
Learning Binary Relations
Presented by Alan Duan

1 / 97

Motivation of Binary Relations
Let's start by considering the set of all students (let's call it), and the set of all topics in this course ().S T

2 / 97

Motivation of Binary Relations
Let's start by considering the set of all students (let's call it), and the set of all topics in this course ().

 and are related by some rule.

S T

S T

3 / 97

Motivation of Binary Relations
Let's start by considering the set of all students (let's call it), and the set of all topics in this course ().

 and are related by some rule.

Consider one relation: Student presents topic .

S T

S T

s t

4 / 97

Motivation of Binary Relations
Let's start by considering the set of all students (let's call it), and the set of all topics in this course ().

 and are related by some rule.

Consider one relation: Student presents topic .

For example, Alan presents the topic 'learning binary relations', and Mark presented both 'tail inequalities'
and 'realizable selective sampling'.

S T

S T

s t

5 / 97

Motivation of Binary Relations
Let's start by considering the set of all students (let's call it), and the set of all topics in this course ().

 and are related by some rule.

Consider one relation: Student presents topic .

For example, Alan presents the topic 'learning binary relations', and Mark presented both 'tail inequalities'
and 'realizable selective sampling'.

Clearly, student either presents topic , or does not.

S T

S T

s t

s t

6 / 97

Motivation of Binary Relations
Let's start by considering the set of all students (let's call it), and the set of all topics in this course ().

 and are related by some rule.

Consider one relation: Student presents topic .

For example, Alan presents the topic 'learning binary relations', and Mark presented both 'tail inequalities'
and 'realizable selective sampling'.

Clearly, student either presents topic , or does not.

The predicate relating the two sets of variables is either true or false.

S T

S T

s t

s t

7 / 97

Motivation of Binary Relations
Let's start by considering the set of all students (let's call it), and the set of all topics in this course ().

 and are related by some rule.

Consider one relation: Student presents topic .

For example, Alan presents the topic 'learning binary relations', and Mark presented both 'tail inequalities'
and 'realizable selective sampling'.

Clearly, student either presents topic , or does not.

The predicate relating the two sets of variables is either true or false.

We call this a binary relation.

S T

S T

s t

s t

8 / 97

Formal De�nition of Binary Relations
A binary relation between two sets and is a subset of .R A B A × B

9 / 97

Formal De�nition of Binary Relations
A binary relation between two sets and is a subset of .

Each binary relation is associated with a predicate :

R A B A × B

P : A × B ↦ {0, 1}

10 / 97

Formal De�nition of Binary Relations
A binary relation between two sets and is a subset of .

Each binary relation is associated with a predicate :

R A B A × B

P : A × B ↦ {0, 1}

P(a, b) = {
1,

0,

if (a, b) ∈ R

otherwise

11 / 97

Formal De�nition of Binary Relations
A binary relation between two sets and is a subset of .

Each binary relation is associated with a predicate :

Note :

1. Binary relations can be defined between different set (e.g.: Netflix user and movie), or the set with itself
(e.g.: the relation 'divides' between and).

R A B A × B

P : A × B ↦ {0, 1}

P(a, b) = {
1,

0,

if (a, b) ∈ R

otherwise

ℕ+ ℕ+

12 / 97

Formal De�nition of Binary Relations
A binary relation between two sets and is a subset of .

Each binary relation is associated with a predicate :

Note :

1. Binary relations can be defined between different set (e.g.: Netflix user and movie), or the set with itself
(e.g.: the relation 'divides' between and).

