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An Example of Crowdsourced Labeling: the ESP Game
Players try to “agree” on as many images as they can in 2.5
minutes.

Characteristics of Crowdsourcing

I A large pool of labelers

I High level of noise
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The Setting

I Realizable PAC learning

I The instance space X
I Labels Y = {+1,−1}
I A distribution D over X × Y
I The hypothesis class F
I A true classifier f ∗ ∈ F : errD(f ∗) = 0
I errD(f ) = Pr(x ,f ∗(x))∼D [f (x) 6= f ∗(x)]

I A set of labelers L: each labeler i is a classification function
gi : X → Y

I Perfect labelers: errD(gi ) = 0

I Uniform distribution P over all labelers

I Fraction of perfect labelers α = Pri∼P [errD(gi ) = 0]
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The Setting

The Learning Algorithm

I Draw unlabeled instances according to D.

I Query labelers on these instances.

I Use the oracle OF that for a set of labeled samples S , returns
a function f ∈ F consistent with S .

Goal

I Low error rate

I A small number of label queries

Recall the label complexity of traditional PAC learning (VC theory):

mε,δ = O

(
d

ε

(
log

1

ε
+ log

1

δ

))
.

Cost per labeled example : # label queries/mε,δ
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A Baseline Algorithm

Consider the case of a strong majority of perfect labelers
(α = 1/2 + Θ(1)).

BASELINE

I Draw m = mε,δ samples.

I Label each sample using the majority vote of k labelers, where

k = O

(
log(m/δ)

(α− 1/2)2

)
.

I Use the supervised learning oracle and return OF (S).

Improvement over BASELINE

I Improve the log(m/δ) cost per labeled example.

I Generalize to the case where α < 1/2.
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Overview of Techniques: Boosting

Combines three classifiers of error p < 1/2 to get a classifier of
error O(p2).

Theorem
Boosting (Schapire 1990): For any p < 1/2 and distribution D,
consider three classifiers:

1. h1: errD(h1) ≤ p;

2. h2: errD2(h2) ≤ p, where D2 = 1
2DC + 1

2DI , DC is D
conditioned on {x |h1(x) = f ∗(x)}, and DI is D conditioned
on {x |h1(x) 6= f ∗(x)};

3. h3: errD3(h3) ≤ p. D3 is D conditioned on {x |h1(x) 6= h2(x)}.
Then, the majority vote of h1, h2 and h3 has error ≤ 3p2 − 2p3

under distribution D.
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The Algorithm (Overview)

I CORRECT-LABEL(S , δ): label each instance in S with the
majority vote of a set of labelers

I Phase 1
I Draw a set of samples S1 from D
I S1 = CORRECT-LABEL(S1, δ/6)
I h1 = OF (S1)

I Phase 2
I Draw a set of samples W to simulate distribution D2

I h2 = OF (W )

I Phase 3
I Draw a set of samples S3 from D3

I S3 = CORRECT-LABEL(S3, δ/6)
I h3 = OF (S3)

I Return the majority vote of h1, h2 and h3
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Overview of Techniques: Filtering

Algorithm 1 FILTER(S , h1)

Returns a set of instances mislabeled by h1 to simulate D2.

I Let SI = ∅ and N = log(1/ε)
I For each x ∈ S

I For t = 1, . . . ,N

I Draw a labeler i ∼ P and let yt = gi (x).
I If t is odd and the majority vote of y1:t agrees with
h1 on x , then goto the next x .

I If the majority vote of y1:t never agrees with h1 on x ,
then add x to SI .

I Return SI
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Algorithm 2
I CORRECT-LABEL(S , δ): label each instance in S with the

majority vote of k labelers, where k = O(log |S |δ )

I Phase 1
I Draw S1 of size 2m√ε,δ/6 from D
I S1 = CORRECT-LABEL(S1, δ/6)
I h1 = OF (S1)

I Phase 2
I Draw S2 of size Θ(mε,δ), SC of size Θ(m√ε,δ) from D
I SI = FILTER(S2, h1)
I CORRECT-LABEL(SI ∪ SC , δ/6)
I Divide the labeled set into WI and WC according to whether

the label agrees with h1
I Draw W of size Θ(m√ε,δ) from a distribution that equally

weights WI and WC

I h2 = OF (W )
I Phase 3

I Draw S3 of size 2m√ε,δ/6 from D3

I S3 = CORRECT-LABEL(S3, δ/6)
I h3 = OF (S3)
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Main Result

Theorem
Algorithm 2 returns f ∈ F with errD(f ) ≤ ε with probability 1− δ,

using O
(
m√ε,δ log

(
m√ε,δ
δ

)
+ mε,δ

)
labels.

Note that when
1√
ε
≥ log

(
m√ε,δ
δ

)
,

the cost per labeled example is O(1).
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Correctness of FILTER

Lemma
If h1(x) = f ∗(x), then x ∈ FILTER(S, h1) with probability <

√
ε.

If h1(x) 6= f ∗(x), then x ∈ FILTER(S, h1) with probability ≥ 1/2.

Proof.

I Part 1 (h1(x) = f ∗(x)):
E1 = 1{the majority vote of y1:N is incorrect}, where
N = O(log 1√

ε
)). By Hoeffding inequality, we have Pr[E1] <

√
ε.

