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What are selective classifiers?



Introduction

Selective classifiers are:

e allowed to reject making predictions without penalty.

e compelling with applications where wrong classifications are not
welcomed and partial domain for predictions is allowed.



Introduction

From Hierarchical Concept Learning:
A variation on the Valiant Model [2]:

. the learner is (instead) supposed to give a program taking instances
as input, and having three possible outputs: 1,0, and “I don’t know".

... Informally we call a learning algorithm useful if the program outputs
“I don’t know” on at most a fraction € of all instances . ..



What is an ideal selective classifier?

Suppose we are given training examples labelled —1 or 1, and the goal is
to design an algorithm to find a good selective classifier.

e The misclassification rate should not be the only measurement for
selective classifiers.

o A selective classifier with zero misclassification rate can be a very
"bad” classifier. Examples?



Notations and Definitions

For a selective classifier/predictor C in a binary classification problem
where x; € X and y; € {—1,1}.

e Coverage (cover(C)) : the probability that C predicts a label instead
of 0.

e Error (err(C)): the probability that the true label is the opposite of
what C predicts [Note: 0 is not counted as errors].

o Risk (risk(C)):

err(C)

risk(C) = cover(C)

An ideal classifier/predictor should have both error and coverage
guarantees with high probability (1 — 4).



Forms of selective predictors/classifiers

For a specific sample x:

e Confidence-rated Predictor

[p—1, po, p1]

e Selective Classifier

(h,7vx), where 0 <y, <1,he H

(h,g(x)) where g(x) =0o0r1and he H



The Realizable Setting



The Realizable Setting

In the realizable setting, our target hypothesis h* is in our hypothesis
class H and the labels are corresponding to what h* predicts.



An Optimization Problem

We are given:

e a set of n labelled examples S = {{x1,y1}, {x2, ¥2}, ..., {Xn,¥n}}
e a set of m unlabelled examples U = {x,41, Xn12, - - - s Xntm }

e a set of hypotheses H

Goal: learn a selective classifier/predictor with an error guarantee ¢, and
the best possible coverage for the unlabelled examples in U.



An Optimization Problem

Confidence-rated predictor: A confidence-rated predictor (C) is a
mapping from U to a set of m distributions over {-1,0,1}. For example, if
the j-th distribution is [8;,1 — 8; — a, o], then
Pr(C(x) = -1)=5;
Pr(C(x,-) = 1) =
Pr(C(x,') = 0) =1- ﬁ,’ —

Recall that the version space V is a candidate set of hypotheses in the
hypothesis class H.



An Optimization Problem

Algorithm 1: Confidence-rated Predictor [1]

1 Inputs: Labelled data S, unlabelled data U, error bound .
2 Compute version space V' with respect to S.
3 Solve the linear program:

m

max Z(a,- + 5i)

i=1

subject to:
vja a;p + Bi < 1

Vi,Oé,‘,B,‘ ZO

VheV, > Bi+ > ai<em

ith(xpyi)=1 ith(xnyi)=—1

4 Output the confidence-rated predictor:

{I6i,1 =B —aj,a], i =1,2,...,m} 0



An Optimization Problem

Let a selective classifier (C) defined by a tuple (h, (y1,72,-..,7m)) where
he HO<~y; <1lforalli=1,2,...m.

For any x;, C(x;) = h(x;) with probability +;, and 0 with probability 1 —~;.
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An Optimization Problem

Algorithm 2: Selective Classifier [1]

1 Inputs: Labelled data S, unlablelled data U, error bound e.
2 Compute version space V with respect to S. Pick an arbitrary hg € V
3 Solve the linear program:

m
mava,-
i=1
subject to:

VheV, Z vi < em
ih(Xnti)Fho(Xnti)

4 Output the selective classifier:

(h07 (717723 T 7'7m))
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Optimization Problems

Both algorithms can guarantee the e error with optimal/“almost optimal”
coverage.

Some drawbacks using the optimization algorithms:

e Only work for those m unlabelled samples.

e Number of constraints can be infinite.
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A More General Problem

Now let's generalize the problem:
We are given:

e a set of n labelled examples S = {{x1,y1}, {x2, y2},. .., {xn, ¥n}}
e a set of hypotheses H with VC dimension d

Goal: learn a selective classifier/predictor with zero error over the
distribution X and the largest possible coverage with high probability
1—9.
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Notations and Definitions

Let the selective classifier be:

h(x) if g(x)
0 if g(x)

cover(h, g) = E[g(X)]

C(x) = (hg)(x) = { (1)

Let / be the empirical error minimizer. Define the true error:

errp(h) = Prix y)~p(h(X) # Y)
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Notations and Definitions

With respect to the hypothesis class H, distribution P over X, and real
number r > 0, define a true error ball:

