Learning from the Crowd

Yuemei Zhang

November 27, 2017

Outline

Introduction
The Setting
A Baseline Algorithm

An Interleaving Algorithm
Overview of Techniques
Main Result
The General Case

No Perfect Labelers

An Example of Crowdsourced Labeling: the ESP Game

Players try to “agree” on as many images as they can in 2.5
minutes.

0:11 The ESP Game 2100
Taboo Words Your Guesses

An Example of Crowdsourced Labeling: the ESP Game

Players try to “agree” on as many images as they can in 2.5
minutes.

0:11 The ESP Game 2100
Taboo Words Your Guesses

Characteristics of Crowdsourcing

> A large pool of labelers

» High level of noise

The Setting

» Realizable PAC learning
» The instance space X
» Labels Y = {+1, -1}
A distribution D over X x Y
The hypothesis class F
A true classifier f* € F: errp(f*) =0
errp(f) = Pr r(x))~plf (x) # £*(x)]

v

v

v

v

The Setting

» Realizable PAC learning
» The instance space X
» Labels Y = {+1, -1}
A distribution D over X x Y
The hypothesis class F
» A true classifier f* € F: errp(f*) =0
> errp(f) = Pri e+ (x))~nlf (x) # *(x)]
> A set of labelers L: each labeler i is a classification function
8i - X — y

v

v

The Setting

» Realizable PAC learning
» The instance space X
» Labels Y = {+1, -1}
A distribution D over X x Y
The hypothesis class F
» A true classifier f* € F: errp(f*) =0
> errp(f) = Pri e+ (x))~nlf (x) # *(x)]
> A set of labelers L: each labeler i is a classification function
8i - X =Y
> Perfect labelers: errp(gi) =0

v

v

The Setting

v

Realizable PAC learning
» The instance space X
» Labels Y = {+1, -1}
A distribution D over X x Y
The hypothesis class F
» A true classifier f* € F: errp(f*) =0
> errp(f) = Pri e+ (x))~nlf (x) # *(x)]
A set of labelers L: each labeler i is a classification function
8i - X =Y
Perfect labelers: errp(gi) =0

v

v

v

v

Uniform distribution P over all labelers

v

The Setting

v

Realizable PAC learning
» The instance space X
» Labels Y = {+1, -1}
A distribution D over X x Y
The hypothesis class F
» A true classifier f* € F: errp(f*) =0
> errp(f) = Pri e+ (x))~nlf (x) # *(x)]
A set of labelers L: each labeler i is a classification function
8i - X =Y
Perfect labelers: errp(gi) =0

v

v

v

v

Uniform distribution P over all labelers

v

v

Fraction of perfect labelers o = Pr;_p[errp(gi) = 0]

The Setting

The Learning Algorithm
» Draw unlabeled instances according to D.
» Query labelers on these instances.
» Use the oracle O that for a set of labeled samples S, returns
a function f € F consistent with S.

Goal
> Low error rate
» A small number of label queries

The Setting

The Learning Algorithm
» Draw unlabeled instances according to D.
» Query labelers on these instances.

» Use the oracle O that for a set of labeled samples S, returns
a function f € F consistent with S.

Goal
> Low error rate
» A small number of label queries

Recall the label complexity of traditional PAC learning (VC theory):

Mes = O<d <I0g1+|og1)>.
’ € € 0

The Setting

The Learning Algorithm
» Draw unlabeled instances according to D.
» Query labelers on these instances.

» Use the oracle O that for a set of labeled samples S, returns
a function f € F consistent with S.

Goal
> Low error rate
» A small number of label queries

Recall the label complexity of traditional PAC learning (VC theory):

Mes = O<d <I0g1+|og1)>.
’ € € 0

Cost per labeled example : # label queries/m, s

A Baseline Algorithm

Consider the case of a strong majority of perfect labelers

(o = 1/2 + ©(1)).

A Baseline Algorithm
Consider the case of a strong majority of perfect labelers
(a=1/2+0(1)).
BASELINE

» Draw m = m, s samples.