I Part 2 (h1(x) 6= f ∗(x)):
E2 = 1{∃t : the majority vote of y1:t is incorrect}. Using the
probability of return in biased random walks,

Pr[E2] =

(
1−

(
α

1− α

)N
)
/

(
1−

(
α

1− α

)N+1
)
<

1− α
α

<
1

2
.
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Label Complexity of FILTER

Lemma
With probability at least 1− exp(−Ω(|S |

√
ε)), FILTER(S, h1)

makes O(|S |) label queries.

Proof.
Using Chernoff bound, with probability 1− exp(−|S |

√
ε) the total

number of points in S where h1 disagrees with f ∗ is O(|S |
√
ε).

The number of queries spent on these points is at most
O(|S |

√
ε log(1/ε)) ≤ O(|S |).

For each x such that h1(x) = f ∗(x), let Ni be the expected
number of queries until we have i more correct labels than
incorrect ones. Then N1 ≤ α + (1− α)(N2 + 1). N2 = 2N1.
⇒ N1 ≤ 1/(2α− 1).
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Proof (continued)

Let Lx be the total number of queries on x before we have one
more correct label than incorrect labels. Then E[Lx ] ≤ 1/(2α− 1).
We can show that for some positive real number L and any k > 1,

E[(Lx − E[Lx ])k ] ≤ 1

2
E[(Lx − E[Lx ])2]Lk−2k!.

Using the Bernstein inequality,

Pr

 ∑
h1(x)=f ∗(x)

Lx − |S |E[Lx ] ≥ O(|S |)

 ≤ exp(−|S |).

Therefore, the total number of queries over all points x ∈ S is
O(|S |) with probability at least 1− exp(−|S |

√
ε).
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Correctness of Phase 2

Lemma
With probability 1− 2δ/3, errD2(h2) ≤

√
ε/2.

Proof.

I Part 1. With very high probability, errD(h1) ≤ 1
2

√
ε.

I Part 2. With probability 1− exp(−Ω(m√ε,δ)), WI , WC and SI
all have size Θ(m√ε,δ).

I Part 3. Let D ′ be the distribution that equally weights WI

and WC , ρ′(x) be the density of x in D ′, and ρ2(x) be the
density of x in D2. Then for all x , ρ′(x) ≥ c · ρ2(x) for a
constant c > 0.

I Part 4. There exists a constant c ′ > 1 such that with a
labeled sample set S of size c ′m√ε,δ drawn from D ′, OF (S)

has error of at most 1
2

√
ε under distribution D2.
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Proof of Part 3
If h1(x) = f ∗(x), then

ρ′(x) =
1

2
E
[

# occurrences of x in WC

|WC |

]
≥ E[# occurrences of x in WC ]

c1m√ε,δ

≥ E[# occurrences of x in SC ]

c1m√ε,δ

=
|SC | · ρ(x)

c1m√ε,δ

=
|SC | · ρC (x) · (1−

√
ε/2)

c1m√ε,δ

≥ c2ρC (x)

=
1

2
c2ρ2(x).



Proof of Part 3 (continued)
If h1(x) 6= f ∗(x), then

ρ′(x) =
1

2
E
[

# occurrences of x in WI

|WI |

]
≥ E[# occurrences of x in WI ]

c ′1m
√
ε,δ

≥ E[# occurrences of x in SI ]

c ′1m
√
ε,δ

≥
1
2 |S2| · ρ(x)

c ′1m
√
ε,δ

=
1
2 |S2| · ρI (x) ·

√
ε/2

c ′1m
√
ε,δ

≥ c ′2ρC (x)

=
1

2
c ′2ρ2(x).



Main Result

Theorem
Algorithm 2 returns f ∈ F with errD(f ) ≤ ε with probability 1− δ,

using O
(
m√ε,δ log

(
m√ε,δ
δ

)
+ mε,δ

)
labels.

Proof.

I Phase 1 and Phase 3 use O
(
m√ε,δ log

(
m√ε,δ
δ

))
labels

I Phase 2:

I FILTER uses O(mε,δ) labels

I CORRECT-LABEL uses O
(
m√ε,δ log

(
m√ε,δ
δ

))
labels
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The General Case of Any α

The fraction of perfect labelers α < 1
2 + o(1).

Key Challenges

I CORRECT-LABEL(S , δ) may return a highly noisy labeled
sample set.

I FILTER(S , h1) may filter the instances incorrectly.

“Golden Queries”

I We have access to an “expert” and get the correct label of an
example.

I If we make a golden query when the size of the majority vote
is less than a fraction 1− α/2 of labelers, then at least an
α/2 fraction of labelers can be pruned.

I After making O(1/α) golden queries, the good labelers form a
strong majority.
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No Perfect Labelers

In this setting, crowdsourced learning reduces to the difficult
agnostic learning problem.

Goal: identify the set of all good labelers.

The Setting

I a pool of n labelers

I good labelers have error at most ε

I bad labelers have error at least 4ε

I at least bn2c+ 1 labelers are good

We can identify all good labelers with probability 1− δ, using
O(1ε log

(
n
δ

)
) queries per labeler.
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