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What are selective classifiers?



Introduction

Selective classifiers are:

• allowed to reject making predictions without penalty.

• compelling with applications where wrong classifications are not

welcomed and partial domain for predictions is allowed.
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Introduction

From Hierarchical Concept Learning:

A variation on the Valiant Model [2]:

. . . the learner is (instead) supposed to give a program taking instances

as input, and having three possible outputs: 1,0, and “I don’t know”.

. . . Informally we call a learning algorithm useful if the program outputs

“I don’t know” on at most a fraction ε of all instances . . .
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What is an ideal selective classifier?

Suppose we are given training examples labelled −1 or 1, and the goal is

to design an algorithm to find a good selective classifier.

• The misclassification rate should not be the only measurement for

selective classifiers.

• A selective classifier with zero misclassification rate can be a very

“bad” classifier. Examples?
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Notations and Definitions

For a selective classifier/predictor C in a binary classification problem

where xi ∈ X and yi ∈ {−1, 1}.

• Coverage (cover(C)) : the probability that C predicts a label instead

of 0.

• Error (err(C)): the probability that the true label is the opposite of

what C predicts [Note: 0 is not counted as errors].

• Risk (risk(C)):

risk(C) =
err(C)

cover(C)

An ideal classifier/predictor should have both error and coverage

guarantees with high probability (1− δ).
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Forms of selective predictors/classifiers

For a specific sample x :

• Confidence-rated Predictor

[p−1, p0, p1]

• Selective Classifier

•
(h, γx), where 0 ≤ γx ≤ 1, h ∈ H

•
(h, g(x)) where g(x) = 0 or 1 and h ∈ H

.
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The Realizable Setting



The Realizable Setting

In the realizable setting, our target hypothesis h∗ is in our hypothesis

class H and the labels are corresponding to what h∗ predicts.
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An Optimization Problem

We are given:

• a set of n labelled examples S = {{x1, y1}, {x2, y2}, . . . , {xn, yn}}
• a set of m unlabelled examples U = {xn+1, xn+2, . . . , xn+m}
• a set of hypotheses H

Goal: learn a selective classifier/predictor with an error guarantee ε, and

the best possible coverage for the unlabelled examples in U.
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An Optimization Problem

Confidence-rated predictor: A confidence-rated predictor (C) is a

mapping from U to a set of m distributions over {-1,0,1}. For example, if

the i-th distribution is [βi , 1− βi − αi , αi ], then

Pr(C(xi ) = −1) = βi

Pr(C(xi ) = 1) = αi

Pr(C(xi ) = 0) = 1− βi − αi

Recall that the version space V is a candidate set of hypotheses in the

hypothesis class H.
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An Optimization Problem

Algorithm 1: Confidence-rated Predictor [1]

1 Inputs: Labelled data S , unlabelled data U, error bound ε.

2 Compute version space V with respect to S .

3 Solve the linear program:

max
m∑
i=1

(αi + βi )

subject to:

∀i , αi + βi ≤ 1

∀i , αi , βi ≥ 0

∀h ∈ V ,
∑

i :h(xn+i )=1

βi +
∑

i :h(xn+i )=−1

αi ≤ εm

4 Output the confidence-rated predictor:

{[βi , 1− βi − αi , αi ], i = 1, 2, . . . ,m}

.
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An Optimization Problem

Let a selective classifier (C) defined by a tuple (h, (γ1, γ2, . . . , γm)) where

h ∈ H, 0 ≤ γi ≤ 1 for all i = 1, 2, . . .m.

For any xi , C(xi ) = h(xi ) with probability γi , and 0 with probability 1−γi .
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An Optimization Problem

Algorithm 2: Selective Classifier [1]

1 Inputs: Labelled data S , unlablelled data U, error bound ε.

2 Compute version space V with respect to S . Pick an arbitrary h0 ∈ V

3 Solve the linear program:

max
m∑
i=1

γi

subject to:

∀i , 0 ≤ γi ≤ 1

∀h ∈ V ,
∑

i :h(xn+i ) 6=h0(xn+i )

γi ≤ εm

4 Output the selective classifier:

(h0, (γ1, γ2, . . . , γm))

.
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Optimization Problems

Both algorithms can guarantee the ε error with optimal/“almost optimal”

coverage.

Some drawbacks using the optimization algorithms:

• Only work for those m unlabelled samples.

• Number of constraints can be infinite.
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A More General Problem

Now let’s generalize the problem:

We are given:

• a set of n labelled examples S = {{x1, y1}, {x2, y2}, . . . , {xn, yn}}
• a set of hypotheses H with VC dimension d

Goal: learn a selective classifier/predictor with zero error over the

distribution X and the largest possible coverage with high probability

1− δ.
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Notations and Definitions

Let the selective classifier be:

C(x) = (h, g)(x) =

{
h(x) if g(x) = 1

0 if g(x) = 0

cover(h, g) = E[g(X )]

Let ĥ be the empirical error minimizer. Define the true error:

errP(h) = Pr(X ,Y )∼P(h(X ) 6= Y )
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Notations and Definitions

With respect to the hypothesis class H, distribution P over X , and real

number r > 0, define a true error ball:

V(h, r) = {h′ ∈ H : errP(h′) ≤ errP(h) + r}

and

B(h, r) = {h′ ∈ H : PrX∼P{h′(X ) 6= h(X )} ≤ r}
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Notations and Definitions

Define the disagreement region of a hypotheses set H:

DIS(H) = {x ∈ X : ∃h1, h2 ∈ H such that h1(x) 6= h2(x)}

For G ⊆ H, let ∆G denotes the volume of the disagreement region.

