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Introduction: recall active learning

» We have some distribution D over X x Y
> the set of hypothesis H maps X to YV

> at time t we observe x; € X and decide where or not to query
its label



Introduction

Taxonomy

In previous models of interactive learning (active learning) we
asked a question and received an answer. But what if were trying
to solve a more complex problem.

zebra

zebra dolphin
dolphin whale

elephant whale mouse rabbit



Introduction

» There exists a space of structures H (trees over species)
» some g € Q is chosen at random
» the learner displays q and h(q) to some expert

» if h(q) is correct, the expert accepts it, otherwise the expert
corrects some part of it

Examples

What do we mean by "part of it?” Assume q has ¢ atomic
components. We will discuss how the expert picks the component.



Introduction

» We will write g €, Q to indicate q was chosen according to
probability distribution p from Q and [c] = {1,2,...,c}
» How do we measure error?
» by the full question q, i.e.

err(h) = Pae, olh(q) # h*(q)] (1)

> in terms of components i.e.

errc(h) = Pgc, 0. jerlclh(a,J) # h*(q,))] (2)



Threshold functions

> let X =[0,1]
» let H={h,:vel01]}and h,(x) =1(x > v)




Threshold functions

» Suppose we want to learn h* = hg

» our queries will consist of ¢ numbers in [0,1] (Q = X°)
> these numbers are our atomic components

» consider the uniform distribution ¢ on components.

» erre(hy) =verr(h,)=1—(1-v)°



Threshold functions

> let v; be the threshold learned so far by the algorithm
> labeling policy is " largest”

> labeling policy is "smallest”



Labeling policy is the largest

> let v; be the threshold learned so far by the algorithm

> Let V;i1 be the random variable that is the threshold value
the learner learns at step t + 1

» pick a vin [0, v;). Then Viy; can exceed v is if all pts are to
the right of v;. Or if there is a pt in (v, v¢)
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Labeling policy is the smallest

expectation
None of the x; can lie in [0, v]

\" X1 Vt X2 ... Xec
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How does this compare to the largest labeling policy case? The
improvement in the threshold is E[v; — Vi41]



Labeling policy is the smallest
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Threshold functions

» Suppose the support is on only (1/c,2/c,...,c/c = 1), and
suppose the expert corrects the most glaring error.

» it takes ¢/2 rounds to bring the error down to 1/2



Different u

» Suppose now that y is supported on two points:

1 2 1
(2757..-75)
w.p. 2¢
1 11 2
-4+ — -+ —,..,1
(2+2c’2+2c’ 1)
w.p. 1 —2¢

Say we want errc(h) < e. We want

EunQJGR[C][/h(q,j)sﬁho(q,j)] <e (3)
. But h and hg will always agree on [v,1]. So we want
Plpick x; € [0,v]] <e=v <1/4 (4)

So we must see the first pt at least ¢/2 times which requires
Q(c/€) examples.



Different u

So we have shown

» Theorem 1. There is a concept class H of VC dimension 1
such that for any € > 0 it is necessary to have O(c/e) rounds
of feedback in order to be able to guarantee that with high
prob all consistent hypotheses have error < ¢



Main result

» There exists a space of structures H
» some q €, Q is chosen at random
» the learner displays q and h(q) to some expert

» if h(q) is correct, the expert accepts it, otherwise the expert
corrects some part of it

main thm

Let B(h) ={q € @ s.t. hisincorrect on q } Let G(h) = {q € Q
s.t. h is correct on q}. The algorithm produce a hypothesis with
error < € w.p. at least 1 — ¢ within 2/ steps where
N=c-(5+1). I =log(|H|/s) and € = ¢/2



Main result

» Let O = Q x [(]

> B(h) = {(q.j) € Q: q € B(h) and h(q,j) # h*(a,/)}

» G(h) = G(h) x []

» Let 7(q,Jj) be the conditional probability that the expert
provides feedback on j given that q is queried

> we(q,)) = 1(q) - (q.J)

» we are going calculate w¢(q, 1), ...,wt(q, c) for g € G(ht)

> let Wt(qv./) = Wl(q7./) +o+ Wf(qv./)



How to pick the weights

Lemma 3
for all g € G(h¢) non negative values w(q, 1), ..., w(q, ¢) summing
up to u(q) can be calculated such that

Wt(qv.]) = Wt—l(qv.j) + Wt(qv./) S c



Proof

want to show

. . . t
We(g.J) = Wer(a.) +wla.) < 19D (g)
Proof
Wi(q, [c]) = t - u(q). Pick ji,....jc st.
We_1(g,j1) < We_1(q,)2) < ... < Wi_1(q,Jc) (7)

