Selective Sampling (Realizable)

Ji Xu

October 2nd, 2017

Model:

- ▶ D: a distribution over X × Y where X is the input space and Y = {±1} are the possible labels.
- (X, Y) ∈ X × Y be a pair of random variables with joint distribution D.
- → H be a set of hypotheses mapping from X to Y. The error of a hypothesis h : X → Y is

$$err(h) := \Pr(h(X) \neq Y).$$

ション ふゆ アメリア メリア しょうくの

Let h^{*} := argmin{err(h) : h ∈ H} be a hypothesis with minimum error in H.

Goal: with high probability, we return $\hat{h} \in \mathcal{H}$ such that

 $err(\hat{h}) \leq err(h^*) + \epsilon.$

In realizable case, we have $err(h^*) = 0$, hence, we want

 $err(\hat{h}) \leq \epsilon.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Passive VS Active:

- Passive setting:
 - At time *t*, observe X_t and choose $h_t \in \mathcal{H}$.
 - Make prediction $h_t(X_t)$ and then observe feedback Y_t .
 - Minimize the total number of mistakes of $h_t(X_t) \neq Y_t$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Passive VS Active:

- Active setting:
 - At time t, observe X_t .
 - We choose whether we need the feedback Y_t .
 - Minimize the number of mistakes of \hat{h} and the total number of queries of the correct label Y_t .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Passive VS Active:

- Active setting:
 - At time t, observe X_t .
 - We choose whether we need the feedback Y_t .
 - Minimize the number of mistakes of \hat{h} and the total number of queries of the correct label Y_t .

Hence, intuitively, (X_t, Y_t) does not provide any information if $h(X_t)$ are the same for all the potential hypotheses at time t, and thus we should not query for such X_t .

Definition

For a set of hypotheses $\mathcal V$, the region of disagreement $R(\mathcal V)$ is

$$R(\mathcal{V}) := \{x \in \mathcal{X} : \exists h, h' \in \mathcal{V} \text{ such that } h(x) \neq h'(x)\}.$$

Definition

For a given set of hypotheses $\ensuremath{\mathcal{H}}$ and sample set

$$Z_T = \{(X_t, Y_t), t = 1 \cdots T\},\$$

the uncertainty region $U(\mathcal{H}, Z_T)$ is

$$\begin{array}{ll} U(\mathcal{H}, Z_{\mathcal{T}}) &:= & \{x \in \mathcal{X} : \exists h, h' \in \mathcal{H} \text{ such that } h(x) \neq h'(x) \\ & \text{ and } h(X_t) = h'(X_t) = Y_t, \forall t \in [\mathcal{T}] \}. \end{array}$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Remarks

▶ Let $C = \{h \in \mathcal{H} : h(X_t) = Y_t, \forall t \in [T]\}$. Then we have

$$U(\mathcal{H}, Z_T) = R(C).$$

- Ideally, the area of the uncertainty region will be monotonically non-increasing by more training samples.
- ► If we can control the sampling procedure over X_t, it is better to only sample on U(H, Z_t). (Selective Sampling or Approximate Selective Sampling)
- ► Correctness of all labels Y_t for X_t not in the query. Need to query X_{t+1} if $X_{t+1} \in U(\mathcal{H}, Z_t)$.
- The complexity of finding a good set *Ĥ* such that h^{*} ∈ *Ĥ* ⊆ *H* can be intuitively measured by the ratio between sup_{h∈*Ĥ*} err(h) and Pr(R(*Ĥ*)).

Definition

We redefine the region of disagreement by R(h, r) of radius raround a hypothesis $h \in H$ in the disagreement metric space (H, ρ) is

$$R(h,r):=\{x\in\mathcal{X}:\exists h'\in B(h,r) ext{ such that } h(x)
eq h'(x)\}.$$

where the disagreement (pseudo) metric ρ on \mathcal{H} is defined by

$$\rho(h,h') := \Pr(h(X) \neq h'(X)).$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Hence, we have $err(h) = \rho(h, h^*)$.