2. In binary relations, the order matters.

R A B A × B

P : A × B ↦ {0, 1}

P(a, b) = {
1,

0,

if (a, b) ∈ R

otherwise

ℕ+ ℕ+

13 / 97

Representing a Binary Relations
 binary matrixn × m

Alan

Bob

Cathy

David

Topics in Learning Theory

1

1

0

0

Machine Learning

0

1

0

0

Operating System

0

0

1

0

14 / 97

Representing a Binary Relations
 binary matrix

2-column table

Student Course
Alan Topics in Learning Theory
Bob Topics in Learning Theory
Bob Machine Learning

Cathy Operating System

n × m

Alan

Bob

Cathy

David

Topics in Learning Theory

1

1

0

0

Machine Learning

0

1

0

0

Operating System

0

0

1

0

15 / 97

Representing a Binary Relations (cont'd)
Bipartite graph

16 / 97

Learning Binary Relations
Setting
We are learning binary relations between two set and represented by predicate . Denote and

.

In each trial :

learner is given an unlabeled pair of object , where

learner predicts 0 or 1

reveals the answer

if answer and prediction are different, record it as a mistake

Goal: Minimize the number of incorrect predictions

A B P |A| = n
|B| = m

t

= (,)xt at bt ∈ A, ∈ Bat bt

=y ̂ t

yt

17 / 97

Learning Binary Relations
Question: Can we reduce the learning of binary relations to something we have seen?

18 / 97

Learning Binary Relations
Question: Can we reduce the learning of binary relations to something we have seen?

Yes!

19 / 97

Learning Binary Relations
Question: Can we reduce the learning of binary relations to something we have seen?

Yes!

,

Target hypothesis

This is an online concept learning (realizable) setting!

 = A × B = {0, 1}

h = P

20 / 97

Learning Binary Relations
Question: Can we reduce the learning of binary relations to something we have seen?

Yes!

,

Target hypothesis

This is an online concept learning (realizable) setting!

Note :

1. In this presentation, we will use these notation from concept learning interchangably from time to time.

2. We will see what is special about learning binary relations in a bit!

 = A × B = {0, 1}

h = P

21 / 97

Learning Binary Relations
A few more terms
Let be a finite learning domain. Let be a concept class over .

A learner is consistent if, on every trial, there exists some concept such that:

A query sequence is a permutation of , where is the instance presented to the

learner at the trial.

 C

c ∈ C

c() = {xk
,y ̂ t
,yk

if k = t

if k = 1,… , t− 1

π = ⟨ , ,… , ⟩x1 x2 x|| ∈ xt
t th

22 / 97

Learning Binary Relations
Who determines the query sequence?

23 / 97

Learning Binary Relations
Who determines the query sequence?

Director!

24 / 97

Learning Binary Relations
Who determines the query sequence?

Director!

In this presentation, we will consider the following settings:

Director Agnostic: we want some mistake bounds regardless of the director.

25 / 97

Learning Binary Relations
Who determines the query sequence?

Director!

In this presentation, we will consider the following settings:

Director Agnostic: we want some mistake bounds regardless of the director.

Self-directed: the learner itself chooses .π

26 / 97

Learning Binary Relations
Who determines the query sequence?

Director!

In this presentation, we will consider the following settings:

Director Agnostic: we want some mistake bounds regardless of the director.

Self-directed: the learner itself chooses .

Teacher-directed: A teacher who knows the target relation and wants to minimize the learner's mistakes
by choosing ; Teacher can choose with the knowledge of 1) target relation, 2) , 3)

.

π

π xt ,… ,x1 xt−1

,… ,y ̂ 1 y ̂ t−1

27 / 97

Learning Binary Relations
Who determines the query sequence?

Director!

In this presentation, we will consider the following settings:

Director Agnostic: we want some mistake bounds regardless of the director.

Self-directed: the learner itself chooses .

Teacher-directed: A teacher who knows the target relation and wants to minimize the learner's mistakes
by choosing ; Teacher can choose with the knowledge of 1) target relation, 2) , 3)

.

Adversary-directed: An adversary who tries to maximize the learner's mistakes, knows the learner's
algorithm and has unlimited computing power, chooses .

π

π xt ,… ,x1 xt−1

,… ,y ̂ 1 y ̂ t−1

π

28 / 97

Learning Binary Relations
Who determines the query sequence?

Director!

In this presentation, we will consider the following settings:

Director Agnostic: we want some mistake bounds regardless of the director.

