Partial Correction

Arushi Gupta ag3309

Columbia University

Nov 20

Outline

Recall active learning

Taxonomy

Threshold functions

Main algorithm

Stick with it

Introduction: recall active learning

- We have some distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$
- the set of hypothesis \mathcal{H} maps \mathcal{X} to \mathcal{Y}
- at time t we observe $x_{t} \in \mathcal{X}$ and decide where or not to query its label

Introduction

Taxonomy
In previous models of interactive learning (active learning) we asked a question and received an answer. But what if were trying to solve a more complex problem.

Introduction

- There exists a space of structures \mathcal{H} (trees over species)
- some $q \in \mathcal{Q}$ is chosen at random
- the learner displays q and $\mathrm{h}(\mathrm{q})$ to some expert
- if $\mathrm{h}(\mathrm{q})$ is correct, the expert accepts it, otherwise the expert corrects some part of it

Examples

What do we mean by "part of it?" Assume q has c atomic components. We will discuss how the expert picks the component.

Introduction

- We will write $q \in_{\mu} \mathcal{Q}$ to indicate q was chosen according to probability distribution μ from \mathcal{Q} and $[c]=\{1,2, \ldots, c\}$
- How do we measure error?
- by the full question q, i.e.

$$
\begin{equation*}
\operatorname{err}(h)=P_{q \in \mu \mathcal{Q}}\left[h(q) \neq h^{*}(q)\right] \tag{1}
\end{equation*}
$$

- in terms of components i.e.

$$
\begin{equation*}
\operatorname{err}_{c}(h)=P_{q \in_{\mu} \mathcal{Q}, j \in_{R}[c]}\left[h(q, j) \neq h^{*}(q, j)\right] \tag{2}
\end{equation*}
$$

Threshold functions

- let $\mathcal{X}=[0,1]$
- let $\mathcal{H}=\left\{h_{v}: v \in[0,1]\right\}$ and $h_{v}(x)=1(x>v)$

0

Threshold functions

- Suppose we want to learn $h^{*}=h_{0}$
- our queries will consist of c numbers in $[0,1]\left(\mathcal{Q}=\mathcal{X}^{c}\right)$
- these numbers are our atomic components
- consider the uniform distribution μ on components.
- $\operatorname{err}_{c}\left(h_{v}\right)=v \operatorname{err}\left(h_{v}\right)=1-(1-v)^{c}$

Threshold functions

- let v_{t} be the threshold learned so far by the algorithm
- labeling policy is "largest"
- labeling policy is "smallest"

Labeling policy is the largest

- let v_{t} be the threshold learned so far by the algorithm
- Let V_{t+1} be the random variable that is the threshold value the learner learns at step $t+1$
- pick a v in $\left[0, v_{t}\right)$. Then V_{t+1} can exceed v is if all pts are to the right of v_{t}. Or if there is a pt in $\left(v, v_{t}\right)$

Labeling policy is the smallest

expectation
None of the x_{i} can lie in $[0, v]$

How does this compare to the largest labeling policy case? The improvement in the threshold is $\mathbb{E}\left[v_{t}-V_{t+1}\right]$

Labeling policy is the smallest

Threshold functions

- Suppose the support is on only $(1 / c, 2 / c, \ldots, c / c=1)$, and suppose the expert corrects the most glaring error.
- it takes $c / 2$ rounds to bring the error down to $1 / 2$

Different μ

- Suppose now that μ is supported on two points:

$$
\left(\frac{1}{2 c}, \frac{2}{2 c}, \ldots, \frac{1}{2}\right)
$$

w.p. 2ϵ

$$
\left(\frac{1}{2}+\frac{1}{2 c}, \frac{1}{2}+\frac{2}{2 c}, \ldots, 1\right)
$$

w.p. $1-2 \epsilon$

Say we want $\operatorname{err}_{c}(h) \leq \epsilon$. We want

$$
\begin{equation*}
E_{q \in \mu \mathcal{Q}, j \in R[c]}\left[I_{h(q, j) \neq h_{0}(q, j)}\right] \leq \epsilon \tag{3}
\end{equation*}
$$

. But h and h_{0} will always agree on $[v, 1]$. So we want

$$
\begin{equation*}
P\left[\text { pick } x_{i} \in[0, v]\right] \leq \epsilon \Rightarrow v \leq 1 / 4 \tag{4}
\end{equation*}
$$

So we must see the first pt at least $c / 2$ times which requires $\Omega(c / \epsilon)$ examples.

