
Zt := Zt−1

⋃
{(Xt , Ỹt)}

I Return: any h ∈ H consistent with Zn.



Algorithm (Reduction-based CAL)

I Initialize: Z0 := ∅.
I For t = 1, 2, · · · , n:

I Obtain unlabeled data point Xt .
I If there exists both:

• h+ ∈ H consistent with Zt−1
⋃
{(Xt ,+1)}

• h− ∈ H consistent with Zt−1
⋃
{(Xt ,−1)}

(a) Then: Query Yt , and set Zt := Zt−1
⋃
{(Xt ,Yt)}.

(b) Else: only hy exists for some y ∈ {±1}: Set Ỹt := y and set
Zt := Zt−1

⋃
{(Xt , Ỹt)}

I Return: any h ∈ H consistent with Zn.

Remark: Reduction-based CAL is equivalent to CAL.



Label Complexity Analysis

Theorem
The expected number of labels queried by Reduction-based CAL
after n iterations is at most

O
(
θ(h∗,H,D)d log2 n

)
,

where d is the VC-dimension of class H. For any ε > 0 and δ > 0,
if we have

n = O

(
1
ε
(d log

1
ε
+ log

1
δ
)

)
,

then with probability 1− δ, the return of Reduction-based CAL ĥ
satisfies that

err(ĥ) ≤ ε.



Proof

Note that, with probability 1− δt , any h ∈ H consistent with Zt

has error err(h) at most

O

(
1
t

(
d log t + log

1
δt

))
:= rt ,

where δt > 0 will be chosen later. (case when Pnfn = 0,Pf = 0).
This also implies that n = O

(1
ε (d log 1

ε + log 1
δ )
)
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Let Gt is the event that described above happens. Hence, condition
on Gt , we have

{h ∈ H : h is consistent with Zt} ⊆ B(h∗, rt).



Proof

Note that, we query Yt+1 if and only if

∃h ∈ H consistent with Zt

⋃
{(Xt+1,−h∗(Xt+1))},

(i.e., there is h disagree with h∗)
Hence, condition on Gt , if we query Yt+1, then Xt+1 ∈ R(h∗, rt).
Therefore, we have

Pr(Yt+1 is queried
∣∣Gt) ≤ Pr(Xt+1 ∈ R(h∗, rt)|Gt).



Proof

Let Qt = I{Yt is queried}. The expected total number of queries is

E[
n∑

t=1

Qt ] ≤ 1+
n−1∑
t=1

Pr(Qt+1 = 1)

= 1+
n−1∑
t=1

Pr(Qt+1 = 1
∣∣Gt)Pr(Gt)

+
n−1∑
t=0

Pr(Qt+1 = 1
∣∣ not Gt)(1− Pr(Gt))

≤ 1+
n−1∑
t=1

Pr(Qt+1 = 1
∣∣Gt)Pr(Gt) + δt

≤ 1+
n−1∑
t=1

Pr(Xt+1 ∈ R(h∗, rt)|Gt)Pr(Gt) + δt .



Proof
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O

(
θ(h∗,H,D)

t
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d log t + log
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δt
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+ δt
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.

Choose δt = 1
t , we have

E[
n∑

t=1

Qt ] ≤ O
(
θ(h∗,H,D)d log2 n

)
.


