# Learning from the Crowd 

Yuemei Zhang

November 27, 2017

## Outline

Introduction

The Setting

A Baseline Algorithm

An Interleaving Algorithm
Overview of Techniques
Main Result
The General Case

No Perfect Labelers

## An Example of Crowdsourced Labeling: the ESP Game

 Players try to "agree" on as many images as they can in 2.5 minutes.

## An Example of Crowdsourced Labeling: the ESP Game

 Players try to "agree" on as many images as they can in 2.5 minutes.

Characteristics of Crowdsourcing

- A large pool of labelers
- High level of noise


## The Setting

- Realizable PAC learning
- The instance space $\mathcal{X}$
- Labels $\mathcal{Y}=\{+1,-1\}$
- A distribution $D$ over $\mathcal{X} \times \mathcal{Y}$
- The hypothesis class $\mathcal{F}$
- A true classifier $f^{*} \in \mathcal{F}: \operatorname{err}_{D}\left(f^{*}\right)=0$
- $\operatorname{err}_{D}(f)=\operatorname{Pr}_{\left(x, f^{*}(x)\right) \sim D}\left[f(x) \neq f^{*}(x)\right]$


## The Setting

- Realizable PAC learning
- The instance space $\mathcal{X}$
- Labels $\mathcal{Y}=\{+1,-1\}$
- A distribution $D$ over $\mathcal{X} \times \mathcal{Y}$
- The hypothesis class $\mathcal{F}$
- A true classifier $f^{*} \in \mathcal{F}: \operatorname{err}_{D}\left(f^{*}\right)=0$
- $\operatorname{err}_{D}(f)=\operatorname{Pr}_{\left(x, f^{*}(x)\right) \sim D}\left[f(x) \neq f^{*}(x)\right]$
- A set of labelers $L$ : each labeler $i$ is a classification function $g_{i}: \mathcal{X} \rightarrow \mathcal{Y}$


## The Setting

- Realizable PAC learning
- The instance space $\mathcal{X}$
- Labels $\mathcal{Y}=\{+1,-1\}$
- A distribution $D$ over $\mathcal{X} \times \mathcal{Y}$
- The hypothesis class $\mathcal{F}$
- A true classifier $f^{*} \in \mathcal{F}: \operatorname{err}_{D}\left(f^{*}\right)=0$
- $\operatorname{err}_{D}(f)=\operatorname{Pr}_{\left(x, f^{*}(x)\right) \sim D}\left[f(x) \neq f^{*}(x)\right]$
- A set of labelers $L$ : each labeler $i$ is a classification function $g_{i}: \mathcal{X} \rightarrow \mathcal{Y}$
- Perfect labelers: $\operatorname{err}_{D}\left(g_{i}\right)=0$


## The Setting

- Realizable PAC learning
- The instance space $\mathcal{X}$
- Labels $\mathcal{Y}=\{+1,-1\}$
- A distribution $D$ over $\mathcal{X} \times \mathcal{Y}$
- The hypothesis class $\mathcal{F}$
- A true classifier $f^{*} \in \mathcal{F}: \operatorname{err}_{D}\left(f^{*}\right)=0$
- $\operatorname{err}_{D}(f)=\operatorname{Pr}_{\left(x, f^{*}(x)\right) \sim D}\left[f(x) \neq f^{*}(x)\right]$
- A set of labelers $L$ : each labeler $i$ is a classification function $g_{i}: \mathcal{X} \rightarrow \mathcal{Y}$
- Perfect labelers: $\operatorname{err}_{D}\left(g_{i}\right)=0$
- Uniform distribution $P$ over all labelers


## The Setting

- Realizable PAC learning
- The instance space $\mathcal{X}$
- Labels $\mathcal{Y}=\{+1,-1\}$
- A distribution $D$ over $\mathcal{X} \times \mathcal{Y}$
- The hypothesis class $\mathcal{F}$
- A true classifier $f^{*} \in \mathcal{F}: \operatorname{err}_{D}\left(f^{*}\right)=0$
- $\operatorname{err}_{D}(f)=\operatorname{Pr}_{\left(x, f^{*}(x)\right) \sim D}\left[f(x) \neq f^{*}(x)\right]$
- A set of labelers $L$ : each labeler $i$ is a classification function $g_{i}: \mathcal{X} \rightarrow \mathcal{Y}$
- Perfect labelers: $\operatorname{err}_{D}\left(g_{i}\right)=0$
- Uniform distribution $P$ over all labelers
- Fraction of perfect labelers $\alpha=\operatorname{Pr}_{i \sim P}\left[\operatorname{err}_{D}\left(g_{i}\right)=0\right]$


## The Setting

The Learning Algorithm

- Draw unlabeled instances according to $D$.
- Query labelers on these instances.
- Use the oracle $\mathcal{O}_{\mathcal{F}}$ that for a set of labeled samples $S$, returns a function $f \in \mathcal{F}$ consistent with $S$.

