Learning from the Crowd

Yuemei Zhang

November 27, 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline

Introduction

The Setting

A Baseline Algorithm

An Interleaving Algorithm Overview of Techniques Main Result The General Case

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

No Perfect Labelers

An Example of Crowdsourced Labeling: the ESP Game

Players try to "agree" on as many images as they can in 2.5 minutes.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

An Example of Crowdsourced Labeling: the ESP Game

Players try to "agree" on as many images as they can in 2.5 minutes.

Characteristics of Crowdsourcing

- A large pool of labelers
- High level of noise

- Realizable PAC learning
 - The instance space \mathcal{X}
 - Labels $\mathcal{Y} = \{+1, -1\}$
 - A distribution D over $\mathcal{X} \times \mathcal{Y}$
 - The hypothesis class ${\cal F}$
 - A true classifier $f^* \in \mathcal{F}$: $err_D(f^*) = 0$

•
$$\operatorname{err}_D(f) = \operatorname{Pr}_{(x,f^*(x))\sim D}[f(x) \neq f^*(x)]$$

- Realizable PAC learning
 - The instance space \mathcal{X}
 - Labels $\mathcal{Y} = \{+1, -1\}$
 - A distribution D over $\mathcal{X} \times \mathcal{Y}$
 - The hypothesis class ${\cal F}$
 - A true classifier $f^* \in \mathcal{F}$: $err_D(f^*) = 0$

•
$$\operatorname{err}_D(f) = \operatorname{Pr}_{(x,f^*(x))\sim D}[f(x) \neq f^*(x)]$$

• A set of labelers L: each labeler i is a classification function $g_i : \mathcal{X} \to \mathcal{Y}$

- Realizable PAC learning
 - The instance space \mathcal{X}
 - Labels $\mathcal{Y} = \{+1, -1\}$
 - A distribution D over $\mathcal{X} \times \mathcal{Y}$
 - The hypothesis class ${\cal F}$
 - A true classifier $f^* \in \mathcal{F}$: $err_D(f^*) = 0$

•
$$\operatorname{err}_D(f) = \operatorname{Pr}_{(x,f^*(x))\sim D}[f(x) \neq f^*(x)]$$

• A set of labelers L: each labeler *i* is a classification function $g_i : \mathcal{X} \to \mathcal{Y}$

• Perfect labelers: $err_D(g_i) = 0$

- Realizable PAC learning
 - The instance space \mathcal{X}
 - Labels $\mathcal{Y} = \{+1, -1\}$
 - A distribution D over $\mathcal{X} \times \mathcal{Y}$
 - The hypothesis class ${\cal F}$
 - A true classifier $f^* \in \mathcal{F}$: $err_D(f^*) = 0$

•
$$\operatorname{err}_D(f) = \operatorname{Pr}_{(x,f^*(x))\sim D}[f(x) \neq f^*(x)]$$

• A set of labelers L: each labeler i is a classification function $g_i : \mathcal{X} \to \mathcal{Y}$

- Perfect labelers: $err_D(g_i) = 0$
- Uniform distribution P over all labelers

- Realizable PAC learning
 - The instance space \mathcal{X}
 - Labels $\mathcal{Y} = \{+1, -1\}$
 - A distribution D over $\mathcal{X} \times \mathcal{Y}$
 - The hypothesis class ${\cal F}$
 - A true classifier $f^* \in \mathcal{F}$: $err_D(f^*) = 0$

•
$$\operatorname{err}_D(f) = \operatorname{Pr}_{(x,f^*(x))\sim D}[f(x) \neq f^*(x)]$$

• A set of labelers L: each labeler i is a classification function $g_i : \mathcal{X} \to \mathcal{Y}$

- Perfect labelers: err_D(g_i) = 0
- Uniform distribution P over all labelers
- ► Fraction of perfect labelers α = Pr_{i∼P}[err_D(g_i) = 0]

The Learning Algorithm

- Draw unlabeled instances according to *D*.
- Query labelers on these instances.
- ▶ Use the oracle $\mathcal{O}_{\mathcal{F}}$ that for a set of labeled samples *S*, returns a function $f \in \mathcal{F}$ consistent with *S*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Goal

- Low error rate
- A small number of label queries

The Learning Algorithm

- Draw unlabeled instances according to D.
- Query labelers on these instances.
- ► Use the oracle O_F that for a set of labeled samples S, returns a function f ∈ F consistent with S.