> Label each sample using the majority vote of k labelers, where

» Use the supervised learning oracle and return Oz(S).

A Baseline Algorithm

Consider the case of a strong majority of perfect labelers
(a=1/2+0(1)).
BASELINE

» Draw m = m, s samples.

> Label each sample using the majority vote of k labelers, where

» Use the supervised learning oracle and return Oz(S).

Improvement over BASELINE

> Improve the log(m/J) cost per labeled example.

» Generalize to the case where a < 1/2.

Outline

An Interleaving Algorithm
Overview of Techniques

Overview of Techniques: Boosting

Combines three classifiers of error p < 1/2 to get a classifier of
error O(p?).

Theorem
Boosting (Schapire 1990): For any p < 1/2 and distribution D,
consider three classifiers:

Overview of Techniques: Boosting

Combines three classifiers of error p < 1/2 to get a classifier of
error O(p?).

Theorem
Boosting (Schapire 1990): For any p < 1/2 and distribution D,
consider three classifiers:

1. hi:errp(h) < p;

Overview of Techniques: Boosting

Combines three classifiers of error p < 1/2 to get a classifier of
error O(p?).

Theorem
Boosting (Schapire 1990): For any p < 1/2 and distribution D,
consider three classifiers:
1. hi:errp(h) < p;
2. hy: errp,(h2) < p, where Dy = 1D¢c + 3Dy, D¢ is D
conditioned on {x|h1(x) = f*(x)}, and D, is D conditioned

on {x|m(x) # f*(x)},

Overview of Techniques: Boosting

Combines three classifiers of error p < 1/2 to get a classifier of
error O(p?).

Theorem
Boosting (Schapire 1990): For any p < 1/2 and distribution D,
consider three classifiers:
1. hi:errp(h) < p;
2. hy: errp,(h2) < p, where Dy = 1D¢c + 3Dy, D¢ is D
conditioned on {x|h1(x) = f*(x)}, and D, is D conditioned
on {x|h(x) # f*(x)};
3. hs: errp,(h3) < p. D3 is D conditioned on {x|hi(x) # ha(x)}.

Overview of Techniques: Boosting

Combines three classifiers of error p < 1/2 to get a classifier of
error O(p?).

Theorem
Boosting (Schapire 1990): For any p < 1/2 and distribution D,
consider three classifiers:
1. hi:errp(h) < p;
2. hy: errp,(h2) < p, where Dy = 1D¢c + 3Dy, D¢ is D
conditioned on {x|h1(x) = f*(x)}, and D, is D conditioned
on {x|h(x) # f*(x)};
3. hs: errp,(h3) < p. D3 is D conditioned on {x|hi(x) # ha(x)}.
Then, the majority vote of hy, hy and hs has error < 3p2 — 2p3
under distribution D.

The Algorithm (Overview)

The Algorithm (Overview)

» CORRECT-LABEL(S, ¢): label each instance in S with the
majority vote of a set of labelers

The Algorithm (Overview)

» CORRECT-LABEL(S, ¢): label each instance in S with the
majority vote of a set of labelers
» Phase 1

» Draw a set of samples S; from D
» S = CORRECT-LABEL(S;, 6/6)
> h=O0zx(51)

The Algorithm (Overview)

» CORRECT-LABEL(S, ¢): label each instance in S with the
majority vote of a set of labelers
» Phase 1
» Draw a set of samples S; from D
» S, = CORRECT-LABEL(S,, 6/6)
> h = 0x(5)
» Phase 2

» Draw a set of samples W to simulate distribution D
> h2 = O]:(W)

The Algorithm (Overview)

v

CORRECT-LABEL(S, ¢): label each instance in S with the
majority vote of a set of labelers
Phase 1
» Draw a set of samples S; from D
» S; = CORRECT-LABEL(S;, 6/6)
> h = 0x(5)
Phase 2
» Draw a set of samples W to simulate distribution D
> hy = O]:(W)
Phase 3
» Draw a set of samples S3 from D3
» S3 = CORRECT-LABEL(S3, §/6)
> hy = O0x(S3)

v

v

v

The Algorithm (Overview)