Self-directed: the learner itself chooses .

Teacher-directed: A teacher who knows the target relation and wants to minimize the learner's mistakes
by choosing ; Teacher can choose with the knowledge of 1) target relation, 2) , 3)

.

Adversary-directed: An adversary who tries to maximize the learner's mistakes, knows the learner's
algorithm and has unlimited computing power, chooses .

For teacher-directed setting, we want to consider worst case mistake bound over all consistent learners.
(why?)

π

π xt ,… ,x1 xt−1

,… ,y ̂ 1 y ̂ t−1

π

29 / 97

Motivation of k-binary-relations
Now let's talk about what can be special about binary relations.

30 / 97

Motivation of k-binary-relations
Now let's talk about what can be special about binary relations.

1. There are two sets of objects (instead of one)

2. We are learning a relationship between the two sets (instead of some concepts for classification)

31 / 97

Motivation of k-binary-relations
Now let's talk about what can be special about binary relations.

1. There are two sets of objects (instead of one)

2. We are learning a relationship between the two sets (instead of some concepts for classification)

Then it's natural to impose some structures in the relation.

32 / 97

Motivation of k-binary-relations
Now let's talk about what can be special about binary relations.

1. There are two sets of objects (instead of one)

2. We are learning a relationship between the two sets (instead of some concepts for classification)

Then it's natural to impose some structures in the relation.

If there's no structure, we can't do any better than random guessing.

33 / 97

Motivation of k-binary-relations
Now let's talk about what can be special about binary relations.

1. There are two sets of objects (instead of one)

2. We are learning a relationship between the two sets (instead of some concepts for classification)

Then it's natural to impose some structures in the relation.

If there's no structure, we can't do any better than random guessing.

What can be a natural structure?

34 / 97

Motivation of k-binary-relations
Consider our example of "student presenting topic in this class" again.

35 / 97

Motivation of k-binary-relations
Consider our example of "student presenting topic in this class" again.

We know each student only presents at most once.

36 / 97

Motivation of k-binary-relations
Consider our example of "student presenting topic in this class" again.

We know each student only presents at most once.

Then if we want to learn which topic Alan presents, how many possibilities there are?

37 / 97

Motivation of k-binary-relations
Consider our example of "student presenting topic in this class" again.

We know each student only presents at most once.

Then if we want to learn which topic Alan presents, how many possibilities there are?

Equiv : If we represent this binary relation using a matrix, how many possible row type could the row
for Alan be?

n × m

Alan

Splitting Index

?

Equivalence Queries

?

...

. . .

Leaderboard

?

38 / 97

Motivation of k-binary-relations
Consider our example of "student presenting topic in this class" again.

We know each student only presents at most once.

Then if we want to learn which topic Alan presents, how many possibilities there are?

Equiv : If we represent this binary relation using a matrix, how many possible row type could the row
for Alan be?

First of all, it's a fixed number!

n × m

Alan

Splitting Index

?

Equivalence Queries

?

...

. . .

Leaderboard

?

39 / 97

Motivation of k-binary-relations
Consider our example of "student presenting topic in this class" again.

We know each student only presents at most once.

Then if we want to learn which topic Alan presents, how many possibilities there are?

Equiv : If we represent this binary relation using a matrix, how many possible row type could the row
for Alan be?

First of all, it's a fixed number!

Second, it's way less than (where is total number of topics)

n × m

Alan

Splitting Index

?

Equivalence Queries

?

...

. . .

Leaderboard

?

2m m

40 / 97

Motivation of k-binary-relations
Consider our example of "student presenting topic in this class" again.

We know each student only presents at most once.

Then if we want to learn which topic Alan presents, how many possibilities there are?

Equiv : If we represent this binary relation using a matrix, how many possible row type could the row
for Alan be?

First of all, it's a fixed number!

Second, it's way less than (where is total number of topics)

A little math tells us the answer is .

n × m

Alan

Splitting Index

?