Goal

- Low error rate
- A small number of label queries

Recall the label complexity of traditional PAC learning (VC theory):

$$m_{\epsilon,\delta} = O\left(rac{d}{\epsilon}\left(\lograc{1}{\epsilon} + \lograc{1}{\delta}
ight)
ight).$$

The Learning Algorithm

- Draw unlabeled instances according to D.
- Query labelers on these instances.
- ► Use the oracle O_F that for a set of labeled samples S, returns a function f ∈ F consistent with S.

Goal

- Low error rate
- A small number of label queries

Recall the label complexity of traditional PAC learning (VC theory):

$$m_{\epsilon,\delta} = O\left(rac{d}{\epsilon}\left(\lograc{1}{\epsilon} + \lograc{1}{\delta}
ight)
ight).$$

Cost per labeled example : # label queries/ $m_{\epsilon,\delta}$

A Baseline Algorithm

Consider the case of a strong majority of perfect labelers ($\alpha = 1/2 + \Theta(1)$).

(ロ)、(型)、(E)、(E)、 E) の(の)

A Baseline Algorithm

Consider the case of a strong majority of perfect labelers ($\alpha = 1/2 + \Theta(1)$). BASELINE

- Draw $m = m_{\epsilon,\delta}$ samples.
- Label each sample using the majority vote of k labelers, where

$$k = O\left(\frac{\log(m/\delta)}{(\alpha - 1/2)^2}\right)$$

• Use the supervised learning oracle and return $\mathcal{O}_{\mathcal{F}}(S)$.

A Baseline Algorithm

Consider the case of a strong majority of perfect labelers ($\alpha = 1/2 + \Theta(1)$). BASELINE

- Draw $m = m_{\epsilon,\delta}$ samples.
- Label each sample using the majority vote of k labelers, where

$$k = O\left(rac{\log(m/\delta)}{(lpha - 1/2)^2}
ight)$$

• Use the supervised learning oracle and return $\mathcal{O}_{\mathcal{F}}(S)$.

Improvement over BASELINE

- Improve the $log(m/\delta)$ cost per labeled example.
- Generalize to the case where $\alpha < 1/2$.

Outline

Introduction

The Setting

A Baseline Algorithm

An Interleaving Algorithm Overview of Techniques

Main Result The General Case

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

No Perfect Labelers

Combines three classifiers of error p < 1/2 to get a classifier of error $O(p^2)$.

Theorem

Boosting (Schapire 1990): For any p < 1/2 and distribution D, consider three classifiers:

Combines three classifiers of error p < 1/2 to get a classifier of error $O(p^2)$.

Theorem

Boosting (Schapire 1990): For any p < 1/2 and distribution D, consider three classifiers:

1. $h_1: \operatorname{err}_D(h_1) \leq p;$

Combines three classifiers of error p < 1/2 to get a classifier of error $O(p^2)$.

Theorem

Boosting (Schapire 1990): For any p < 1/2 and distribution D, consider three classifiers:

- 1. $h_1: \operatorname{err}_D(h_1) \le p;$
- 2. h_2 : $\operatorname{err}_{D_2}(h_2) \leq p$, where $D_2 = \frac{1}{2}D_C + \frac{1}{2}D_I$, D_C is D conditioned on $\{x|h_1(x) = f^*(x)\}$, and D_I is D conditioned on $\{x|h_1(x) \neq f^*(x)\}$;

Combines three classifiers of error p < 1/2 to get a classifier of error $O(p^2)$.

Theorem

Boosting (Schapire 1990): For any p < 1/2 and distribution D, consider three classifiers:

- 1. $h_1: \operatorname{err}_D(h_1) \le p;$
- 2. h_2 : $\operatorname{err}_{D_2}(h_2) \leq p$, where $D_2 = \frac{1}{2}D_C + \frac{1}{2}D_I$, D_C is D conditioned on $\{x|h_1(x) = f^*(x)\}$, and D_I is D conditioned on $\{x|h_1(x) \neq f^*(x)\}$;
- 3. h_3 : $err_{D_3}(h_3) \le p$. D_3 is D conditioned on $\{x | h_1(x) \ne h_2(x)\}$.

Combines three classifiers of error p < 1/2 to get a classifier of error $O(p^2)$.