Different μ

So we have shown

- Theorem 1. There is a concept class \mathcal{H} of VC dimension 1 such that for any $\epsilon>0$ it is necessary to have $O(c / \epsilon)$ rounds of feedback in order to be able to guarantee that with high prob all consistent hypotheses have error $\leq \epsilon$

Main result

- There exists a space of structures \mathcal{H}
- some $q \in_{\mu} \mathcal{Q}$ is chosen at random
- the learner displays q and $\mathrm{h}(\mathrm{q})$ to some expert
- if $\mathrm{h}(\mathrm{q})$ is correct, the expert accepts it, otherwise the expert corrects some part of it

main thm

Let $B(h)=\{q \in \mathcal{Q}$ s.t. h is incorrect on q$\}$ Let $G(h)=\{q \in \mathcal{Q}$ s.t. h is correct on q$\}$. The algorithm produce a hypothesis with error $\leq \epsilon$ w.p. at least $1-\delta$ within $2 N$ steps where $N=c \cdot\left(\frac{l}{\epsilon^{\prime}}+1\right) . \quad l=\log (|\mathcal{H}| / \delta)$ and $\epsilon^{\prime}=\epsilon / 2$

Main result

- Let $\overline{\mathcal{Q}}=\mathcal{Q} \times[c]$
- $\bar{B}(h)=\left\{(q, j) \in \overline{\mathcal{Q}}: q \in B(h)\right.$ and $\left.h(q, j) \neq h^{*}(q, j)\right\}$
- $\bar{G}(h)=G(h) \times[c]$
- Let $\gamma(q, j)$ be the conditional probability that the expert provides feedback on j given that q is queried
- $w_{t}(q, j)=\mu(q) \cdot \gamma(q, j)$
- we are going calculate $w_{t}(q, 1), \ldots, w_{t}(q, c)$ for $q \in G\left(h_{t}\right)$
- let $W_{t}(q, j)=w_{1}(q, j)+\ldots+w_{t}(q, j)$

How to pick the weights

Lemma 3

for all $q \in G\left(h_{t}\right)$ non negative values $w(q, 1), \ldots, w(q, c)$ summing up to $\mu(q)$ can be calculated such that

$$
\begin{equation*}
W_{t}(q, j)=W_{t-1}(q, j)+w_{t}(q, j) \leq \frac{t \cdot \mu(q)}{c} \tag{5}
\end{equation*}
$$

Proof

want to show

$$
\begin{equation*}
W_{t}(q, j)=W_{t-1}(q, j)+w_{t}(q, j) \leq \frac{t \cdot \mu(q)}{c} \tag{6}
\end{equation*}
$$

Proof
$W_{t}(q,[c])=t \cdot \mu(q)$. Pick j_{1}, \ldots, j_{c} s.t.

$$
\begin{equation*}
W_{t-1}\left(q, j_{1}\right) \leq W_{t-1}\left(q, j_{2}\right) \leq \ldots \leq W_{t-1}\left(q, j_{c}\right) \tag{7}
\end{equation*}
$$

Let $\Delta=\mu(q)$. initialize all the $w_{t}\left(q, j_{i}\right)$ to 0 . repeat the following till $\Delta=0$

$$
\begin{equation*}
w_{t}\left(q, j_{i}\right)=\min \left\{\frac{t \cdot \mu(q)}{c}-W_{t-1}\left(q, j_{i}\right), \Delta\right\} \tag{8}
\end{equation*}
$$

and reset $\Delta=\Delta-w_{t}\left(q, j_{i}\right)$

Eliminating inconsistent hypotheses

main thm
With probability at least $1-\delta$, the following holds $\forall h \in \mathcal{H}$: If there is a step t for which $W_{t}(\bar{B}(h)) \geq l$, then h is not consistent with the feedback received up to that step

- any $h \in \mathcal{H}$ is eliminated w.p. at least $w_{t}(\bar{B}(h))$
- let t be the first step for which $W_{t}(\bar{B}(h)) \geq l$. Then the probability that h is not eliminated by the end of step t is

$$
\begin{array}{r}
\left(1-w_{1}(\bar{B}(h))\right) \cdot\left(1-w_{2}(\bar{B}(h))\right) \cdots\left(1-w_{t}(\bar{B}(h))\right) \\
\leq \exp \left(-W_{t}(\bar{B}(h))\right) \tag{9}\\
\leq \frac{\delta}{|\mathcal{H}|}
\end{array}
$$