Definition

We redefine the region of disagreement by R(h, r) of radius raround a hypothesis $h \in \mathcal{H}$ in the disagreement metric space (\mathcal{H}, ρ) is

$$R(h,r):=\{x\in\mathcal{X}:\exists h'\in B(h,r) ext{ such that } h(x)
eq h'(x)\}.$$

where the disagreement (pseudo) metric ρ on $\mathcal H$ is defined by

$$\rho(h, h') := \Pr(h(X) \neq h'(X)).$$

Hence, we have $err(h) = \rho(h, h^*)$. Remarks: We have $R(h^*, r) \subseteq R(B(h^*, r))$, but the reverse may not be true.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition

The disagreement coefficient $\theta(h, \mathcal{H}, D)$ with respect to a hypothesis $h \in \mathcal{H}$ in the disagreement metric space (\mathcal{H}, ρ) is

$$\theta(h,\mathcal{H},D) := \sup_{r>0} \frac{\Pr(X \in R(h,r))}{r}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Definition

The disagreement coefficient $\theta(h, \mathcal{H}, D)$ with respect to a hypothesis $h \in \mathcal{H}$ in the disagreement metric space (\mathcal{H}, ρ) is

$$\theta(h, \mathcal{H}, D) := \sup_{r>0} \frac{\Pr(X \in R(h, r))}{r}$$

Examples:

- ► X is uniform on [0, 1]. $\mathcal{H} = \{h = I_{X \ge r}, \forall r > 0\}$. Then $\theta(h, \mathcal{H}, D) = 2, \forall h \in \mathcal{H}$.
- ▶ Replace \mathcal{H} by $\mathcal{H} = \{h = I_{X \in [a,b]}, \forall 0 < a < b < 1\}$. Then

$$\theta(h, \mathcal{H}, D) = \max(4, 1/\Pr(h(X) = 1)), \quad \forall h \in \mathcal{H}.$$

ション ふゆ く 山 マ チャット しょうくしゃ

Examples

Proposition

Let P_X be the uniform distribution on the unit sphere $S^{d-1} := \{x \in \mathbb{R}^d : ||x||_2 = 1\} \subset \mathbb{R}^d$, and let \mathcal{H} be the class of homogeneous linear threshold functions in \mathbb{R}^d , i.e,

$$\mathcal{H} = \{h_w : h_w(x) = sign(\langle w, x \rangle), \forall w \in S^{d-1}\}.$$

There is an absolute constant C > 0 such that

$$\theta(h, \mathcal{H}, P_X) \leq C \cdot \sqrt{d}.$$

ション ふゆ く 山 マ チャット しょうくしゃ

Algorithm (CAL)

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

• Return: any $h \in \mathcal{V}_n$.

Algorithm (Reduction-based CAL)

- Initialize: $Z_0 := \emptyset$.
- For $t = 1, 2, \cdots, n$:
 - Obtain unlabeled data point X_t.
 - If there exists both:
 - $h^+ \in \mathcal{H}$ consistent with $Z_{t-1} \bigcup \{(X_t, +1)\}$
 - $h^- \in \mathcal{H}$ consistent with $Z_{t-1} \bigcup \{(X_t, -1)\}$
 - (a) Then: Query Y_t , and set $Z_t := Z_{t-1} \bigcup \{(X_t, Y_t)\}.$
 - (b) Else: only h^y exists for some $y \in \{\pm 1\}$: Set $\tilde{Y}_t := y$ and set $Z_t := Z_{t-1} \bigcup \{(X_t, \tilde{Y}_t)\}$

• Return: any $h \in \mathcal{H}$ consistent with Z_n .

Algorithm (Reduction-based CAL)

- Initialize: $Z_0 := \emptyset$.
- For $t = 1, 2, \cdots, n$:
 - Obtain unlabeled data point X_t.
 - If there exists both:
 - $h^+ \in \mathcal{H}$ consistent with $Z_{t-1} \bigcup \{(X_t, +1)\}$
 - $h^- \in \mathcal{H}$ consistent with $Z_{t-1} \bigcup \{(X_t, -1)\}$
 - (a) Then: Query Y_t , and set $Z_t := Z_{t-1} \bigcup \{(X_t, Y_t)\}.$
 - (b) Else: only h^y exists for some $y \in \{\pm 1\}$: Set $\tilde{Y}_t := y$ and set $Z_t := Z_{t-1} \bigcup \{(X_t, \tilde{Y}_t)\}$

• Return: any $h \in \mathcal{H}$ consistent with Z_n .

Remark: Reduction-based CAL is equivalent to CAL.