Equivalence Queries

?

...

. . .

Leaderboard

?

2m m

m + 1

41 / 97

Motivation of k-binary-relations
Consider our example of "student presenting topic in this class" again.

We know each student only presents at most once.

Then if we want to learn which topic Alan presents, how many possibilities there are?

Equiv : If we represent this binary relation using a matrix, how many possible row type could the row
for Alan be?

First of all, it's a fixed number!

Second, it's way less than (where is total number of topics)

A little math tells us the answer is .

We use to represent the distinct row types in the matrix. We call this type of relation -binary-relations.

n × m

Alan

Splitting Index

?

Equivalence Queries

?

...

. . .

Leaderboard

?

2m m

m + 1

k k

42 / 97

General bounds applied to all directors
Theorem 1 (Lower Bound) For any , any prediction algorithm makes at least

 mistakes regardless of the query sequence.
0 < β ≤ 1

(1 − β)km + n⌊log(βk)⌋− (1 − β)k⌊log(βk)⌋

43 / 97

General bounds applied to all directors
Theorem 1 (Lower Bound) For any , any prediction algorithm makes at least

 mistakes regardless of the query sequence.

Proof :

We prove the bound by showing that for any algorithm, there exists a matrix (filled by adversary) that forces
the learner to make such number of mistakes.

0 < β ≤ 1
(1 − β)km + n⌊log(βk)⌋− (1 − β)k⌊log(βk)⌋

44 / 97

General bounds applied to all directors
Theorem 1 (Lower Bound) For any , any prediction algorithm makes at least

 mistakes regardless of the query sequence.

Proof :

We prove the bound by showing that for any algorithm, there exists a matrix (filled by adversary) that forces
the learner to make such number of mistakes.

For entries in the first columns, the adversary replies that the learner's prediction is incorrect.

For entries in the first rows, the adversary also replies that the learner's prediction is incorrect.

0 < β ≤ 1
(1 − β)km + n⌊log(βk)⌋− (1 − β)k⌊log(βk)⌋

p

q

45 / 97

General bounds applied to all directors
Theorem 1 (Lower Bound) For any , any prediction algorithm makes at least

 mistakes regardless of the query sequence.

Proof :

We prove the bound by showing that for any algorithm, there exists a matrix (filled by adversary) that forces
the learner to make such number of mistakes.

For entries in the first columns, the adversary replies that the learner's prediction is incorrect.

For entries in the first rows, the adversary also replies that the learner's prediction is incorrect.

Constraint for adversary: it cannot create too many row types.

0 < β ≤ 1
(1 − β)km + n⌊log(βk)⌋− (1 − β)k⌊log(βk)⌋

p

q

46 / 97

General bounds applied to all directors
Theorem 1 (Lower Bound) For any , any prediction algorithm makes at least

 mistakes regardless of the query sequence.

Proof :

We prove the bound by showing that for any algorithm, there exists a matrix (filled by adversary) that forces
the learner to make such number of mistakes.

For entries in the first columns, the adversary replies that the learner's prediction is incorrect.

For entries in the first rows, the adversary also replies that the learner's prediction is incorrect.

Constraint for adversary: it cannot create too many row types.

By forcing mistakes in the first columns, at most row types can be created.

By forcing mistakes in the first rows, at most row types can be created.

0 < β ≤ 1
(1 − β)km + n⌊log(βk)⌋− (1 − β)k⌊log(βk)⌋

p

q

p 2p

q q

+ q = k2p

47 / 97

Proof (cont'd):

By forcing mistakes in the first columns, at most row types can be created.

By forcing mistakes in the first rows, at most row types can be created.

Set , , we can get , .

The mistake bound: .

p 2p

q q

+ q = k2p

= βk2p q = (1 − β)k p = ⌊log(βk)⌋ q = (1 − β)k

(1 − β)k ⋅m + ⌊log(βk)⌋ ⋅ n− (1 − β)k⌊log(βk)⌋

48 / 97

General bounds applied to all directors
Theorem 2 (Upper Bound) The halving algorithm achieves a mistake bound.km + (n− k) log k

49 / 97

General bounds applied to all directors
Theorem 2 (Upper Bound) The halving algorithm achieves a mistake bound.