Goal

- Low error rate
- A small number of label queries


## The Setting

The Learning Algorithm

- Draw unlabeled instances according to $D$.
- Query labelers on these instances.
- Use the oracle $\mathcal{O}_{\mathcal{F}}$ that for a set of labeled samples $S$, returns a function $f \in \mathcal{F}$ consistent with $S$.

Goal

- Low error rate
- A small number of label queries

Recall the label complexity of traditional PAC learning (VC theory):

$$
m_{\epsilon, \delta}=O\left(\frac{d}{\epsilon}\left(\log \frac{1}{\epsilon}+\log \frac{1}{\delta}\right)\right)
$$

## The Setting

The Learning Algorithm

- Draw unlabeled instances according to $D$.
- Query labelers on these instances.
- Use the oracle $\mathcal{O}_{\mathcal{F}}$ that for a set of labeled samples $S$, returns a function $f \in \mathcal{F}$ consistent with $S$.
Goal
- Low error rate
- A small number of label queries

Recall the label complexity of traditional PAC learning (VC theory):

$$
m_{\epsilon, \delta}=O\left(\frac{d}{\epsilon}\left(\log \frac{1}{\epsilon}+\log \frac{1}{\delta}\right)\right)
$$

Cost per labeled example : \# label queries/ $m_{\epsilon, \delta}$

## A Baseline Algorithm

Consider the case of a strong majority of perfect labelers $(\alpha=1 / 2+\Theta(1))$.

## A Baseline Algorithm

Consider the case of a strong majority of perfect labelers $(\alpha=1 / 2+\Theta(1))$.

## BASELINE

- Draw $m=m_{\epsilon, \delta}$ samples.
- Label each sample using the majority vote of $k$ labelers, where

$$
k=O\left(\frac{\log (m / \delta)}{(\alpha-1 / 2)^{2}}\right)
$$

- Use the supervised learning oracle and return $\mathcal{O}_{\mathcal{F}}(S)$.


## A Baseline Algorithm

Consider the case of a strong majority of perfect labelers $(\alpha=1 / 2+\Theta(1))$.

## BASELINE

- Draw $m=m_{\epsilon, \delta}$ samples.
- Label each sample using the majority vote of $k$ labelers, where

$$
k=O\left(\frac{\log (m / \delta)}{(\alpha-1 / 2)^{2}}\right)
$$

- Use the supervised learning oracle and return $\mathcal{O}_{\mathcal{F}}(S)$.

Improvement over BASELINE

- Improve the $\log (m / \delta)$ cost per labeled example.
- Generalize to the case where $\alpha<1 / 2$.


## Outline

Introduction

The Setting

A Baseline Algorithm

An Interleaving Algorithm
Overview of Techniques
Main Result
The General Case

No Perfect Labelers

## Overview of Techniques: Boosting

Combines three classifiers of error $p<1 / 2$ to get a classifier of error $O\left(p^{2}\right)$.
Theorem
Boosting (Schapire 1990): For any $p<1 / 2$ and distribution $D$, consider three classifiers:

## Overview of Techniques: Boosting

Combines three classifiers of error $p<1 / 2$ to get a classifier of error $O\left(p^{2}\right)$.
Theorem
Boosting (Schapire 1990): For any $p<1 / 2$ and distribution $D$, consider three classifiers:

1. $h_{1}: \operatorname{err}_{D}\left(h_{1}\right) \leq p$;

## Overview of Techniques: Boosting

Combines three classifiers of error $p<1 / 2$ to get a classifier of error $O\left(p^{2}\right)$.
Theorem
Boosting (Schapire 1990): For any $p<1 / 2$ and distribution $D$, consider three classifiers:

1. $h_{1}: \operatorname{err}_{D}\left(h_{1}\right) \leq p$;
2. $h_{2}$ : $\operatorname{err}_{D_{2}}\left(h_{2}\right) \leq p$, where $D_{2}=\frac{1}{2} D_{C}+\frac{1}{2} D_{1}, D_{C}$ is $D$ conditioned on $\left\{x \mid h_{1}(x)=f^{*}(x)\right\}$, and $D_{I}$ is $D$ conditioned on $\left\{x \mid h_{1}(x) \neq f^{*}(x)\right\}$;

## Overview of Techniques: Boosting

Combines three classifiers of error $p<1 / 2$ to get a classifier of error $O\left(p^{2}\right)$.
Theorem
Boosting (Schapire 1990): For any $p<1 / 2$ and distribution $D$, consider three classifiers:

1. $h_{1}: \operatorname{err}_{D}\left(h_{1}\right) \leq p$;
2. $h_{2}$ : $\operatorname{err}_{D_{2}}\left(h_{2}\right) \leq p$, where $D_{2}=\frac{1}{2} D_{C}+\frac{1}{2} D_{1}, D_{C}$ is $D$ conditioned on $\left\{x \mid h_{1}(x)=f^{*}(x)\right\}$, and $D_{I}$ is $D$ conditioned on $\left\{x \mid h_{1}(x) \neq f^{*}(x)\right\}$;
3. $h_{3}: \operatorname{err}_{D_{3}}\left(h_{3}\right) \leq p . D_{3}$ is $D$ conditioned on $\left\{x \mid h_{1}(x) \neq h_{2}(x)\right\}$.

## Overview of Techniques: Boosting

Combines three classifiers of error $p<1 / 2$ to get a classifier of error $O\left(p^{2}\right)$.
Theorem
Boosting (Schapire 1990): For any $p<1 / 2$ and distribution $D$, consider three classifiers:

1. $h_{1}: \operatorname{err}_{D}\left(h_{1}\right) \leq p$;
2. $h_{2}$ : $\operatorname{err}_{D_{2}}\left(h_{2}\right) \leq p$, where $D_{2}=\frac{1}{2} D_{C}+\frac{1}{2} D_{1}, D_{C}$ is $D$ conditioned on $\left\{x \mid h_{1}(x)=f^{*}(x)\right\}$, and $D_{I}$ is $D$ conditioned on $\left\{x \mid h_{1}(x) \neq f^{*}(x)\right\}$;
3. $h_{3}: \operatorname{err}_{D_{3}}\left(h_{3}\right) \leq p . D_{3}$ is $D$ conditioned on $\left\{x \mid h_{1}(x) \neq h_{2}(x)\right\}$.

Then, the majority vote of $h_{1}, h_{2}$ and $h_{3}$ has error $\leq 3 p^{2}-2 p^{3}$ under distribution $D$.

The Algorithm (Overview)

## The Algorithm (Overview)

- CORRECT-LABEL $(S, \delta)$ : label each instance in $S$ with the majority vote of a set of labelers


## The Algorithm (Overview)

- CORRECT-LABEL $(S, \delta)$ : label each instance in $S$ with the majority vote of a set of labelers
- Phase 1
- Draw a set of samples $S_{1}$ from $D$
- $\overline{S_{1}}=\operatorname{CORRECT}-\operatorname{LABEL}\left(S_{1}, \delta / 6\right)$
- $h_{1}=\mathcal{O}_{\mathcal{F}}\left(\overline{S_{1}}\right)$


## The Algorithm (Overview)

- CORRECT-LABEL $(S, \delta)$ : label each instance in $S$ with the majority vote of a set of labelers
- Phase 1
- Draw a set of samples $S_{1}$ from $D$
- $\overline{S_{1}}=\operatorname{CORRECT}-\operatorname{LABEL}\left(S_{1}, \delta / 6\right)$
- $h_{1}=\mathcal{O}_{\mathcal{F}}\left(\overline{S_{1}}\right)$
- Phase 2
- Draw a set of samples $\bar{W}$ to simulate distribution $D_{2}$
- $h_{2}=\mathcal{O}_{\mathcal{F}}(\bar{W})$


## The Algorithm (Overview)

- CORRECT-LABEL $(S, \delta)$ : label each instance in $S$ with the majority vote of a set of labelers
- Phase 1
- Draw a set of samples $S_{1}$ from $D$
- $\overline{S_{1}}=\operatorname{CORRECT}-\operatorname{LABEL}\left(S_{1}, \delta / 6\right)$
- $h_{1}=\mathcal{O}_{\mathcal{F}}\left(\overline{S_{1}}\right)$
- Phase 2
- Draw a set of samples $\bar{W}$ to simulate distribution $D_{2}$
- $h_{2}=\mathcal{O}_{\mathcal{F}}(\bar{W})$
- Phase 3
- Draw a set of samples $S_{3}$ from $D_{3}$
- $\overline{S_{3}}=\operatorname{CORRECT}-\operatorname{LABEL}\left(S_{3}, \delta / 6\right)$
- $h_{3}=\mathcal{O}_{\mathcal{F}}\left(\overline{S_{3}}\right)$