Theorem

Boosting (Schapire 1990): For any p < 1/2 and distribution D, consider three classifiers:

- 1. $h_1: \operatorname{err}_D(h_1) \le p;$
- 2. h_2 : $\operatorname{err}_{D_2}(h_2) \leq p$, where $D_2 = \frac{1}{2}D_C + \frac{1}{2}D_I$, D_C is D conditioned on $\{x|h_1(x) = f^*(x)\}$, and D_I is D conditioned on $\{x|h_1(x) \neq f^*(x)\}$;

3. h_3 : $\operatorname{err}_{D_3}(h_3) \leq p$. D_3 is D conditioned on $\{x|h_1(x) \neq h_2(x)\}$. Then, the majority vote of h_1 , h_2 and h_3 has error $\leq 3p^2 - 2p^3$ under distribution D.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

 CORRECT-LABEL(S, δ): label each instance in S with the majority vote of a set of labelers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 CORRECT-LABEL(S, δ): label each instance in S with the majority vote of a set of labelers

- Phase 1
 - Draw a set of samples S_1 from D
 - $\overline{S_1} = \text{CORRECT-LABEL}(S_1, \delta/6)$

•
$$h_1 = \mathcal{O}_{\mathcal{F}}(\overline{S_1})$$

- CORRECT-LABEL(S, δ): label each instance in S with the majority vote of a set of labelers
- Phase 1
 - Draw a set of samples S_1 from D
 - $\overline{S_1} = \text{CORRECT-LABEL}(S_1, \delta/6)$
 - $h_1 = \mathcal{O}_{\mathcal{F}}(\overline{S_1})$
- Phase 2
 - Draw a set of samples \overline{W} to simulate distribution D_2

• $h_2 = \mathcal{O}_{\mathcal{F}}(\overline{W})$

- CORRECT-LABEL(S, δ): label each instance in S with the majority vote of a set of labelers
- Phase 1
 - Draw a set of samples S_1 from D
 - $\overline{S_1} = \text{CORRECT-LABEL}(S_1, \delta/6)$
 - $h_1 = \mathcal{O}_{\mathcal{F}}(\overline{S_1})$
- Phase 2
 - Draw a set of samples \overline{W} to simulate distribution D_2

- $h_2 = \mathcal{O}_{\mathcal{F}}(\overline{W})$
- Phase 3
 - Draw a set of samples S_3 from D_3
 - $\overline{S_3} = \text{CORRECT-LABEL}(S_3, \delta/6)$
 - $h_3 = \mathcal{O}_{\mathcal{F}}(\overline{S_3})$

- CORRECT-LABEL(S, δ): label each instance in S with the majority vote of a set of labelers
- Phase 1
 - Draw a set of samples S_1 from D
 - $\overline{S_1} = \text{CORRECT-LABEL}(S_1, \delta/6)$
 - $h_1 = \mathcal{O}_{\mathcal{F}}(\overline{S_1})$
- Phase 2
 - Draw a set of samples \overline{W} to simulate distribution D_2

- $h_2 = \mathcal{O}_{\mathcal{F}}(\overline{W})$
- Phase 3
 - Draw a set of samples S_3 from D_3
 - $\overline{S_3} = \text{CORRECT-LABEL}(S_3, \delta/6)$
 - $h_3 = \mathcal{O}_{\mathcal{F}}(\overline{S_3})$
- Return the majority vote of h_1 , h_2 and h_3

- CORRECT-LABEL(S, δ): label each instance in S with the majority vote of a set of labelers
- Phase 1
 - Draw a set of samples S_1 from D
 - $\overline{S_1} = \text{CORRECT-LABEL}(S_1, \delta/6)$
 - $h_1 = \mathcal{O}_{\mathcal{F}}(\overline{S_1})$
- Phase 2
 - Draw a set of samples \overline{W} to simulate distribution D_2
 - $h_2 = \mathcal{O}_{\mathcal{F}}(\overline{W})$
- Phase 3
 - Draw a set of samples S_3 from D_3
 - $\overline{S_3} = \text{CORRECT-LABEL}(S_3, \delta/6)$
 - $h_3 = \mathcal{O}_{\mathcal{F}}(\overline{S_3})$
- Return the majority vote of h_1 , h_2 and h_3

Overview of Techniques: Filtering

Algorithm 1 FILTER(S, h_1)

Returns a set of instances mislabeled by h_1 to simulate D_2 .