Proof :

We know halving algorithm makes at most mistakes. The question is what is .

km + (n− k) log k

log |C| |C|

50 / 97

General bounds applied to all directors
Theorem 2 (Upper Bound) The halving algorithm achieves a mistake bound.

Proof :

We know halving algorithm makes at most mistakes. The question is what is .

We count how large can be:

km + (n− k) log k

log |C| |C|

C

51 / 97

General bounds applied to all directors
Theorem 2 (Upper Bound) The halving algorithm achieves a mistake bound.

Proof :

We know halving algorithm makes at most mistakes. The question is what is .

We count how large can be:

There are ways to select row types.

km + (n− k) log k

log |C| |C|

C

(=2m)k 2km k

52 / 97

General bounds applied to all directors
Theorem 2 (Upper Bound) The halving algorithm achieves a mistake bound.

Proof :

We know halving algorithm makes at most mistakes. The question is what is .

We count how large can be:

There are ways to select row types.

There are ways to assign one of the row types to each of the remaining rows.

km + (n− k) log k

log |C| |C|

C

(=2m)k 2km k

k(n−k) n− k

53 / 97

General bounds applied to all directors
Theorem 2 (Upper Bound) The halving algorithm achieves a mistake bound.

Proof :

We know halving algorithm makes at most mistakes. The question is what is .

We count how large can be:

There are ways to select row types.

There are ways to assign one of the row types to each of the remaining rows.

.

km + (n− k) log k

log |C| |C|

C

(=2m)k 2km k

k(n−k) n− k

|C| ≤ 2kmk(n−k)

54 / 97

General bounds applied to all directors
Theorem 2 (Upper Bound) The halving algorithm achieves a mistake bound.

Proof :

We know halving algorithm makes at most mistakes. The question is what is .

We count how large can be:

There are ways to select row types.

There are ways to assign one of the row types to each of the remaining rows.

.

.

km + (n− k) log k

log |C| |C|

C

(=2m)k 2km k

k(n−k) n− k

|C| ≤ 2kmk(n−k)

log |C| ≤ km + (n− k) log k

55 / 97

General bounds applied to all directors
Theorem 2 (Upper Bound) The halving algorithm achieves a mistake bound.

Proof :

We know halving algorithm makes at most mistakes. The question is what is .

We count how large can be:

There are ways to select row types.

There are ways to assign one of the row types to each of the remaining rows.

.

.

Note : Halving algorithm (in general) can be computationally expensive!

km + (n− k) log k

log |C| |C|

C

(=2m)k 2km k

k(n−k) n− k

|C| ≤ 2kmk(n−k)

log |C| ≤ km + (n− k) log k

56 / 97

Self-directed learning
Theorem 3 (Upper Bound) There exists an algorithm that achieves mistake bound in self-
directed learning setting.

km + (n− k)⌊log k⌋

57 / 97

Self-directed learning
Theorem 3 (Upper Bound) There exists an algorithm that achieves mistake bound in self-
directed learning setting.

Proof : We prove existence by showing one.

km + (n− k)⌊log k⌋

58 / 97

Self-directed learning
Theorem 3 (Upper Bound) There exists an algorithm that achieves mistake bound in self-
directed learning setting.

Proof : We prove existence by showing one.

Learner chooses to query row-by-row. Denote the learner's current estimate as . Initialize .

km + (n− k)⌊log k⌋

k ̂ = 1k ̂

59 / 97

Self-directed learning
Theorem 3 (Upper Bound) There exists an algorithm that achieves mistake bound in self-
directed learning setting.

Proof : We prove existence by showing one.

Learner chooses to query row-by-row. Denote the learner's current estimate as . Initialize .