## The Algorithm (Overview)

- CORRECT-LABEL $(S, \delta)$ : label each instance in $S$ with the majority vote of a set of labelers
- Phase 1
- Draw a set of samples $S_{1}$ from $D$
- $\overline{S_{1}}=\operatorname{CORRECT}-\operatorname{LABEL}\left(S_{1}, \delta / 6\right)$
- $h_{1}=\mathcal{O}_{\mathcal{F}}\left(\overline{S_{1}}\right)$
- Phase 2
- Draw a set of samples $\bar{W}$ to simulate distribution $D_{2}$
- $h_{2}=\mathcal{O}_{\mathcal{F}}(\bar{W})$
- Phase 3
- Draw a set of samples $S_{3}$ from $D_{3}$
- $\overline{S_{3}}=\operatorname{CORRECT}-\operatorname{LABEL}\left(S_{3}, \delta / 6\right)$
- $h_{3}=\mathcal{O}_{\mathcal{F}}\left(\overline{S_{3}}\right)$
- Return the majority vote of $h_{1}, h_{2}$ and $h_{3}$


## The Algorithm (Overview)

- CORRECT-LABEL $(S, \delta)$ : label each instance in $S$ with the majority vote of a set of labelers
- Phase 1
- Draw a set of samples $S_{1}$ from $D$
- $\overline{S_{1}}=\operatorname{CORRECT}-\operatorname{LABEL}\left(S_{1}, \delta / 6\right)$
- $h_{1}=\mathcal{O}_{\mathcal{F}}\left(\overline{S_{1}}\right)$
- Phase 2
- Draw a set of samples $\bar{W}$ to simulate distribution $D_{2}$
- $h_{2}=\mathcal{O}_{\mathcal{F}}(\bar{W})$
- Phase 3
- Draw a set of samples $S_{3}$ from $D_{3}$
- $\overline{S_{3}}=\operatorname{CORRECT}-\operatorname{LABEL}\left(S_{3}, \delta / 6\right)$
- $h_{3}=\mathcal{O}_{\mathcal{F}}\left(\overline{S_{3}}\right)$
- Return the majority vote of $h_{1}, h_{2}$ and $h_{3}$


## Overview of Techniques: Filtering

## Algorithm 1 FILTER $\left(S, h_{1}\right)$

Returns a set of instances mislabeled by $h_{1}$ to simulate $D_{2}$.

- Let $S_{I}=\emptyset$ and $N=\log (1 / \epsilon)$
- For each $x \in S$
- For $t=1, \ldots, N$
- Draw a labeler $i \sim P$ and let $y_{t}=g_{i}(x)$.
- If $t$ is odd and the majority vote of $y_{1: t}$ agrees with $h_{1}$ on $x$, then goto the next $x$.
- If the majority vote of $y_{1: t}$ never agrees with $h_{1}$ on $x$, then add $x$ to $S_{I}$.
- Return $S_{I}$


## Outline

Introduction

The Setting

A Baseline Algorithm

An Interleaving Algorithm
Overview of Techniques
Main Result
The General Case

No Perfect Labelers

## Algorithm 2

- CORRECT-LABEL $(S, \delta)$ : label each instance in $S$ with the majority vote of $k$ labelers, where $k=O\left(\log \frac{|S|}{\delta}\right)$


## Algorithm 2

- CORRECT-LABEL $(S, \delta)$ : label each instance in $S$ with the majority vote of $k$ labelers, where $k=O\left(\log \frac{|S|}{\delta}\right)$
- Phase 1
- Draw $S_{1}$ of size $2 m_{\sqrt{\epsilon}, \delta / 6}$ from $D$
- $\overline{S_{1}}=\operatorname{CORRECT}-\operatorname{LABEL}\left(S_{1}, \delta / 6\right)$
- $h_{1}=\mathcal{O}_{\mathcal{F}}\left(\overline{S_{1}}\right)$


## Algorithm 2

- CORRECT-LABEL $(S, \delta)$ : label each instance in $S$ with the majority vote of $k$ labelers, where $\mathrm{k}=O\left(\log \frac{|S|}{\delta}\right)$
- Phase 1
- Draw $S_{1}$ of size $2 m_{\sqrt{\epsilon}, \delta / 6}$ from $D$
- $\overline{S_{1}}=\operatorname{CORRECT}-\operatorname{LABEL}\left(S_{1}, \delta / 6\right)$
- $h_{1}=\mathcal{O}_{\mathcal{F}}\left(\overline{S_{1}}\right)$
- Phase 2
- Draw $S_{2}$ of size $\Theta\left(m_{\epsilon, \delta}\right)$, $S_{C}$ of size $\Theta\left(m_{\sqrt{\epsilon}, \delta}\right)$ from $D$
- $S_{I}=\operatorname{FILTER}\left(S_{2}, h_{1}\right)$
- CORRECT-LABEL $\left(S_{I} \cup S_{C}, \delta / 6\right)$
- Divide the labeled set into $\bar{W}_{I}$ and $\overline{W_{C}}$ according to whether the label agrees with $h_{1}$
- Draw $\bar{W}$ of size $\Theta\left(m_{\sqrt{\epsilon}, \delta}\right)$ from a distribution that equally weights $\overline{W_{l}}$ and $\overline{W_{C}}$
- $h_{2}=\mathcal{O}_{\mathcal{F}}(\bar{W})$