- Let $S_I = \emptyset$ and $N = \log(1/\epsilon)$
- For each $x \in S$
 - For $t = 1, \ldots, N$
 - Draw a labeler $i \sim P$ and let $y_t = g_i(x)$.
 - If t is odd and the majority vote of y_{1:t} agrees with h₁ on x, then go o the next x.

► If the majority vote of y_{1:t} never agrees with h₁ on x, then add x to S₁.

Return S_I

Outline

Introduction

The Setting

A Baseline Algorithm

An Interleaving Algorithm Overview of Techniques Main Result The General Case

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

No Perfect Labelers

CORRECT-LABEL(S, δ): label each instance in S with the majority vote of k labelers, where k = O(log |S|/δ)

CORRECT-LABEL(S, δ): label each instance in S with the majority vote of k labelers, where k = O(log |S|/δ)

- Phase 1
 - Draw S_1 of size $2m_{\sqrt{\epsilon},\delta/6}$ from D
 - $\overline{S_1} = \text{CORRECT-LABEL}(S_1, \delta/6)$
 - $h_1 = \mathcal{O}_{\mathcal{F}}(\overline{S_1})$

- CORRECT-LABEL(S, δ): label each instance in S with the majority vote of k labelers, where k = O(log |S|/δ)
- Phase 1
 - Draw S_1 of size $2m_{\sqrt{\epsilon},\delta/6}$ from D
 - $\overline{S_1} = \text{CORRECT-LABEL}(S_1, \delta/6)$
 - $h_1 = \mathcal{O}_{\mathcal{F}}(\overline{S_1})$
- Phase 2
 - ▶ Draw S_2 of size $\Theta(m_{\epsilon,\delta})$, S_C of size $\Theta(m_{\sqrt{\epsilon},\delta})$ from D
 - $S_I = \text{FILTER}(S_2, h_1)$
 - CORRECT-LABEL($S_I \cup S_{C, \delta}/6$)
 - ▶ Divide the labeled set into $\overline{W_l}$ and $\overline{W_C}$ according to whether the label agrees with h_1

► Draw \overline{W} of size $\Theta(m_{\sqrt{\epsilon},\delta})$ from a distribution that equally weights $\overline{W_I}$ and $\overline{W_C}$

•
$$h_2 = \mathcal{O}_{\mathcal{F}}(\overline{W})$$

- CORRECT-LABEL(S, δ): label each instance in S with the majority vote of k labelers, where k = O(log ^{|S|}/_δ)
- Phase 1
 - Draw S_1 of size $2m_{\sqrt{\epsilon},\delta/6}$ from D
 - $\overline{S_1} = \text{CORRECT-LABEL}(S_1, \delta/6)$
 - $h_1 = \mathcal{O}_{\mathcal{F}}(\overline{S_1})$
- Phase 2
 - ▶ Draw S_2 of size $\Theta(m_{\epsilon,\delta})$, S_C of size $\Theta(m_{\sqrt{\epsilon},\delta})$ from D
 - $S_I = \text{FILTER}(S_2, h_1)$
 - CORRECT-LABEL($S_I \cup S_{C, \delta}/6$)
 - ▶ Divide the labeled set into $\overline{W_l}$ and $\overline{W_C}$ according to whether the label agrees with h_1

(日) (同) (三) (三) (三) (○) (○)

- ► Draw \overline{W} of size $\Theta(m_{\sqrt{\epsilon},\delta})$ from a distribution that equally weights $\overline{W_I}$ and $\overline{W_C}$
- $h_2 = \mathcal{O}_{\mathcal{F}}(\overline{W})$
- Phase 3
 - Draw S_3 of size $2m_{\sqrt{\epsilon},\delta/6}$ from D_3
 - $\overline{S_3} = \text{CORRECT-LABEL}(S_3, \delta/6)$
 - $h_3 = \mathcal{O}_{\mathcal{F}}(\overline{S_3})$

Main Result

Theorem Algorithm 2 returns $f \in \mathcal{F}$ with $\operatorname{err}_{D}(f) \leq \epsilon$ with probability $1 - \delta$, using $O\left(m_{\sqrt{\epsilon},\delta} \log\left(\frac{m_{\sqrt{\epsilon},\delta}}{\delta}\right) + m_{\epsilon,\delta}\right)$ labels.

Main Result

Theorem

Algorithm 2 returns $f \in \mathcal{F}$ with $\operatorname{err}_{D}(f) \leq \epsilon$ with probability $1 - \delta$, using $O\left(m_{\sqrt{\epsilon},\delta} \log\left(\frac{m_{\sqrt{\epsilon},\delta}}{\delta}\right) + m_{\epsilon,\delta}\right)$ labels.