For the first row:

Guess all entries. Record it as the first row type.

km + (n− k)⌊log k⌋

k ̂ = 1k ̂

60 / 97

Self-directed learning
Theorem 3 (Upper Bound) There exists an algorithm that achieves mistake bound in self-
directed learning setting.

Proof : We prove existence by showing one.

Learner chooses to query row-by-row. Denote the learner's current estimate as . Initialize .

For the first row:

Guess all entries. Record it as the first row type.

For the rest rows:

Predict row , column 's value according to a majority vote of the recorded row templates that are
consistent with row

If no such consistent template exists, guess all the rest entries in row , and record it as a new type.
.

km + (n− k)⌊log k⌋

k ̂ = 1k ̂

i j
i

i

= + 1k ̂ k ̂

61 / 97

How many mistakes have we made?

For each new row template, we make at most on each. Total is .

For each of the rest rows, we make at most mistakes. The total is .

Add up, we have the desired bound .

m km

⌊log ⌋ ≤ ⌊log k⌋k ̂ (n− k)⌊log k⌋

km + (n− k)⌊log k⌋

62 / 97

How many mistakes have we made?

For each new row template, we make at most on each. Total is .

For each of the rest rows, we make at most mistakes. The total is .

Add up, we have the desired bound .

Note :

1. Similar flavour as the halving algorithm -- but computationally tractable.

m km

⌊log ⌋ ≤ ⌊log k⌋k ̂ (n− k)⌊log k⌋

km + (n− k)⌊log k⌋

63 / 97

How many mistakes have we made?

For each new row template, we make at most on each. Total is .

For each of the rest rows, we make at most mistakes. The total is .

Add up, we have the desired bound .

Note :

1. Similar flavour as the halving algorithm -- but computationally tractable.

2. Do not need to know a priori.

m km

⌊log ⌋ ≤ ⌊log k⌋k ̂ (n− k)⌊log k⌋

km + (n− k)⌊log k⌋

k

64 / 97

How many mistakes have we made?

For each new row template, we make at most on each. Total is .

For each of the rest rows, we make at most mistakes. The total is .

Add up, we have the desired bound .

Note :

1. Similar flavour as the halving algorithm -- but computationally tractable.

2. Do not need to know a priori.

3. This bound is within a constant factor of the general lower bound (Theorem 1).

m km

⌊log ⌋ ≤ ⌊log k⌋k ̂ (n− k)⌊log k⌋

km + (n− k)⌊log k⌋

k

65 / 97

Teacher-directed
Theorem 4 (Upper Bound) The number of mistakes made with a helpful teacher as the director is at most

.km + (n− k)(k− 1)

66 / 97

Teacher-directed
Theorem 4 (Upper Bound) The number of mistakes made with a helpful teacher as the director is at most

.

Proof:

First, the teacher presents the learner with one row of each type.

km + (n− k)(k− 1)

67 / 97

Teacher-directed
Theorem 4 (Upper Bound) The number of mistakes made with a helpful teacher as the director is at most

.

Proof:

First, the teacher presents the learner with one row of each type.

Then, for the rest of rows, the teacher presents entries to distinguish it from the incorrect row
types.

After this, for the rest of rows, its row type can be uniquely identified, and no more mistakes will be
made.

km + (n− k)(k− 1)

(n− k) (k− 1)

(n− k)

68 / 97

Teacher-directed
Theorem 4 (Upper Bound) The number of mistakes made with a helpful teacher as the director is at most

.

Proof:

First, the teacher presents the learner with one row of each type.

Then, for the rest of rows, the teacher presents entries to distinguish it from the incorrect row
types.

After this, for the rest of rows, its row type can be uniquely identified, and no more mistakes will be
made.

In total, the learner makes at most mistakes.

km + (n− k)(k− 1)

(n− k) (k− 1)

(n− k)

km + (n− k)(k− 1)

69 / 97

Teacher-directed
Theorem 5 (Lower Bound) The number of mistakes made with a helpful teacher as the director is at least

.min{nm, km + (n− k)(k− 1)}

70 / 97

Proof:

For the first rows, they are of different row type. mistakes are made.k km

71 / 97

Proof:

For the first rows, they are of different row type. mistakes are made.