## Algorithm 2

- CORRECT-LABEL $(S, \delta)$ : label each instance in $S$ with the majority vote of $k$ labelers, where $\mathrm{k}=O\left(\log \frac{|S|}{\delta}\right)$
- Phase 1
- Draw $S_{1}$ of size $2 m_{\sqrt{\epsilon}, \delta / 6}$ from $D$
- $\overline{S_{1}}=\operatorname{CORRECT}-\operatorname{LABEL}\left(S_{1}, \delta / 6\right)$
- $h_{1}=\mathcal{O}_{\mathcal{F}}\left(\overline{S_{1}}\right)$
- Phase 2
- Draw $S_{2}$ of size $\Theta\left(m_{\epsilon, \delta}\right), S_{C}$ of size $\Theta\left(m_{\sqrt{\epsilon}, \delta}\right)$ from $D$
- $S_{I}=\operatorname{FILTER}\left(S_{2}, h_{1}\right)$
- CORRECT-LABEL $\left(S_{l} \cup S_{C}, \delta / 6\right)$
- Divide the labeled set into $\overline{W_{I}}$ and $\overline{W_{C}}$ according to whether the label agrees with $h_{1}$
- Draw $\bar{W}$ of size $\Theta\left(m_{\sqrt{\epsilon}, \delta}\right)$ from a distribution that equally weights $\overline{W_{l}}$ and $\overline{W_{C}}$
- $h_{2}=\mathcal{O}_{\mathcal{F}}(\bar{W})$
- Phase 3
- Draw $S_{3}$ of size $2 m_{\sqrt{\epsilon}, \delta / 6}$ from $D_{3}$
- $\overline{S_{3}}=\operatorname{CORRECT}-\operatorname{LABEL}\left(S_{3}, \delta / 6\right)$
- $h_{3}=\mathcal{O}_{\mathcal{F}}\left(\overline{S_{3}}\right)$


## Main Result

## Theorem

Algorithm 2 returns $f \in \mathcal{F}$ with $\operatorname{err}_{D}(f) \leq \epsilon$ with probability $1-\delta$, using $O\left(m_{\sqrt{\epsilon}, \delta} \log \left(\frac{m_{\sqrt{\epsilon}, \delta}}{\delta}\right)+m_{\epsilon, \delta}\right)$ labels.

## Main Result

## Theorem

Algorithm 2 returns $f \in \mathcal{F}$ with $\operatorname{err}_{D}(f) \leq \epsilon$ with probability $1-\delta$, using $O\left(m_{\sqrt{\epsilon}, \delta} \log \left(\frac{m_{\sqrt{\epsilon}, \delta}}{\delta}\right)+m_{\epsilon, \delta}\right)$ labels.

Note that when

$$
\frac{1}{\sqrt{\epsilon}} \geq \log \left(\frac{m_{\sqrt{\epsilon}, \delta}}{\delta}\right)
$$

the cost per labeled example is $O(1)$.

## Correctness of FILTER

Lemma
If $h_{1}(x)=f^{*}(x)$, then $x \in \operatorname{FILTER}\left(S, h_{1}\right)$ with probability $<\sqrt{\epsilon}$. If $h_{1}(x) \neq f^{*}(x)$, then $x \in \operatorname{FILTER}\left(S, h_{1}\right)$ with probability $\geq 1 / 2$.

## Correctness of FILTER

## Lemma

If $h_{1}(x)=f^{*}(x)$, then $x \in \operatorname{FILTER}\left(S, h_{1}\right)$ with probability $<\sqrt{\epsilon}$. If $h_{1}(x) \neq f^{*}(x)$, then $x \in \operatorname{FILTER}\left(S, h_{1}\right)$ with probability $\geq 1 / 2$.

Proof.

- Part $1\left(h_{1}(x)=f^{*}(x)\right)$ :
$E_{1}=\mathbb{1}\left\{\right.$ the majority vote of $y_{1: N}$ is incorrect $\}$, where $\left.N=O\left(\log \frac{1}{\sqrt{\epsilon}}\right)\right)$. By Hoeffding inequality, we have $\operatorname{Pr}\left[E_{1}\right]<\sqrt{\epsilon}$.