Label Complexity Analysis

Theorem

The expected number of labels queried by Reduction-based CAL after n iterations is at most

$$O\left(\theta(h^*,\mathcal{H},D)d\log^2 n\right),$$

where d is the VC-dimension of class H. For any $\epsilon > 0$ and $\delta > 0$, if we have

$$n = O\left(\frac{1}{\epsilon}(d\log\frac{1}{\epsilon} + \log\frac{1}{\delta})\right),$$

then with probability $1 - \delta$, the return of Reduction-based CAL \hat{h} satisfies that

 $err(\hat{h}) \leq \epsilon.$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Note that, with probability $1 - \delta_t$, any $h \in \mathcal{H}$ consistent with Z_t has error err(h) at most

$$O\left(\frac{1}{t}\left(d\log t + \log \frac{1}{\delta_t}\right)\right) := r_t,$$

where $\delta_t > 0$ will be chosen later. (case when $P_n f_n = 0, Pf = 0$). This also implies that $n = O\left(\frac{1}{\epsilon}(d\log\frac{1}{\epsilon} + \log\frac{1}{\delta})\right)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Note that, with probability $1 - \delta_t$, any $h \in \mathcal{H}$ consistent with Z_t has error err(h) at most

$$O\left(\frac{1}{t}\left(d\log t + \log \frac{1}{\delta_t}\right)\right) := r_t,$$

where $\delta_t > 0$ will be chosen later. (case when $P_n f_n = 0, Pf = 0$). This also implies that $n = O\left(\frac{1}{\epsilon}(d\log\frac{1}{\epsilon} + \log\frac{1}{\delta})\right)$

Let G_t is the event that described above happens. Hence, condition on G_t , we have

 $\{h \in \mathcal{H} : h \text{ is consistent with } Z_t\} \subseteq B(h^*, r_t).$

Note that, we query Y_{t+1} if and only if

$$\exists h \in \mathcal{H} \text{ consistent with } Z_t \bigcup \{(X_{t+1}, -h^*(X_{t+1}))\},\$$

(i.e., there is h disagree with h^*) Hence, condition on G_t , if we query Y_{t+1} , then $X_{t+1} \in R(h^*, r_t)$. Therefore, we have

 $\Pr(Y_{t+1} \text{ is queried} | G_t) \leq \Pr(X_{t+1} \in R(h^*, r_t) | G_t).$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Let $Q_t = I_{\{Y_t \text{ is queried}\}}$. The expected total number of queries is

$$\mathbb{E}[\sum_{t=1}^{n} Q_{t}] \leq 1 + \sum_{t=1}^{n-1} \Pr(Q_{t+1} = 1)$$

$$= 1 + \sum_{t=1}^{n-1} \Pr(Q_{t+1} = 1 | G_{t}) \Pr(G_{t})$$

$$+ \sum_{t=0}^{n-1} \Pr(Q_{t+1} = 1 | \operatorname{not} G_{t})(1 - \Pr(G_{t}))$$

$$\leq 1 + \sum_{t=1}^{n-1} \Pr(Q_{t+1} = 1 | G_{t}) \Pr(G_{t}) + \delta_{t}$$

$$\leq 1 + \sum_{t=1}^{n-1} \Pr(X_{t+1} \in R(h^{*}, r_{t}) | G_{t}) \Pr(G_{t}) + \delta_{t}.$$

By definition of the coefficient of disagreement, we have

 $\Pr(X_{t+1} \in R(h^*, r_t) | G_t) \Pr(G_t) \leq \Pr(X_{t+1} \in R(h^*, r_t)) \leq r_t \cdot \theta(h^*, \mathcal{H}, D).$

Hence, we have

$$\begin{split} \mathbb{E}[\sum_{t=1}^n Q_t] &\leq 1 + \sum_{t=1}^{n-1} r_t \cdot \theta(h^*, \mathcal{H}, D) + \delta_t \\ &= \sum_{t=1}^{n-1} O\left(\frac{\theta(h^*, \mathcal{H}, D)}{t} \left(d\log t + \log \frac{1}{\delta_t}\right) + \delta_t\right). \end{split}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

By definition of the coefficient of disagreement, we have

 $\Pr(X_{t+1} \in R(h^*, r_t) | G_t) \Pr(G_t) \leq \Pr(X_{t+1} \in R(h^*, r_t)) \leq r_t \cdot \theta(h^*, \mathcal{H}, D).$

Hence, we have

$$\begin{split} \mathbb{E}[\sum_{t=1}^n Q_t] &\leq 1 + \sum_{t=1}^{n-1} r_t \cdot \theta(h^*, \mathcal{H}, D) + \delta_t \\ &= \sum_{t=1}^{n-1} O\left(\frac{\theta(h^*, \mathcal{H}, D)}{t} \left(d\log t + \log \frac{1}{\delta_t}\right) + \delta_t\right). \end{split}$$

Choose $\delta_t = \frac{1}{t}$, we have

$$\mathbb{E}[\sum_{t=1}^n Q_t] \leq O\left(\theta(h^*, \mathcal{H}, D)d\log^2 n\right).$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