V(h,r) ={h € H:errp(h) < errp(h) + r}

and
B(h,r)={h € H: Prx.p{h(X) # h(X)} <r}
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Notations and Definitions

Define the disagreement region of a hypotheses set H:
DIS(H) = {x € X : 3h1, ho € H such that hy(x) # ha(x)}

For G C H, let AG denotes the volume of the disagreement region.
Specifically,
AG = Pr{DIS(G)}
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Learning a Selective Classifier

Algorithm 3: Selective Classifier Strategy

1 Inputs: n labelled data S, d, §.

2 Output: a selective classifier (h,g) such that risk(h, g) = risk(h*, g)
3 Compute version space V' with respect to S. Pick an arbitrary hg € V
4Set G =V

5 Construct g such that g(x) =1 if and only if x € {X \ DIS(G)}

6 h= hg
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Learning a Selective Classifier

Analysis of the Strategy
Vx € X, when g(x) = 1, the target hypothesis h* agrees with h.

= risk(h, g) = risk(h*, g)
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Learning a Selective Classifier

(thm 2.15: Consistent Hypothesis error rate bound in terms of VC
dimension ) For any n and ¢ € (0, 1), with probability at least 1 — 4,
every hypothesis h € V has error rate

4dIn(2n+1) + 4In#
n

errp(h) <

Let r = @D HAINE e know that if he V, h e V(h*, r)

n

=V CVY(h",r)
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Learning a Selective Classifier

Now, if h € V(h*,r)

E[1noqzn0] = Ellapv] < r

By definition, h € B(h*, r).
Thus, with probability 1 — ¢

V CV(h*,r) C B(h*,r)

AV < AB(h*,r)
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Learning a Selective Classifier

Recall the definition of disagreement coefficient:

AB(h*, r)
r

0 = supr>o

we have:
Vre (0,1),AB(h*,r) <0-r

Therefore, with probability at least 1 — 6,
AV < AB(h*,r) <6 -r

4dIn(2n+1) +4In%

n

cover(h,g)=1—-AV >1—-0-r=1-90
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The Noisy Setting




The Noisy Setting

In the noisy setting, our target hypothesis h* is in our hypothesis class H
but the labels are corresponding to the prediction of h* with noises.
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Learning a Selective Classifier - the Noisy Setting

Algorithm 4: Selective Classifier Strategy - Noisy [3]

1 Inputs: n labelled data S, d, §.

Output: a selective classifier (h,g) such that risk(h, g) = risk(h*, g) with
probability 1 — ¢

3 Set h = ERM(H, S) so that h is any empirical risk minimizer from H.

Set G = D(h, 4/24nCE)Hn g

Construct g such that g(x) = 1 if and only if x € {X \ DIS(G)}
6 h=nh

N

=Y

(5,
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Learning a Selective Classifier - the Noisy Setting

Consider a loss function £(Y, ).

E[£(h(X), Y)) - 8(X)]
cover(h, g)

risk(h, g) =

Let A* be the true risk minimizer, we define the excess loss class as:

F =A{L(h(x),y) = L(h*(x),y) : h € H}
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Learning a Selective Classifier - the Noisy Setting

Class F is said to be a (3, B)-Bernstein class with respect to P (where
0<p<1land B>1),ifevery f € F satisfies

Ef? < B(Ef)?
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Learning a Selective Classifier - the Noisy Setting

We will proof the following lemmas to show the error guarantee and the
coverage guarantee. [Note: The following proofs define the loss function
to be 0/1 loss].

e If F is said to be a (3, B)-Bernstein class with respect to P, then

for any r > 0:
V(h*,r) C B(h*, Br’)
V(h*, 1) Bh*, Bty
< V(h*,r)
[ ]
h.* ..... .i‘h.* °
H A \H
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Learning a Selective Classifier - the Noisy Setting

Let

diIn(%€) +1n 2
a(n,s,d) = 2\/2n(d)+n§

e Forany 0 < d <1, and r > 0, with probability of at least 1 — 4,
V(h,r) S V(h*,20(n,5/2,d) + r)

Empirical errorrr' ) V(EJJ r) True error
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Learning a Selective Classifier - the Noisy Setting

e Assume that H has disagreement coefficient 6 and that F is said to
be a (8, B)-Bernstein class with respect to P, then for any r > 0
and 0 < 0 < 1, with probability of at least 1 — ¢:

AV(h, r) < BO(20(n,5/2,d) + r)?
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Learning a Selective Classifier - the Noisy Setting

e Assume that H has disagreement coefficient 6 and that F is said to
be a (8, B)-Bernstein class with respect to P, then for any r > 0
and 0 < 0 < 1, with probability of at least 1 — ¢:

cover(h,g) > 1-BO(20(n,§/2,d)+r)’ A risk(h,g) = risk(h*, g)
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