Specifically,

∆G = Pr{DIS(G )}
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Learning a Selective Classifier

Algorithm 3: Selective Classifier Strategy

1 Inputs: n labelled data S , d , δ.

2 Output: a selective classifier (h,g) such that risk(h, g) = risk(h∗, g)

3 Compute version space V with respect to S . Pick an arbitrary h0 ∈ V

4 Set G = V

5 Construct g such that g(x) = 1 if and only if x ∈ {X \ DIS(G )}
6 h = h0

18



Learning a Selective Classifier

Analysis of the Strategy

∀x ∈ X , when g(x) = 1, the target hypothesis h∗ agrees with h.

⇒ risk(h, g) = risk(h∗, g)
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Learning a Selective Classifier

(thm 2.15: Consistent Hypothesis error rate bound in terms of VC

dimension ) For any n and δ ∈ (0, 1), with probability at least 1− δ,

every hypothesis h ∈ V has error rate

errP(h) ≤
4d ln(2n + 1) + 4 ln 4

δ

n

Let r =
4d ln(2n+1)+4 ln 4

δ

n , we know that if h ∈ V , h ∈ V(h∗, r)

⇒ V ⊆ V(h∗, r)
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Learning a Selective Classifier

Now, if h ∈ V(h∗, r)

E[1h(X )6=h∗(X )] = E[1h(X ) 6=Y ] ≤ r

By definition, h ∈ B(h∗, r).

Thus, with probability 1− δ

V ⊆ V(h∗, r) ⊆ B(h∗, r)

∆V ≤ ∆B(h∗, r)
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Learning a Selective Classifier

Recall the definition of disagreement coefficient:

θ = supr>0
∆B(h∗, r)

r

we have:

∀r ∈ (0, 1),∆B(h∗, r) ≤ θ · r

Therefore, with probability at least 1− δ,

∆V ≤ ∆B(h∗, r) ≤ θ · r

cover(h, g) = 1−∆V ≥ 1− θ · r = 1− θ
4d ln(2n + 1) + 4 ln 4

δ

n
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The Noisy Setting



The Noisy Setting

In the noisy setting, our target hypothesis h∗ is in our hypothesis class H

but the labels are corresponding to the prediction of h∗ with noises.
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Learning a Selective Classifier - the Noisy Setting

Algorithm 4: Selective Classifier Strategy - Noisy [3]

1 Inputs: n labelled data S , d , δ.

2 Output: a selective classifier (h,g) such that risk(h, g) = risk(h∗, g) with

probability 1− δ
3 Set ĥ = ERM(H,S) so that ĥ is any empirical risk minimizer from H.

4 Set G = V̂(ĥ, 4

√
2
d ln( 2ne

d )+ln 8
δ

n )

5 Construct g such that g(x) = 1 if and only if x ∈ {X \ DIS(G )}
6 h = ĥ
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Learning a Selective Classifier - the Noisy Setting

Consider a loss function L(Y,Y).

risk(h, g) =
E[L(h(X ),Y )) · g(X )]

cover(h, g)

Let h∗ be the true risk minimizer, we define the excess loss class as:

F = {L(h(x), y)− L(h∗(x), y) : h ∈ H}
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Learning a Selective Classifier - the Noisy Setting

Class F is said to be a (β,B)-Bernstein class with respect to P (where

0 ≤ β ≤ 1 and B ≥ 1), if every f ∈ F satisfies

Ef 2 ≤ B(Ef )β
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Learning a Selective Classifier - the Noisy Setting

We will proof the following lemmas to show the error guarantee and the

coverage guarantee. [Note: The following proofs define the loss function

to be 0/1 loss].

• If F is said to be a (β,B)-Bernstein class with respect to P, then

for any r > 0:

V(h∗, r) ⊆ B(h∗,Brβ)
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Learning a Selective Classifier - the Noisy Setting

Let

σ(n, δ, d) = 2

√
2
d ln( 2ne

d ) + ln 2
δ

n

• For any 0 < δ < 1, and r > 0, with probability of at least 1− δ,

V̂(ĥ, r) ⊆ V(h∗, 2σ(n, δ/2, d) + r)
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Learning a Selective Classifier - the Noisy Setting

• Assume that H has disagreement coefficient θ and that F is said to

be a (β,B)-Bernstein class with respect to P, then for any r > 0

and 0 < δ < 1, with probability of at least 1− δ:

∆V̂(ĥ, r) ≤ Bθ(2σ(n, δ/2, d) + r)β
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Learning a Selective Classifier - the Noisy Setting

• Assume that H has disagreement coefficient θ and that F is said to

be a (β,B)-Bernstein class with respect to P, then for any r > 0

and 0 < δ < 1, with probability of at least 1− δ:

cover(h, g) ≥ 1−Bθ(2σ(n, δ/2, d)+r)β ∧ risk(h, g) = risk(h∗, g)
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