## Correctness of FILTER

## Lemma

If $h_{1}(x)=f^{*}(x)$, then $x \in \operatorname{FILTER}\left(S, h_{1}\right)$ with probability $<\sqrt{\epsilon}$. If $h_{1}(x) \neq f^{*}(x)$, then $x \in \operatorname{FILTER}\left(S, h_{1}\right)$ with probability $\geq 1 / 2$.

Proof.

- Part $1\left(h_{1}(x)=f^{*}(x)\right)$ :
$E_{1}=\mathbb{1}\left\{\right.$ the majority vote of $y_{1: N}$ is incorrect $\}$, where $\left.N=O\left(\log \frac{1}{\sqrt{\epsilon}}\right)\right)$. By Hoeffding inequality, we have $\operatorname{Pr}\left[E_{1}\right]<\sqrt{\epsilon}$.
- Part $2\left(h_{1}(x) \neq f^{*}(x)\right)$ :
$E_{2}=\mathbb{1}\left\{\exists t\right.$ : the majority vote of $y_{1: t}$ is incorrect $\}$. Using the probability of return in biased random walks,

$$
\operatorname{Pr}\left[E_{2}\right]=\left(1-\left(\frac{\alpha}{1-\alpha}\right)^{N}\right) /\left(1-\left(\frac{\alpha}{1-\alpha}\right)^{N+1}\right)<\frac{1-\alpha}{\alpha}<\frac{1}{2} .
$$

## Label Complexity of FILTER

## Lemma

With probability at least $1-\exp (-\Omega(|S| \sqrt{\epsilon})), \operatorname{FILTER}\left(S, h_{1}\right)$ makes $O(|S|)$ label queries.

## Label Complexity of FILTER

Lemma
With probability at least $1-\exp (-\Omega(|S| \sqrt{\epsilon})), \operatorname{FILTER}\left(S, h_{1}\right)$ makes $O(|S|)$ label queries.

Proof.
Using Chernoff bound, with probability $1-\exp (-|S| \sqrt{\epsilon})$ the total number of points in $S$ where $h_{1}$ disagrees with $f^{*}$ is $O(|S| \sqrt{\epsilon})$.
The number of queries spent on these points is at most $O(|S| \sqrt{\epsilon} \log (1 / \epsilon)) \leq O(|S|)$.

## Label Complexity of FILTER

## Lemma

With probability at least $1-\exp (-\Omega(|S| \sqrt{\epsilon})), \operatorname{FILTER}\left(S, h_{1}\right)$ makes $O(|S|)$ label queries.

Proof.
Using Chernoff bound, with probability $1-\exp (-|S| \sqrt{\epsilon})$ the total number of points in $S$ where $h_{1}$ disagrees with $f^{*}$ is $O(|S| \sqrt{\epsilon})$.
The number of queries spent on these points is at most $O(|S| \sqrt{\epsilon} \log (1 / \epsilon)) \leq O(|S|)$.

For each $x$ such that $h_{1}(x)=f^{*}(x)$, let $N_{i}$ be the expected number of queries until we have $i$ more correct labels than incorrect ones. Then $N_{1} \leq \alpha+(1-\alpha)\left(N_{2}+1\right) . N_{2}=2 N_{1}$. $\Rightarrow N_{1} \leq 1 /(2 \alpha-1)$.

## Proof (continued)

Let $L_{x}$ be the total number of queries on $x$ before we have one more correct label than incorrect labels. Then $\mathbb{E}\left[L_{x}\right] \leq 1 /(2 \alpha-1)$. We can show that for some positive real number $L$ and any $k>1$,

$$
\mathbb{E}\left[\left(L_{x}-\mathbb{E}\left[L_{x}\right]\right)^{k}\right] \leq \frac{1}{2} \mathbb{E}\left[\left(L_{x}-\mathbb{E}\left[L_{x}\right]\right)^{2}\right] L^{k-2} k!
$$

## Proof (continued)

Let $L_{x}$ be the total number of queries on $x$ before we have one more correct label than incorrect labels. Then $\mathbb{E}\left[L_{x}\right] \leq 1 /(2 \alpha-1)$. We can show that for some positive real number $L$ and any $k>1$,

$$
\mathbb{E}\left[\left(L_{x}-\mathbb{E}\left[L_{x}\right]\right)^{k}\right] \leq \frac{1}{2} \mathbb{E}\left[\left(L_{x}-\mathbb{E}\left[L_{x}\right]\right)^{2}\right] L^{k-2} k!
$$

Using the Bernstein inequality,

$$
\operatorname{Pr}\left[\sum_{h_{1}(x)=f^{*}(x)} L_{x}-|S| \mathbb{E}\left[L_{x}\right] \geq O(|S|)\right] \leq \exp (-|S|)
$$

Therefore, the total number of queries over all points $x \in S$ is $O(|S|)$ with probability at least $1-\exp (-|S| \sqrt{\epsilon})$.