» CORRECT-LABEL(S, ¢): label each instance in S with the
majority vote of a set of labelers
» Phase 1
» Draw a set of samples S; from D
» S; = CORRECT-LABEL(S;, 6/6)
> h = 0x(5)
> Phase 2
» Draw a set of samples W to simulate distribution D
> hy = O]:(W)
» Phase 3

> Draw a set of samples S3 from D
» S3 = CORRECT-LABEL(S3, §/6)
> hy = OFr(S3)

» Return the majority vote of hy, hy and hs

The Algorithm (Overview)

» CORRECT-LABEL(S, ¢): label each instance in S with the
majority vote of a set of labelers
» Phase 1
» Draw a set of samples S; from D
» S; = CORRECT-LABEL(S;, 6/6)
> h = 0x(5)
> Phase 2
» Draw a set of samples W to simulate distribution D
> hy = O]:(W)
» Phase 3

> Draw a set of samples S3 from D
» S3 = CORRECT-LABEL(S3, §/6)
> h3 = Ox(S3)

» Return the majority vote of hy, hy and hs

Overview of Techniques: Filtering

Algorithm 1 FILTER(S, hy)
Returns a set of instances mislabeled by h; to simulate D;.
» Let S, =0 and N = log(1/¢)

» Foreach x e S
» Fort=1,....N
» Draw a labeler i ~ P and let y; = gi(x).
» If t is odd and the majority vote of y;.; agrees with
h1 on x, then goto the next x.

» If the majority vote of y1.; never agrees with h; on x,
then add x to ;.

» Return S

Outline

An Interleaving Algorithm

Main Result

Algorithm 2

» CORRECT-LABEL(S, ¢): label each instance in S with the
majority vote of k labelers, where k = O(log ‘%')

Algorithm 2

» CORRECT-LABEL(S, ¢): label each instance in S with the
majority vote of k labelers, where k = O(log ‘%')
> Phase 1
» Draw Sy of size 2m 1 5,6 from D
» 5 = CORRECT-LABEL(S,, §/6)
> h = 0x(5)

Algorithm 2

» CORRECT-LABEL(S, ¢): label each instance in S with the
majority vote of k labelers, where k = O(log ‘%')
» Phase 1
» Draw Sy of size 2m 1 5,6 from D
» 5, = CORRECT-LABEL(S;, §/6)
> h = O0z(51)
> Phase 2
» Draw S, of size ©(m,), Sc of size @(m\@é) from D
S) = FILTER(S,, hy)
CORRECT-LABEL(S; U S, 6/6)
Divide the labeled set into W, and W¢ according to whether
the label agrees with h;
> Draw W of size ©(m s« 5) from a distribution that equally
weights W, and W¢
> h2 = O]:(W)

v

v

v

Algorithm 2

» CORRECT-LABEL(S, ¢): label each instance in S with the
majority vote of k labelers, where k = O(log ‘%')
» Phase 1
» Draw Sy of size 2m 1 5,6 from D
» S; = CORRECT-LABEL(S;, 4/6)
> h = O0z(51)
» Phase 2
» Draw S, of size ©(m,), Sc of size @(m\@é) from D
S; = FILTER(S2, h1)
CORRECT-LABEL(S; U S¢, 4/6)
Divide the labeled set into W, and W¢ according to whether
the label agrees with h;
> Draw W of size ©(m s« 5) from a distribution that equally
weights W, and W¢
> h2 = O]:(W)
» Phase 3
» Draw S3 of size 2m sz 5/6 from Dj
» S3 = CORRECT-LABEL(S3, §/6)
> h3 = O]:(53)

v

v

v

Main Result

Theorem
Algorithm 2 returns f € F with errp(f) < e with probability 1 — ¢,

using O (m\/(; log (—/ed) + m, 5) labels.

Main Result

Theorem
Algorithm 2 returns f € F with errp(f) < e with probability 1 — ¢,

using O (m\/(; log (—/ed) + m, 5) labels.