- now take the union bound over \mathcal{H}

Analyzing the first N steps

analysis
Let $\tau=\frac{N}{c}=\frac{1}{\epsilon^{\prime}}+1$ be a threshold value. We will think of an atomic component as having been adequately sampled when W_{t} reaches $\tau \cdot \mu(q)$. At the beginning of step t let
$\bar{L}_{t-1}=\left\{(q, j) \in \overline{\mathcal{Q}}: W_{t-1}(q, j) \leq \tau \cdot \mu(q)\right\}$ and let $W_{t-1}\left(\bar{L}_{t-1}\right)=\sum_{(q, j) \in \bar{L}_{t-1}} W_{t-1}(q, j) \leq c \cdot \tau=N$ finally let $\bar{L}_{t-1}^{\prime}=\left\{(q, j) \in \overline{\mathcal{Q}}: W_{t-1}(q, j) \leq(\tau-1) \cdot \mu(q)=\frac{1}{\epsilon^{\prime}} \cdot \mu(q)\right\}$

lemma 5

previous definitions
$\bar{L}_{t-1}^{\prime}=\left\{(q, j) \in \overline{\mathcal{Q}}: W_{t-1}(q, j) \leq(\tau-1) \cdot \mu(q)=\frac{1}{\epsilon^{\prime}} \cdot \mu(q)\right\}$

Statement

at any step t if $W_{t-1}\left(\bar{B}\left(h_{t}\right)\right)<I$ then

$$
\begin{equation*}
w_{t}\left(\bar{B}\left(h_{t}\right) \cap \bar{L}_{t-1}^{\prime}\right) \geq \mu\left(B\left(h_{t}\right)\right)-\epsilon^{\prime} \tag{10}
\end{equation*}
$$

proof
Note that $\mu\left(B\left(h_{t}\right)\right)=w_{t}\left(\bar{B}\left(h_{t}\right)\right)=w_{t}\left(\bar{B}\left(h_{t}\right) \cap L_{t-1}^{\prime}\right)+w_{t}\left(\bar{B}\left(h_{t}\right) \backslash L_{t-1}^{\prime}\right)$.
Then we can see that

$$
\begin{equation*}
I>W_{t-1}\left(\bar{B}\left(h_{t}\right)\right) \geq W_{t-1}\left(\bar{B}\left(h_{t}\right) \backslash \bar{L}_{t-1}^{\prime}\right) \geq \frac{I}{\epsilon^{\prime}} \cdot w_{t}\left(\bar{B}\left(h_{t}\right) \backslash \bar{L}_{t-1}^{\prime}\right) \tag{11}
\end{equation*}
$$

. It follows that $w_{t}\left(\bar{B}\left(h_{t}\right) \backslash \bar{L}_{t-1}^{\prime}\right) \leq \epsilon^{\prime}$

Lemma 6

previous definitions
$\tau=\frac{N}{c}=\frac{1}{\epsilon^{\prime}}+1$
$\bar{L}_{t-1}=\left\{(q, j) \in \overline{\mathcal{Q}}: W_{t-1}(q, j) \leq \tau \cdot \mu(q)\right\}$
$\bar{L}_{t-1}^{\prime}=\left\{(q, j) \in \overline{\mathcal{Q}}: W_{t-1}(q, j) \leq(\tau-1) \cdot \mu(q)=\frac{1}{\epsilon^{\prime}} \cdot \mu(q)\right\}$

Statement

at any step $t \leq N, w_{t}\left(\bar{L}_{t}\right) \geq 1-\epsilon^{\prime}$

proof

note that $w_{t}\left(\bar{L}_{t}\right)=w_{t}\left(\bar{B}\left(h_{t}\right) \cap \bar{L}_{t}\right)+w_{t}\left(\bar{G}\left(h_{t}\right) \cap \bar{L}_{t}\right)$. Since any $(q, j) \in \bar{B}\left(h_{t}\right) \cap \bar{L}_{t-1}^{\prime}$ satisfies $(q, j) \in \bar{B}\left(h_{t}\right) \cap \bar{L}_{t}$ the previous lemma 5 implies $w_{t}\left(\bar{B}\left(h_{t}\right) \cap \bar{L}_{t}\right) \geq \mu\left(B\left(h_{t}\right)\right)-\epsilon^{\prime}$. For $q \in G\left(h_{t}\right)$ any (q, j) with $w_{t}(q, j)>0$ satisfies

$$
\begin{equation*}
W_{t}(q, j) \leq \frac{t \cdot \mu(q)}{c} \leq \tau \cdot \mu(q) \tag{12}
\end{equation*}
$$