## Correctness of Phase 2

## Lemma

With probability $1-2 \delta / 3, \operatorname{err}_{D_{2}}\left(h_{2}\right) \leq \sqrt{\epsilon} / 2$.

## Correctness of Phase 2

## Lemma

With probability $1-2 \delta / 3, \operatorname{err}_{D_{2}}\left(h_{2}\right) \leq \sqrt{\epsilon} / 2$.
Proof.

- Part 1. With very high probability, $\operatorname{err}_{D}\left(h_{1}\right) \leq \frac{1}{2} \sqrt{\epsilon}$.


## Correctness of Phase 2

## Lemma

With probability $1-2 \delta / 3, \operatorname{err}_{D_{2}}\left(h_{2}\right) \leq \sqrt{\epsilon} / 2$.

## Proof.

- Part 1. With very high probability, $\operatorname{err}_{D}\left(h_{1}\right) \leq \frac{1}{2} \sqrt{\epsilon}$.
- Part 2. With probability $1-\exp \left(-\Omega\left(m_{\sqrt{\epsilon}, \delta}\right)\right), \overline{W_{l}}, \overline{W_{C}}$ and $S_{I}$ all have size $\Theta\left(m_{\sqrt{\epsilon}, \delta}\right)$.


## Correctness of Phase 2

## Lemma

With probability $1-2 \delta / 3, \operatorname{err}_{D_{2}}\left(h_{2}\right) \leq \sqrt{\epsilon} / 2$.

## Proof.

- Part 1. With very high probability, $\operatorname{err}_{D}\left(h_{1}\right) \leq \frac{1}{2} \sqrt{\epsilon}$.
- Part 2. With probability $1-\exp \left(-\Omega\left(m_{\sqrt{\epsilon}, \delta}\right)\right), \overline{W_{l}}, \overline{W_{C}}$ and $S_{l}$ all have size $\Theta\left(m_{\sqrt{\epsilon}, \delta}\right)$.
- Part 3. Let $D^{\prime}$ be the distribution that equally weights $\overline{W_{l}}$ and $\overline{W_{C}}, \rho^{\prime}(x)$ be the density of $x$ in $D^{\prime}$, and $\rho_{2}(x)$ be the density of $x$ in $D_{2}$. Then for all $x, \rho^{\prime}(x) \geq c \cdot \rho_{2}(x)$ for a constant $c>0$.


## Correctness of Phase 2

## Lemma

With probability $1-2 \delta / 3, \operatorname{err}_{D_{2}}\left(h_{2}\right) \leq \sqrt{\epsilon} / 2$.

## Proof.

- Part 1. With very high probability, $\operatorname{err}_{D}\left(h_{1}\right) \leq \frac{1}{2} \sqrt{\epsilon}$.
- Part 2. With probability $1-\exp \left(-\Omega\left(m_{\sqrt{\epsilon}, \delta}\right)\right), \overline{W_{l}}, \overline{W_{C}}$ and $S_{I}$ all have size $\Theta\left(m_{\sqrt{\epsilon}, \delta}\right)$.
- Part 3. Let $D^{\prime}$ be the distribution that equally weights $\overline{W_{l}}$ and $\overline{W_{C}}, \rho^{\prime}(x)$ be the density of $x$ in $D^{\prime}$, and $\rho_{2}(x)$ be the density of $x$ in $D_{2}$. Then for all $x, \rho^{\prime}(x) \geq c \cdot \rho_{2}(x)$ for a constant $c>0$.
- Part 4. There exists a constant $c^{\prime}>1$ such that with a labeled sample set $S$ of size $c^{\prime} m_{\sqrt{\epsilon}, \delta}$ drawn from $D^{\prime}, \mathcal{O}_{\mathcal{F}}(S)$ has error of at most $\frac{1}{2} \sqrt{\epsilon}$ under distribution $D_{2}$.


## Proof of Part 3

If $h_{1}(x)=f^{*}(x)$, then

$$
\begin{aligned}
\rho^{\prime}(x) & =\frac{1}{2} \mathbb{E}\left[\frac{\# \text { occurrences of } x \text { in } \overline{W_{C}}}{\left|\overline{W_{C}}\right|}\right] \\
& \geq \frac{\mathbb{E}\left[\# \text { occurrences of } x \text { in } \overline{W_{C}}\right]}{c_{1} m_{\sqrt{\epsilon}, \delta}}
\end{aligned}
$$

$\geq \frac{\mathbb{E}\left[\# \text { occurrences of } x \text { in } S_{C}\right]}{c_{1} m_{\sqrt{\epsilon}, \delta}}$
$=\frac{\left|S_{C}\right| \cdot \rho(x)}{c_{1} m_{\sqrt{\epsilon}, \delta}}$
$=\frac{\left|S_{C}\right| \cdot \rho_{C}(x) \cdot(1-\sqrt{\epsilon} / 2)}{c_{1} m_{\sqrt{\epsilon}, \delta}}$
$\geq c_{2} \rho_{C}(x)$
$=\frac{1}{2} c_{2} \rho_{2}(x)$.

