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Introduction: recall active learning

I We have some distribution D over X × Y
I the set of hypothesis H maps X to Y
I at time t we observe xt ∈ X and decide where or not to query

its label



Introduction

Taxonomy

In previous models of interactive learning (active learning) we
asked a question and received an answer. But what if were trying
to solve a more complex problem.



Introduction

I There exists a space of structures H (trees over species)

I some q ∈ Q is chosen at random

I the learner displays q and h(q) to some expert

I if h(q) is correct, the expert accepts it, otherwise the expert
corrects some part of it

Examples

What do we mean by ”part of it?” Assume q has c atomic
components. We will discuss how the expert picks the component.



Introduction

I We will write q ∈µ Q to indicate q was chosen according to
probability distribution µ from Q and [c] = {1, 2, ..., c}

I How do we measure error?
I by the full question q, i.e.

err(h) = Pq∈µQ[h(q) 6= h∗(q)] (1)

I in terms of components i.e.

errc(h) = Pq∈µQ,j∈R [c][h(q, j) 6= h∗(q, j)] (2)



Threshold functions

I let X = [0, 1]

I let H = {hv : v ∈ [0, 1]} and hv (x) = 1(x > v)



Threshold functions

I Suppose we want to learn h∗ = h0

I our queries will consist of c numbers in [0, 1] (Q = X c)

I these numbers are our atomic components

I consider the uniform distribution µ on components.

I errc(hv ) = v err(hv ) = 1− (1− v)c



Threshold functions

I let vt be the threshold learned so far by the algorithm

I labeling policy is ”largest”

I labeling policy is ”smallest”



Labeling policy is the largest

I let vt be the threshold learned so far by the algorithm

I Let Vt+1 be the random variable that is the threshold value
the learner learns at step t + 1

I pick a v in [0, vt). Then Vt+1 can exceed v is if all pts are to
the right of vt . Or if there is a pt in (v , vt)



Labeling policy is the smallest

expectation

None of the xi can lie in [0, v ]

How does this compare to the largest labeling policy case? The
improvement in the threshold is E[vt − Vt+1]



Labeling policy is the smallest



Threshold functions

I Suppose the support is on only (1/c, 2/c , ..., c/c = 1), and
suppose the expert corrects the most glaring error.

I it takes c/2 rounds to bring the error down to 1/2



Different µ

I Suppose now that µ is supported on two points:
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Say we want errc(h) ≤ ε. We want

Eq∈µQ,j∈R[c][Ih(q,j)6=h0(q,j)] ≤ ε (3)

. But h and h0 will always agree on [v , 1]. So we want

P[pick xi ∈ [0, v ]] ≤ ε⇒ v ≤ 1/4 (4)

So we must see the first pt at least c/2 times which requires
Ω(c/ε) examples.



Different µ

So we have shown

I Theorem 1. There is a concept class H of VC dimension 1
such that for any ε > 0 it is necessary to have O(c/ε) rounds
of feedback in order to be able to guarantee that with high
prob all consistent hypotheses have error ≤ ε



Main result

I There exists a space of structures H
I some q ∈µ Q is chosen at random

I the learner displays q and h(q) to some expert

I if h(q) is correct, the expert accepts it, otherwise the expert
corrects some part of it

main thm
Let B(h) = {q ∈ Q s.t. h is incorrect on q } Let G (h) = {q ∈ Q
s.t. h is correct on q}. The algorithm produce a hypothesis with
error ≤ ε w.p. at least 1− δ within 2N steps where
N = c · ( l

ε′ + 1). l = log(|H|/δ) and ε′ = ε/2



Main result

I Let Q̄ = Q× [c]

I B̄(h) = {(q, j) ∈ Q̄ : q ∈ B(h) and h(q, j) 6= h∗(q, j)}
I Ḡ (h) = G (h)× [c]

I Let γ(q, j) be the conditional probability that the expert
provides feedback on j given that q is queried

I wt(q, j) = µ(q) · γ(q, j)

I we are going calculate wt(q, 1), ...,wt(q, c) for q ∈ G (ht)

I let Wt(q, j) = w1(q, j) + ...+ wt(q, j)



How to pick the weights

Lemma 3
for all q ∈ G (ht) non negative values w(q, 1), ...,w(q, c) summing
up to µ(q) can be calculated such that

Wt(q, j) = Wt−1(q, j) + wt(q, j) ≤
t · µ(q)

c
(5)



Proof

want to show

Wt(q, j) = Wt−1(q, j) + wt(q, j) ≤
t · µ(q)

c
(6)

Proof
Wt(q, [c]) = t · µ(q). Pick j1, ..., jc s.t.

Wt−1(q, j1) ≤Wt−1(q, j2) ≤ ... ≤Wt−1(q, jc) (7)

Let ∆ = µ(q). initialize all the wt(q, ji ) to 0. repeat the following
till ∆ = 0

wt(q, ji ) = min{ t · µ(q)

c
−Wt−1(q, ji ),∆} (8)

and reset ∆ = ∆− wt(q, ji )



Eliminating inconsistent hypotheses

main thm
With probability at least 1− δ, the following holds ∀h ∈ H: If
there is a step t for which Wt(B̄(h)) ≥ l , then h is not consistent
with the feedback received up to that step

I any h ∈ H is eliminated w.p. at least wt(B̄(h))

I let t be the first step for which Wt(B̄(h)) ≥ l . Then the
probability that h is not eliminated by the end of step t is(