Note that when

$$\frac{1}{\sqrt{\epsilon}} \geq \log\left(\frac{m_{\sqrt{\epsilon},\delta}}{\delta}\right),$$

the cost per labeled example is O(1).

Correctness of FILTER

Lemma

If $h_1(x) = f^*(x)$, then $x \in FILTER(S, h_1)$ with probability $< \sqrt{\epsilon}$. If $h_1(x) \neq f^*(x)$, then $x \in FILTER(S, h_1)$ with probability $\ge 1/2$.

Correctness of FILTER

Lemma

If $h_1(x) = f^*(x)$, then $x \in FILTER(S, h_1)$ with probability $< \sqrt{\epsilon}$. If $h_1(x) \neq f^*(x)$, then $x \in FILTER(S, h_1)$ with probability $\ge 1/2$.

Proof.

▶ Part 1
$$(h_1(x) = f^*(x))$$
:
 $E_1 = \mathbb{1}$ {the majority vote of $y_{1:N}$ is incorrect}, where
 $N = O(\log \frac{1}{\sqrt{\epsilon}})$. By Hoeffding inequality, we have $\Pr[E_1] < \sqrt{\epsilon}$.

Correctness of FILTER

Lemma

If $h_1(x) = f^*(x)$, then $x \in FILTER(S, h_1)$ with probability $< \sqrt{\epsilon}$. If $h_1(x) \neq f^*(x)$, then $x \in FILTER(S, h_1)$ with probability $\ge 1/2$.

Proof.

- ▶ Part 1 ($h_1(x) = f^*(x)$): $E_1 = \mathbb{1}$ {the majority vote of $y_{1:N}$ is incorrect}, where $N = O(\log \frac{1}{\sqrt{\epsilon}})$). By Hoeffding inequality, we have $\Pr[E_1] < \sqrt{\epsilon}$.
- Part 2 (h₁(x) ≠ f*(x)):
 E₂ = 1{∃t : the majority vote of y_{1:t} is incorrect}. Using the probability of return in biased random walks,

$$\Pr[E_2] = \left(1 - \left(\frac{\alpha}{1 - \alpha}\right)^N\right) / \left(1 - \left(\frac{\alpha}{1 - \alpha}\right)^{N+1}\right) < \frac{1 - \alpha}{\alpha} < \frac{1}{2}.$$

Label Complexity of FILTER

Lemma With probability at least $1 - \exp(-\Omega(|S|\sqrt{\epsilon}))$, FILTER(S, h_1) makes O(|S|) label queries.

Label Complexity of FILTER

Lemma

With probability at least $1 - \exp(-\Omega(|S|\sqrt{\epsilon}))$, FILTER(S, h_1) makes O(|S|) label queries.

Proof.

Using Chernoff bound, with probability $1 - \exp(-|S|\sqrt{\epsilon})$ the total number of points in S where h_1 disagrees with f^* is $O(|S|\sqrt{\epsilon})$. The number of queries spent on these points is at most $O(|S|\sqrt{\epsilon}\log(1/\epsilon)) \leq O(|S|)$.

Label Complexity of FILTER

Lemma

With probability at least $1 - \exp(-\Omega(|S|\sqrt{\epsilon}))$, FILTER(S, h_1) makes O(|S|) label queries.

Proof.

Using Chernoff bound, with probability $1 - \exp(-|S|\sqrt{\epsilon})$ the total number of points in S where h_1 disagrees with f^* is $O(|S|\sqrt{\epsilon})$. The number of queries spent on these points is at most $O(|S|\sqrt{\epsilon}\log(1/\epsilon)) \leq O(|S|)$.

For each x such that $h_1(x) = f^*(x)$, let N_i be the expected number of queries until we have *i* more correct labels than incorrect ones. Then $N_1 \le \alpha + (1 - \alpha)(N_2 + 1)$. $N_2 = 2N_1$. $\Rightarrow N_1 \le 1/(2\alpha - 1)$.