For the rest of the rows:

When : we need to know all first columns to uniquely identify the row type.

When : we need to know all columns to uniquely identify the row type.

k km

(m + 1) ≥ k k− 1

(m + 1) < k m

72 / 97

Proof:

For the first rows, they are of different row type. mistakes are made.

For the rest of the rows:

When : we need to know all first columns to uniquely identify the row type.

When : we need to know all columns to uniquely identify the row type.

Adding up, the mistake bound is .

k km

(m + 1) ≥ k k− 1

(m + 1) < k m

min{km + (n− k)m, km + (n− k)(k− 1)} 73 / 97

Teacher-directed
Question: Recall that the mistake bound for learner director is , while teacher-directed
bound is . Why is it even worse?

km + (n− k)⌊log k⌋
km + (n− k)(k− 1)

74 / 97

Teacher-directed
Question: Recall that the mistake bound for learner director is , while teacher-directed
bound is . Why is it even worse?

Teacher-directed case apply to all consistent learners!

km + (n− k)⌊log k⌋
km + (n− k)(k− 1)

75 / 97

Teacher-directed
Question: Recall that the mistake bound for learner director is , while teacher-directed
bound is . Why is it even worse?

Teacher-directed case apply to all consistent learners!

A consistent learner may do minority-vote instead of majority-vote.

km + (n− k)⌊log k⌋
km + (n− k)(k− 1)

76 / 97

Adversary-directed
Theorem 6 (Lower Bound) Any prediction algorithm makes at least mistakes
against an adversary-selected query sequence.

min{nm, km + (n− k)⌊log k⌋}

77 / 97

Adversary-directed
Theorem 6 (Lower Bound) Any prediction algorithm makes at least mistakes
against an adversary-selected query sequence.

Proof:

The high level idea is to do the reverse of what the helpful teacher does -- try not to reveal the full information
of row types!

min{nm, km + (n− k)⌊log k⌋}

78 / 97

Adversary-directed
Theorem 6 (Lower Bound) Any prediction algorithm makes at least mistakes
against an adversary-selected query sequence.

Proof:

The high level idea is to do the reverse of what the helpful teacher does -- try not to reveal the full information
of row types!

First, the adversary presents entries in the first columns for all rows, and replies with each
prediction is incorrect.

min{nm, km + (n− k)⌊log k⌋}

min{m, ⌊log k⌋} n

79 / 97

Adversary-directed
Theorem 6 (Lower Bound) Any prediction algorithm makes at least mistakes
against an adversary-selected query sequence.

Proof:

The high level idea is to do the reverse of what the helpful teacher does -- try not to reveal the full information
of row types!

First, the adversary presents entries in the first columns for all rows, and replies with each
prediction is incorrect.

Second, if , the adversary presents remaining columns for each of the row type,
and forces mistakes on all of them.

min{nm, km + (n− k)⌊log k⌋}

min{m, ⌊log k⌋} n

m > ⌊log k⌋ m− ⌊log k⌋ k

80 / 97

Adversary-directed
Theorem 6 (Lower Bound) Any prediction algorithm makes at least mistakes
against an adversary-selected query sequence.

Proof:

The high level idea is to do the reverse of what the helpful teacher does -- try not to reveal the full information
of row types!

First, the adversary presents entries in the first columns for all rows, and replies with each
prediction is incorrect.

Second, if , the adversary presents remaining columns for each of the row type,
and forces mistakes on all of them.

Adding up the number of mistakes, we get the desired bound.

min{nm, km + (n− k)⌊log k⌋}

min{m, ⌊log k⌋} n

m > ⌊log k⌋ m− ⌊log k⌋ k

81 / 97

Adversary-directed
How about upper bound?

82 / 97

Adversary-directed
How about upper bound?