Note that when

m\/;(;
>
72 '°g< 5)

the cost per labeled example is O(1).

Correctness of FILTER

Lemma
If hi(x) = f*(x), then x € FILTER(S, h1) with probability < +/e.
If hi(x) # f*(x), then x € FILTER(S, h1) with probability > 1/2.

Correctness of FILTER

Lemma
If hi(x) = f*(x), then x € FILTER(S, h1) with probability < +/e.
If hi(x) # f*(x), then x € FILTER(S, h1) with probability > 1/2.

Proof.

> Part 1 (hi(x) = f*(x)):
E; = 1{the majority vote of y;.y is incorrect}, where
N = O(log #)) By Hoeffding inequality, we have Pr[E;] < /€.

Correctness of FILTER

Lemma
If hi(x) = f*(x), then x € FILTER(S, h1) with probability < +/e.
If hi(x) # f*(x), then x € FILTER(S, h1) with probability > 1/2.

Proof.
> Part 1 (hi(x) = f*(x)):
E; = 1{the majority vote of y;.y is incorrect}, where

N = O(log #)) By Hoeffding inequality, we have Pr[E;] < /€.

> Part 2 (hi(x) # *(x)):
E; = 1{3t : the majority vote of y;.; is incorrect}. Using the
probability of return in biased random walks,

Pr[Es] = (1(1fa)’v>/<1 <1_aa)N+1> 3 1;a<é

O

Label Complexity of FILTER

Lemma
With probability at least 1 — exp(—S(|S|v/€)), FILTER(S, h1)
makes O(|S|) label queries.

Label Complexity of FILTER

Lemma
With probability at least 1 — exp(—(|S|/€)), FILTER(S, h1)
makes O(|S|) label queries.

Proof.

Using Chernoff bound, with probability 1 — exp(—|S|1/€) the total
number of points in S where h; disagrees with f* is O(|S|/e).
The number of queries spent on these points is at most

O(|S[v/elog(1/€)) < O(]S]).

Label Complexity of FILTER

Lemma
With probability at least 1 — exp(—(|S|/€)), FILTER(S, h1)
makes O(|S|) label queries.

Proof.

Using Chernoff bound, with probability 1 — exp(—|S|1/€) the total
number of points in S where h; disagrees with f* is O(|S|/e).
The number of queries spent on these points is at most

O(|S[v/elog(1/€)) < O(]S]).

For each x such that h;(x) = 7*(x), let N; be the expected
number of queries until we have i more correct labels than
incorrect ones. Then Ny < a+ (1 —«a)(Na+1). Ny =2N;.
= Ny <1/(2a —1).

Proof (continued)

Let L, be the total number of queries on x before we have one
more correct label than incorrect labels. Then E[L,] < 1/(2a — 1).
We can show that for some positive real number L and any k > 1,

El(L ~ (LD < SEI(L ~ E[LDL k1.

Proof (continued)

Let L, be the total number of queries on x before we have one
more correct label than incorrect labels. Then E[L,] < 1/(2a — 1).
We can show that for some positive real number L and any k > 1,

El(L ~ (LD < SEI(L ~ E[LDL k1.
Using the Bernstein inequality,

Prl > Le—ISIE[L] = O(IS)| < exp(~[S)).
ha()=F*(x)

Therefore, the total number of queries over all points x € S is
O(|S]) with probability at least 1 — exp(—|S|v/¢€).

Correctness of Phase 2

Lemma
With probability 1 — 26/3, errp,(h2) < v/€/2.

Correctness of Phase 2

Lemma
With probability 1 — 26/3, errp,(h2) < v/€/2.

Proof.
» Part 1. With very high probability, errp(hy) < %ﬁ

Correctness of Phase 2
Lemma
With probability 1 — 26/3, errp,(h2) < v/€/2.
Proof.

» Part 1. With very high probability, errp(hy) < %ﬁ

» Part 2. With probability 1 — exp(—(m_z 5)), W, Wc and S,
all have size ©(m f ;).