Lemma 6 continued

Statement
at any step $t \leq N, w_{t}\left(\bar{L}_{t}\right) \geq 1-\epsilon^{\prime}$
proof
Thus $(q, j) \in \bar{L}_{t}$ and it follows that

$$
\begin{equation*}
w_{t}\left(\bar{G}\left(h_{t}\right) \cap \bar{L}_{t}\right)=\mu\left(G\left(h_{t}\right)\right) \tag{13}
\end{equation*}
$$

Overall,

$$
\begin{equation*}
w_{t}\left(\bar{L}_{t}\right) \geq \mu\left(B\left(h_{t}\right)\right)-\epsilon^{\prime}+\mu\left(G\left(h_{t}\right)\right)=1-\epsilon^{\prime} \tag{14}
\end{equation*}
$$

Corollary

Definitions

$\bar{L}_{t-1}=\left\{(q, j) \in \overline{\mathcal{Q}}: W_{t-1}(q, j) \leq \tau \cdot \mu(q)\right\}$ and let
$W_{t-1}\left(\bar{L}_{t-1}\right)=\sum_{(q, j) \in \bar{L}_{t-1}} W_{t-1}(q, j) \leq c \cdot \tau=N$
Previous fact
$\forall t \leq N w_{t}\left(\bar{L}_{t}\right) \geq 1-\epsilon^{\prime}$
analysis
Let $\hat{W}_{t}(q, j)=\min \left\{W_{t}(q, j), \tau \cdot \mu(q)\right\}$. As we have seen, $\hat{W}_{t}(\bar{Q}) \leq N$. We can see as a corollary to before that $\hat{W}_{N}(\bar{Q}) \leq\left(1-\epsilon^{\prime}\right) N$.

Next N steps

analysis
Say $\mu\left(B\left(h_{t}\right)\right) \geq 2 \epsilon^{\prime}$. Then $\mu\left(B\left(h_{t}\right)\right)-\epsilon^{\prime} \geq \epsilon^{\prime}$ During one of the steps in the second phase $\mu\left(B\left(h_{t}\right)\right)<2 \cdot \epsilon^{\prime}=\epsilon$ at which point the algorithm can return h_{t}

Stick with it algorithm

analysis
There are some problems with the algorithm we described.

- you need to select a hypothesis that is consistent with feedback so far
- if you want an algorithm that is verified to have error less than ϵ you would need to run a separate procedure
- What if $|\mathcal{H}|$ is unbounded but the VC dimension is bounded?

Stick with it algorithm

- when you pick a hypothesis, stick with it for k steps.
- Redefine $N=c \cdot\left(\frac{l}{\epsilon^{\prime}}+k\right)$. All parameters defined in terms of n are similarly defined.
- redefine

$$
\bar{L}_{t}^{\prime}=\left\{(q, j) \in \bar{Q}: W_{t}(q, j) \leq(\tau-k) \mu(q)=\frac{1}{\epsilon^{\prime}} \cdot \mu(q)\right\}
$$

Then we have that

Stick with it algorithm

- The algorithm terminates in $2 \cdot N$ steps as before
- we can now use the k steps to verify the hypothesis
- we can define $I=d+\log (1 / \delta)$ where d is the VC dimension of \mathcal{H}...where did we use this again?

main thm

With probability at least $1-\delta$, the following holds $\forall h \in \mathcal{H}$: If there is a step t for which $W_{t}(\bar{B}(h)) \geq l$, then h is not consistent with the feedback received up to that step

- any $h \in \mathcal{H}$ is eliminated w.p. at least $w_{t}(\bar{B}(h))$
- let t be the first step for which $W_{t}(\bar{B}(h)) \geq I$. Then the probability that h is not eliminated by the end of step t is

$$
\begin{array}{r}
\left(1-w_{1}(\bar{B}(h))\right) \cdot\left(1-w_{2}(\bar{B}(h))\right) \cdots\left(1-w_{t}(\bar{B}(h))\right) \\
\leq \exp \left(-W_{t}(\bar{B}(h))\right) \tag{15}\\
\leq \frac{\delta}{|\mathcal{H}|}
\end{array}
$$

- now take the union bound over \mathcal{H}