・ロト・西ト・モン・モー うへぐ

Proof (continued)

Let L_x be the total number of queries on x before we have one more correct label than incorrect labels. Then $\mathbb{E}[L_x] \leq 1/(2\alpha - 1)$. We can show that for some positive real number L and any k > 1,

$$\mathbb{E}[(L_{\mathsf{x}} - \mathbb{E}[L_{\mathsf{x}}])^{k}] \leq \frac{1}{2}\mathbb{E}[(L_{\mathsf{x}} - \mathbb{E}[L_{\mathsf{x}}])^{2}]L^{k-2}k!.$$

Proof (continued)

Let L_x be the total number of queries on x before we have one more correct label than incorrect labels. Then $\mathbb{E}[L_x] \leq 1/(2\alpha - 1)$. We can show that for some positive real number L and any k > 1,

$$\mathbb{E}[(L_{\mathsf{x}} - \mathbb{E}[L_{\mathsf{x}}])^{k}] \leq \frac{1}{2}\mathbb{E}[(L_{\mathsf{x}} - \mathbb{E}[L_{\mathsf{x}}])^{2}]L^{k-2}k!.$$

Using the Bernstein inequality,

$$\Pr\left[\sum_{h_1(x)=f^*(x)} L_x - |S|\mathbb{E}[L_x] \ge O(|S|)\right] \le \exp(-|S|).$$

Therefore, the total number of queries over all points $x \in S$ is O(|S|) with probability at least $1 - \exp(-|S|\sqrt{\epsilon})$.

Lemma With probability $1 - 2\delta/3$, $\operatorname{err}_{D_2}(h_2) \leq \sqrt{\epsilon}/2$.

Lemma With probability $1 - 2\delta/3$, $\operatorname{err}_{D_2}(h_2) \leq \sqrt{\epsilon}/2$.

Proof.

▶ Part 1. With very high probability, $\operatorname{err}_D(h_1) \leq \frac{1}{2}\sqrt{\epsilon}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lemma With probability $1 - 2\delta/3$, $\operatorname{err}_{D_2}(h_2) \leq \sqrt{\epsilon}/2$.

Proof.

- ▶ Part 1. With very high probability, $\operatorname{err}_D(h_1) \leq \frac{1}{2}\sqrt{\epsilon}$.
- ► Part 2. With probability $1 \exp(-\Omega(m_{\sqrt{\epsilon},\delta}))$, $\overline{W_I}$, $\overline{W_C}$ and S_I all have size $\Theta(m_{\sqrt{\epsilon},\delta})$.

Lemma

With probability $1 - 2\delta/3$, $\operatorname{err}_{D_2}(h_2) \leq \sqrt{\epsilon}/2$.

Proof.

- ▶ Part 1. With very high probability, $\operatorname{err}_D(h_1) \leq \frac{1}{2}\sqrt{\epsilon}$.
- ► Part 2. With probability $1 \exp(-\Omega(m_{\sqrt{\epsilon},\delta}))$, $\overline{W_I}$, $\overline{W_C}$ and S_I all have size $\Theta(m_{\sqrt{\epsilon},\delta})$.
- Part 3. Let D' be the distribution that equally weights W₁ and W_C, ρ'(x) be the density of x in D', and ρ₂(x) be the density of x in D₂. Then for all x, ρ'(x) ≥ c · ρ₂(x) for a constant c > 0.

Lemma

With probability $1 - 2\delta/3$, $\operatorname{err}_{D_2}(h_2) \leq \sqrt{\epsilon}/2$.

Proof.

- ▶ Part 1. With very high probability, $\operatorname{err}_D(h_1) \leq \frac{1}{2}\sqrt{\epsilon}$.
- ► Part 2. With probability $1 \exp(-\Omega(m_{\sqrt{\epsilon},\delta}))$, $\overline{W_I}$, $\overline{W_C}$ and S_I all have size $\Theta(m_{\sqrt{\epsilon},\delta})$.
- Part 3. Let D' be the distribution that equally weights W₁ and W_C, ρ'(x) be the density of x in D', and ρ₂(x) be the density of x in D₂. Then for all x, ρ'(x) ≥ c · ρ₂(x) for a constant c > 0.
- Part 4. There exists a constant c' > 1 such that with a labeled sample set S of size c'm_{√ε,δ} drawn from D', O_F(S) has error of at most ½√ε under distribution D₂.