1− w1(B̄(h))
)
·
(
1− w2(B̄(h))

)
· · ·
(
1− wt(B̄(h))

)
≤ exp(−Wt(B̄(h)))

≤ δ

|H|

(9)

I now take the union bound over H



Analyzing the first N steps

analysis

Let τ = N
c = l

ε′ + 1 be a threshold value. We will think of an
atomic component as having been adequately sampled when Wt

reaches τ · µ(q). At the beginning of step t let
L̄t−1 = {(q, j) ∈ Q̄ : Wt−1(q, j) ≤ τ · µ(q)} and let
Wt−1(L̄t−1) =

∑
(q,j)∈L̄t−1

Wt−1(q, j) ≤ c · τ = N finally let

L̄′t−1 = {(q, j) ∈ Q̄ : Wt−1(q, j) ≤ (τ − 1) · µ(q) = l
ε′ · µ(q)}



lemma 5

previous definitions

L̄′t−1 = {(q, j) ∈ Q̄ : Wt−1(q, j) ≤ (τ − 1) · µ(q) = l
ε′ · µ(q)}

Statement
at any step t if Wt−1(B̄(ht)) < l then

wt(B̄(ht) ∩ L̄′t−1) ≥ µ(B(ht))− ε′ (10)

proof

Note that
µ(B(ht)) = wt(B̄(ht)) = wt(B̄(ht) ∩ L′t−1) + wt(B̄(ht) \ L′t−1).
Then we can see that

l >Wt−1(B̄(ht)) ≥Wt−1(B̄(ht) \ L̄′t−1) ≥ l

ε′
· wt(B̄(ht) \ L̄′t−1)

(11)
. It follows that wt(B̄(ht) \ L̄′t−1) ≤ ε′



Lemma 6

previous definitions

τ = N
c = l

ε′ + 1
L̄t−1 = {(q, j) ∈ Q̄ : Wt−1(q, j) ≤ τ · µ(q)}
L̄′t−1 = {(q, j) ∈ Q̄ : Wt−1(q, j) ≤ (τ − 1) · µ(q) = l

ε′ · µ(q)}

Statement
at any step t ≤ N , wt(L̄t) ≥ 1− ε′

proof

note that wt(L̄t) = wt(B̄(ht) ∩ L̄t) + wt(Ḡ (ht) ∩ L̄t). Since any
(q, j) ∈ B̄(ht) ∩ L̄′t−1 satisfies (q, j) ∈ B̄(ht) ∩ L̄t the previous
lemma 5 implies wt(B̄(ht) ∩ L̄t) ≥ µ(B(ht))− ε′. For q ∈ G (ht)
any (q, j) with wt(q, j) > 0 satisfies

Wt(q, j) ≤
t · µ(q)

c
≤ τ · µ(q). (12)



Lemma 6 continued

Statement
at any step t ≤ N , wt(L̄t) ≥ 1− ε′

proof

Thus (q, j) ∈ L̄t and it follows that

wt(Ḡ (ht) ∩ L̄t) = µ(G (ht)) (13)

. Overall,

wt(L̄t) ≥ µ(B(ht))− ε′ + µ(G (ht)) = 1− ε′ (14)



Corollary

Definitions
L̄t−1 = {(q, j) ∈ Q̄ : Wt−1(q, j) ≤ τ · µ(q)} and let
Wt−1(L̄t−1) =

∑
(q,j)∈L̄t−1

Wt−1(q, j) ≤ c · τ = N

Previous fact
∀t ≤ N wt(L̄t) ≥ 1− ε′

analysis

Let Ŵt(q, j) = min{Wt(q, j), τ · µ(q)}. As we have seen,
Ŵt(Q̄) ≤ N. We can see as a corollary to before that
ŴN(Q̄) ≤ (1− ε′)N.



Next N steps

analysis

Say µ(B(ht)) ≥ 2ε′. Then µ(B(ht))− ε′ ≥ ε′ During one of the
steps in the second phase µ(B(ht)) < 2 · ε′ = ε at which point the
algorithm can return ht



Stick with it algorithm

analysis

There are some problems with the algorithm we described.

I you need to select a hypothesis that is consistent with
feedback so far

I if you want an algorithm that is verified to have error less
than ε you would need to run a separate procedure

I What if |H| is unbounded but the VC dimension is bounded?



Stick with it algorithm

I when you pick a hypothesis, stick with it for k steps.

I Redefine N = c · ( l
ε′ + k). All parameters defined in terms of

n are similarly defined.

I redefine
L̄′t = {(q, j) ∈ Q̄ : Wt(q, j) ≤ (τ − k)µ(q) = l

ε′ · µ(q)}

Then we have that



Stick with it algorithm

I The algorithm terminates in 2 · N steps as before

I we can now use the k steps to verify the hypothesis

I we can define l = d + log(1/δ) where d is the VC dimension
of H...where did we use this again?



main thm
With probability at least 1− δ, the following holds ∀h ∈ H: If
there is a step t for which Wt(B̄(h)) ≥ l , then h is not consistent
with the feedback received up to that step

I any h ∈ H is eliminated w.p. at least wt(B̄(h))

I let t be the first step for which Wt(B̄(h)) ≥ l . Then the
probability that h is not eliminated by the end of step t is(

1− w1(B̄(h))
)
·
(
1− w2(B̄(h))

)
· · ·
(
1− wt(B̄(h))

)
≤ exp(−Wt(B̄(h)))

≤ δ

|H|

(15)

I now take the union bound over H
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