Correctness of Phase 2

Lemma
With probability 1 — 26/3, errp,(h2) < v/€/2.

Proof.

» Part 1. With very high probability, errp(hy) < %\/E

» Part 2. With probability 1 — exp(—(m_z 5)), W, Wc and S,
all have size ©(m f ;).

» Part 3. Let D’ be the distribution that equally weights W,
and We, p/(x) be the density of x in D’, and p»(x) be the
density of x in Dp. Then for all x, p/(x) > ¢ - pa(x) for a
constant ¢ > 0.

Correctness of Phase 2

Lemma
With probability 1 — 26/3, errp,(h2) < v/€/2.

Proof.

» Part 1. With very high probability, errp(hy) < %ﬁ

» Part 2. With probability 1 — exp(—(m_z 5)), W, Wc and S,
all have size ©(m f ;).

» Part 3. Let D’ be the distribution that equally weights W,
and We, p/(x) be the density of x in D’, and p»(x) be the
density of x in Dp. Then for all x, p/(x) > ¢ - pa(x) for a
constant ¢ > 0.

» Part 4. There exists a constant ¢’ > 1 such that with a
labeled sample set S of size ¢'m_ /5 drawn from D', Ox(S)
has error of at most % € under distribution D5.

Proof of Part 3
If hi(x) = f*(x), then
1_ [# occurrences of x in W¢
p(x)=E — £
2 [Wel
S E[# occurrences of x in W¢]
B am s
< E[# occurrences of x in S¢]
B C]_m\ﬁ,é
_ [5cl-p(x)
C]_m\/a(s
_ [Scl-pe(x) - (1 = ve/2)
Clm\/ad

> c2pc(x)

1

= §C2p2(X).

Proof of Part 3 (continued)
If hi(x) # f*(x), then
J(x) = %IE # occurrer1‘(‘:;/s‘of xin W,
I
S E[# occurrences of x in W/]
- c:’lm\/;(;
E[# occurrences of x in 5]
c{m\@(;
3152/ - p(x)
c{m\/a(;
3152 - pi(x) - Ve/2
c{m\@a
chpc(x)

1
= §C§P2(X)‘

v

v

Main Result

Theorem
Algorithm 2 returns f € F with errp(f) < € with probability 1 — 6,
using O (m\[(; log (vEd) + me 5) labels.

Proof.

» Phase 1 and Phase 3 use O <m\[5 log ()) labels
> Phase 2:
» FILTER uses O(mc ;) labels
> CORRECT-LABEL uses O (m,; slog (™42) labels

O

Outline

An Interleaving Algorithm

The General Case

The General Case of Any «
The fraction of perfect labelers o < 3 + o(1).

Key Challenges

» CORRECT-LABEL(S, §) may return a highly noisy labeled
sample set.

» FILTER(S, h1) may filter the instances incorrectly.

The General Case of Any «
The fraction of perfect labelers o < 3 + o(1).

Key Challenges

» CORRECT-LABEL(S, §) may return a highly noisy labeled
sample set.

» FILTER(S, h1) may filter the instances incorrectly.

“Golden Queries”

» We have access to an “expert” and get the correct label of an
example.

» If we make a golden query when the size of the majority vote
is less than a fraction 1 — a/2 of labelers, then at least an
a/2 fraction of labelers can be pruned.

» After making O(1/«) golden queries, the good labelers form a
strong majority.

No Perfect Labelers

In this setting, crowdsourced learning reduces to the difficult
agnostic learning problem.

Goal: identify the set of all good labelers.
The Setting

» a pool of n labelers

» good labelers have error at most ¢

» bad labelers have error at least 4e

» at least | 7] + 1 labelers are good

We can identify all good labelers with probability 1 — 9, using
O(% log (g)) queries per labeler.

	Introduction
	The Setting
	A Baseline Algorithm
	An Interleaving Algorithm
	Overview of Techniques
	Main Result
	The General Case

	No Perfect Labelers