Proof of Part 3 If $h_1(x) = f^*(x)$, then $\rho'(x) = \frac{1}{2} \mathbb{E} \left[\frac{\# \text{ occurrences of } x \text{ in } \overline{W_C}}{|\overline{W_C}|} \right]$ $\geq \frac{\mathbb{E}[\# \text{ occurrences of } x \text{ in } \overline{W_C}]}{c_1 m_{\sqrt{\epsilon},\delta}}$ $\geq \frac{\mathbb{E}[\# \text{ occurrences of } x \text{ in } S_C]}{\mathbb{E}[\# \text{ occurrences of } x \text{ in } S_C]}$ $c_1 m_{\sqrt{\epsilon},\delta}$ $=\frac{|S_C|\cdot\rho(x)}{c_1m_{\sqrt{\epsilon},\delta}}$ $=\frac{|S_C|\cdot\rho_C(x)\cdot(1-\sqrt{\epsilon}/2)}{c_1m_{\sqrt{\epsilon},\delta}}$ $\geq c_2 \rho_C(x)$ $=\frac{1}{2}c_2\rho_2(x).$

Proof of Part 3 (continued) If $h_1(x) \neq f^*(x)$, then

$$\rho'(x) = \frac{1}{2} \mathbb{E} \left[\frac{\# \text{ occurrences of } x \text{ in } \overline{W_I}}{|\overline{W_I}|} \right]$$

$$\geq \frac{\mathbb{E}[\# \text{ occurrences of } x \text{ in } \overline{W_I}]}{c'_1 m_{\sqrt{\epsilon},\delta}}$$

$$\geq \frac{\mathbb{E}[\# \text{ occurrences of } x \text{ in } S_I]}{c'_1 m_{\sqrt{\epsilon},\delta}}$$

$$\geq \frac{\frac{1}{2}|S_2| \cdot \rho(x)}{c'_1 m_{\sqrt{\epsilon},\delta}}$$

$$= \frac{\frac{1}{2}|S_2| \cdot \rho_I(x) \cdot \sqrt{\epsilon}/2}{c'_1 m_{\sqrt{\epsilon},\delta}}$$

$$\geq c'_2 \rho_C(x)$$

$$= \frac{1}{2}c'_2 \rho_2(x).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Main Result

Theorem

Algorithm 2 returns $f \in \mathcal{F}$ with $\operatorname{err}_D(f) \leq \epsilon$ with probability $1 - \delta$, using $O\left(m_{\sqrt{\epsilon},\delta} \log\left(\frac{m_{\sqrt{\epsilon},\delta}}{\delta}\right) + m_{\epsilon,\delta}\right)$ labels.

Proof.

- Phase 1 and Phase 3 use $O\left(m_{\sqrt{\epsilon},\delta}\log\left(rac{m_{\sqrt{\epsilon},\delta}}{\delta}
 ight)
 ight)$ labels
- Phase 2:
 - FILTER uses $O(m_{\epsilon,\delta})$ labels
 - ► CORRECT-LABEL uses $O\left(m_{\sqrt{\epsilon},\delta}\log\left(\frac{m_{\sqrt{\epsilon},\delta}}{\delta}\right)\right)$ labels

Outline

Introduction

The Setting

A Baseline Algorithm

An Interleaving Algorithm

Overview of Techniques Main Result The General Case

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

No Perfect Labelers

The General Case of Any α

The fraction of perfect labelers $\alpha < \frac{1}{2} + o(1)$.

Key Challenges

 CORRECT-LABEL(S, δ) may return a highly noisy labeled sample set.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▶ FILTER(*S*, *h*₁) may filter the instances incorrectly.

The General Case of Any α

The fraction of perfect labelers $\alpha < \frac{1}{2} + o(1)$.

Key Challenges

- CORRECT-LABEL(S, δ) may return a highly noisy labeled sample set.
- ▶ FILTER(*S*, *h*₁) may filter the instances incorrectly.

"Golden Queries"

- We have access to an "expert" and get the correct label of an example.
- If we make a golden query when the size of the majority vote is less than a fraction 1 − α/2 of labelers, then at least an α/2 fraction of labelers can be pruned.
- ► After making O(1/α) golden queries, the good labelers form a strong majority.

No Perfect Labelers

In this setting, crowdsourced learning reduces to the difficult agnostic learning problem.

Goal: identify the set of all good labelers.

The Setting

- a pool of n labelers
- good labelers have error at most ϵ
- bad labelers have error at least 4ϵ
- at least $\lfloor \frac{n}{2} \rfloor + 1$ labelers are good

We can identify all good labelers with probability $1 - \delta$, using $O(\frac{1}{\epsilon} \log \left(\frac{n}{\delta}\right))$ queries per labeler.