Let A = u(q). initialize all the wy(q, ji) to 0. repeat the following
til A=0

w(a.i) = min{E 1D w @iy )

and reset A = A — w(q, Ji)



Eliminating inconsistent hypotheses

main thm
With probability at least 1 — ¢, the following holds Vh € H: If

there is a step t for which W;(B(h)) > I, then h is not consistent
with the feedback received up to that step

» any h € H is eliminated w.p. at least w;(B(h))

> let t be the first step for which W;(B(h)) > I. Then the
probability that h is not eliminated by the end of step t is

(1= wi(B(h)) - (1 = wa(B(h))) -~ (1 - Wt(é_(h)))
< exp(—W;(B(h))) (9)

<9

~|H

» now take the union bound over H



Analyzing the first N steps

analysis

Let 7 = % = E—I, 4+ 1 be a threshold value. We will think of an
atomic component as having been adequately sampled when W,
reaches 7 - 1(q). At the beginning of step t let

Le-1={(g.J) € Q: Wee1(g,Jj) < 7-u(q)} and let

Wi _ 1(Lt 1) = Z(qg)eLpl Wi—1(q,j) < c-7 = N finally let

L =1{(q.4) € Q: Weer(q,) < (T — 1) - u(q) = & - (q)}

€



lemma 5

previous definitions
Ly ={(a.) € Q: Wia(q,)) < (r—1)-u(q) = & - u(q)}

Statement B
at any step t if W;_1(B(h:)) </ then

we(B(he) N L,_y) > u(B(he)) — € (10)

proof

Note that B _ B
w(B(ht)) = we(B(ht)) = we(B(h:) N L;ffl) + we(B(ht) \ L;ffl)'
Then we can see that

I> Wi1(B(ht)) = Wi 1(B(he) \ Ly_1) > é -we(B(he) \ L)

) ) (11)
. It follows that wy(B(h:) \ L,_;) <€



Lemma 6

previous definitions

T—ﬂ— /+1
[-t L =) € O Wea(q.)) < 7 - l(a))

Ly ={(q,)) € O: We_1(q, )<(T—1)~u(q)=;’wu(q)}
Statement

atanystept < N, Wt(Zt) >1—¢

proof

note that wy(L;) = w:(B(h:) N L¢) + we(G(he) N Lt). Since any
(q,j) € B(h)NL,_ 1 satisfies (q,/) € € B(h:)N Lt the previous
lemma 5 implies wy(B(h:) N Lt) > pu(B(ht)) — €. For g € G(hy)
any (q,j) with we(q,J) > 0 satisfies

t - pu(q)

19D <7 1a). (12)

Wt(qa./) S




Lemma 6 continued

Statement
atanystep t <N, we(Ly) >1—¢

proof
Thus (g,/) € L; and it follows that

we(G(he) N L) = p(G(hy))

. Overall,

wi(Le) > p(B(he)) — € + p(G(he)) = 1 — €



Corollary

E)efinitions B
Lo =1{(a.) € O Wer(q.)) < 7+ u(q)} and let
Weoi(Le-1) = X (g pyefe s We-1(g.j) S c-7=N

Previous fac_:t
YVt < N Wt(Lt) > 1—¢

analysis
Let Wt(q J) = min{W4(q,j),7 - u(q)}. As we have seen,
Wt(Q) < N. We can see as a corollary to before that

Wn(Q) < (1 —€)N.



Next N steps

analysis

Say pu(B(ht)) > 2€/. Then u(B(ht)) — € > € During one of the
steps in the second phase u(B(h:)) < 2 - € = € at which point the
algorithm can return h;



Stick with it algorithm

analysis
There are some problems with the algorithm we described.

> you need to select a hypothesis that is consistent with
feedback so far

» if you want an algorithm that is verified to have error less
than € you would need to run a separate procedure

» What if |#| is unbounded but the VC dimension is bounded?



Stick with it algorithm

» when you pick a hypothesis, stick with it for k steps.

» Redefine N =c- (E—I, + k). All parameters defined in terms of
n are similarly defined.

> redefine

Ly ={(q.j) € Q: Wi(q,)) < (= K)(q) = £ - ()}

e

Then we have that



Stick with it algorithm

» The algorithm terminates in 2 - N steps as before
» we can now use the k steps to verify the hypothesis

» we can define /| = d + log(1/0) where d is the VC dimension
of H...where did we use this again?



main thm
With probability at least 1 — 4, the following holds Vh € H: If

there is a step t for which W¢(B(h)) > I, then h is not consistent
with the feedback received up to that step

» any h € H is eliminated w.p. at least w;(B(h))

> let t be the first step for which W;(B(h)) > /. Then the
probability that h is not eliminated by the end of step t is

» now take the union bound over H
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