## Proof of Part 3 (continued)

If $h_{1}(x) \neq f^{*}(x)$, then

$$
\begin{aligned}
\rho^{\prime}(x) & =\frac{1}{2} \mathbb{E}\left[\frac{\# \text { occurrences of } x \text { in } \overline{W_{l}}}{\left|\overline{W_{l}}\right|}\right] \\
& \geq \frac{\mathbb{E}\left[\# \text { occurrences of } x \text { in } \overline{W_{l}}\right]}{c_{1}^{\prime} m_{\sqrt{\epsilon}, \delta}} \\
& \geq \frac{\mathbb{E}\left[\# \text { occurrences of } x \text { in } S_{l}\right]}{c_{1}^{\prime} m_{\sqrt{\epsilon}, \delta}} \\
& \geq \frac{\frac{1}{2}\left|S_{2}\right| \cdot \rho(x)}{c_{1}^{\prime} m_{\sqrt{\epsilon}, \delta}} \\
& =\frac{\frac{1}{2}\left|S_{2}\right| \cdot \rho_{l}(x) \cdot \sqrt{\epsilon} / 2}{c_{1}^{\prime} m_{\sqrt{\epsilon}, \delta}} \\
& \geq c_{2}^{\prime} \rho_{C}(x) \\
& =\frac{1}{2} c_{2}^{\prime} \rho_{2}(x) .
\end{aligned}
$$

## Main Result

Theorem
Algorithm 2 returns $f \in \mathcal{F}$ with $\operatorname{err}_{D}(f) \leq \epsilon$ with probability $1-\delta$, using $O\left(m_{\sqrt{\epsilon}, \delta} \log \left(\frac{m_{\sqrt{\epsilon}, \delta}}{\delta}\right)+m_{\epsilon, \delta}\right)$ labels.
Proof.

- Phase 1 and Phase 3 use $O\left(m_{\sqrt{\epsilon}, \delta} \log \left(\frac{m_{\sqrt{\epsilon}, \delta}}{\delta}\right)\right)$ labels
- Phase 2:
- FILTER uses $O\left(m_{\epsilon, \delta}\right)$ labels
- CORRECT-LABEL uses $O\left(m_{\sqrt{\epsilon}, \delta} \log \left(\frac{m_{\sqrt{\epsilon}, \delta}}{\delta}\right)\right)$ labels


## Outline

Introduction

The Setting

A Baseline Algorithm

An Interleaving Algorithm
Overview of Techniques
Main Result
The General Case

No Perfect Labelers

## The General Case of Any $\alpha$

The fraction of perfect labelers $\alpha<\frac{1}{2}+o(1)$.
Key Challenges

- CORRECT-LABEL $(S, \delta)$ may return a highly noisy labeled sample set.
- $\operatorname{FILTER}\left(S, h_{1}\right)$ may filter the instances incorrectly.


## The General Case of Any $\alpha$

The fraction of perfect labelers $\alpha<\frac{1}{2}+o(1)$.

## Key Challenges

- CORRECT-LABEL $(S, \delta)$ may return a highly noisy labeled sample set.
- $\operatorname{FILTER}\left(S, h_{1}\right)$ may filter the instances incorrectly.


## "Golden Queries"

- We have access to an "expert" and get the correct label of an example.
- If we make a golden query when the size of the majority vote is less than a fraction $1-\alpha / 2$ of labelers, then at least an $\alpha / 2$ fraction of labelers can be pruned.
- After making $O(1 / \alpha)$ golden queries, the good labelers form a strong majority.


## No Perfect Labelers

In this setting, crowdsourced learning reduces to the difficult agnostic learning problem.

Goal: identify the set of all good labelers.
The Setting

- a pool of $n$ labelers
- good labelers have error at most $\epsilon$
- bad labelers have error at least $4 \epsilon$
- at least $\left\lfloor\frac{n}{2}\right\rfloor+1$ labelers are good

We can identify all good labelers with probability $1-\delta$, using $O\left(\frac{1}{\epsilon} \log \left(\frac{n}{\delta}\right)\right)$ queries per labeler.