Recall that if efficiency is not a concern, we can always run halving algorithm to get an upper bound of
.km + (n− k)⌊log k⌋

83 / 97

Adversary-directed
How about upper bound?

Recall that if efficiency is not a concern, we can always run halving algorithm to get an upper bound of
.

If efficiency is a concern...let's start by considering a smaller .

km + (n− k)⌊log k⌋

k

84 / 97

Adversary-directed
How about upper bound?

Recall that if efficiency is not a concern, we can always run halving algorithm to get an upper bound of
.

If efficiency is a concern...let's start by considering a smaller .

For , we are fine. Can achieve at most mistakes.

km + (n− k)⌊log k⌋

k

k = 1 m

85 / 97

Adversary-directed
How about upper bound?

Recall that if efficiency is not a concern, we can always run halving algorithm to get an upper bound of
.

If efficiency is a concern...let's start by considering a smaller .

For , we are fine. Can achieve at most mistakes.

How about ?

km + (n− k)⌊log k⌋

k

k = 1 m

k = 2

86 / 97

Adversary-directed
Theorem 7 (Upper Bound when =2) There exists a polynomial prediction algorithm that makes at most

 mistakes against adversary-selected query sequence when .
k

2m + n− 2 k = 2

87 / 97

Adversary-directed
Theorem 7 (Upper Bound when =2) There exists a polynomial prediction algorithm that makes at most

 mistakes against adversary-selected query sequence when .

Proof: Let's do it on board!

k
2m + n− 2 k = 2

88 / 97

Adversary-directed
How about ?k ≥ 3

89 / 97

Adversary-directed
How about ?

We don't know!

k ≥ 3

90 / 97

Adversary-directed
How about ?

We don't know!

To find if there's a matrix with at most row types that is consistent with a partially known matrix , is NP-
complete.

k ≥ 3

k M

91 / 97

Adversary-directed
How about ?

We don't know!

To find if there's a matrix with at most row types that is consistent with a partially known matrix , is NP-
complete.

To have a polynomial-time -colorability oracle, we need to prove P=NP.

k ≥ 3

k M

k

92 / 97

Adversary-directed
How about ?

We don't know!

To find if there's a matrix with at most row types that is consistent with a partially known matrix , is NP-
complete.

To have a polynomial-time -colorability oracle, we need to prove P=NP.

This is left as an exercise.

k ≥ 3

k M

k

93 / 97

Conclusion and Takeaways
1. In previous lectures, we usually focus on learner's algorithm, and assume the environment (director) as

the worst case (adversary). It turns out to be not true in many real life cases. Maybe the director is trying
to help learner to learn. And in those cases, we can indeed improve learner's performance.

94 / 97

Conclusion and Takeaways
1. In previous lectures, we usually focus on learner's algorithm, and assume the environment (director) as

the worst case (adversary). It turns out to be not true in many real life cases. Maybe the director is trying
to help learner to learn. And in those cases, we can indeed improve learner's performance.

2. It may be interesting to consider other "structures" in the learning setting. It may also be interesting to see
how the results extend to k-ary relations.

95 / 97

Conclusion and Takeaways
1. In previous lectures, we usually focus on learner's algorithm, and assume the environment (director) as

the worst case (adversary). It turns out to be not true in many real life cases. Maybe the director is trying
to help learner to learn. And in those cases, we can indeed improve learner's performance.

2. It may be interesting to consider other "structures" in the learning setting. It may also be interesting to see
how the results extend to k-ary relations.

3. Some learning on proof technique: to prove an upper bound, we can prove by showing an algorithm that
satisfies the bound; to prove a lower bound, we can prove by showing there exists an adversary setting
that all algorithms make at least this amount of mistake.

96 / 97

Reference
1. Learning Binary Relations and Total Orders, Sally A. Goldman, Ronald L. Rivest, and Robert E. Schapire,

SIAM Journal on Computing 1993 22:5, 1006-1034.

97 / 97

