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Motivation of Binary Relations
Let's start by considering the set of all students (let's call it ), and the set of all topics in this course ( ).

 and  are related by some rule.

Consider one relation: Student  presents topic .

For example, Alan presents the topic 'learning binary relations', and Mark presented both 'tail inequalities'
and 'realizable selective sampling'.

Clearly, student  either presents topic , or does not.

The predicate relating the two sets of variables is either true or false.

We call this a binary relation.
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Formal De�nition of Binary Relations
A binary relation  between two sets  and  is a subset of .

Each binary relation is associated with a predicate :

Note :
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Formal De�nition of Binary Relations
A binary relation  between two sets  and  is a subset of .

Each binary relation is associated with a predicate :

Note :

1. Binary relations can be defined between different set (e.g.: Netflix user and movie), or the set with itself
(e.g.: the relation 'divides' between  and ).

2. In binary relations, the order matters.

R A B A × B

P : A × B ↦ {0, 1}

P(a, b) = {
1,

0,

if (a, b) ∈ R

otherwise

ℕ+ ℕ+
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Representing a Binary Relations
 binary matrixn × m

Alan

Bob

Cathy

David

Topics in Learning Theory

1

1

0

0

Machine Learning

0

1

0

0

Operating System

0

0

1

0
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Representing a Binary Relations
 binary matrix

2-column table

Student Course
Alan Topics in Learning Theory
Bob Topics in Learning Theory
Bob Machine Learning

Cathy Operating System

n × m

Alan

Bob

Cathy

David

Topics in Learning Theory

1

1

0

0

Machine Learning

0

1

0

0

Operating System

0

0

1

0
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Representing a Binary Relations (cont'd)
Bipartite graph
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Learning Binary Relations
Setting
We are learning binary relations between two set  and  represented by predicate . Denote  and 

.

In each trial :

learner is given an unlabeled pair of object , where 

learner predicts  0 or 1

reveals the answer 

if answer and prediction are different, record it as a mistake

Goal: Minimize the number of incorrect predictions

A B P |A| = n
|B| = m

t

= ( , )xt at bt ∈ A, ∈ Bat bt

=y ̂ t

yt
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Learning Binary Relations
Question: Can we reduce the learning of binary relations to something we have seen?
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Learning Binary Relations
Question: Can we reduce the learning of binary relations to something we have seen?

Yes!

, 

Target hypothesis 

This is an online concept learning (realizable) setting!

Note :

1. In this presentation, we will use these notation from concept learning interchangably from time to time.

2. We will see what is special about learning binary relations in a bit!

 = A × B  = {0, 1}

h = P
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Learning Binary Relations
A few more terms
Let  be a finite learning domain. Let  be a concept class over .

A learner is consistent if, on every trial, there exists some concept  such that:

A query sequence  is a permutation of , where  is the instance presented to the

learner at the  trial.

 C 

c ∈ C

c( ) = {xk
,y ̂ t
,yk

if k = t

if k = 1,… , t− 1

π = ⟨ , ,… , ⟩x1 x2 x||  ∈ xt
t th
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Learning Binary Relations
Who determines the query sequence?
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Who determines the query sequence?
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In this presentation, we will consider the following settings:

Director Agnostic: we want some mistake bounds regardless of the director.

Self-directed: the learner itself chooses .

Teacher-directed: A teacher who knows the target relation and wants to minimize the learner's mistakes
by choosing ; Teacher can choose  with the knowledge of 1) target relation, 2) , 3) 

.
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Learning Binary Relations
Who determines the query sequence?

Director!

In this presentation, we will consider the following settings:

Director Agnostic: we want some mistake bounds regardless of the director.

Self-directed: the learner itself chooses .

Teacher-directed: A teacher who knows the target relation and wants to minimize the learner's mistakes
by choosing ; Teacher can choose  with the knowledge of 1) target relation, 2) , 3) 

.

Adversary-directed: An adversary who tries to maximize the learner's mistakes, knows the learner's
algorithm and has unlimited computing power, chooses .

For teacher-directed setting, we want to consider worst case mistake bound over all consistent learners.
(why?)

π

π xt ,… ,x1 xt−1

,… ,y ̂ 1 y ̂ t−1

π
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Motivation of k-binary-relations
Now let's talk about what can be special about binary relations.
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Motivation of k-binary-relations
Now let's talk about what can be special about binary relations.

1. There are two sets of objects (instead of one)

2. We are learning a relationship between the two sets (instead of some concepts for classification)

Then it's natural to impose some structures in the relation.

If there's no structure, we can't do any better than random guessing.

What can be a natural structure?
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Motivation of k-binary-relations
Consider our example of "student presenting topic in this class" again.
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Consider our example of "student presenting topic in this class" again.

We know each student only presents at most once.

Then if we want to learn which topic Alan presents, how many possibilities there are?

Equiv : If we represent this binary relation using a  matrix, how many possible row type could the row
for Alan be?

First of all, it's a fixed number!

Second, it's way less than  (where  is total number of topics)

A little math tells us the answer is .
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Motivation of k-binary-relations
Consider our example of "student presenting topic in this class" again.

We know each student only presents at most once.

Then if we want to learn which topic Alan presents, how many possibilities there are?

Equiv : If we represent this binary relation using a  matrix, how many possible row type could the row
for Alan be?

First of all, it's a fixed number!

Second, it's way less than  (where  is total number of topics)

A little math tells us the answer is .

We use  to represent the distinct row types in the matrix. We call this type of relation -binary-relations.

n × m

Alan

Splitting Index

?

Equivalence Queries

?

...

. . .

Leaderboard

?

2m m

m + 1

k k
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General bounds applied to all directors
Theorem 1 (Lower Bound) For any , any prediction algorithm makes at least 

 mistakes regardless of the query sequence.
0 < β ≤ 1

(1 − β)km + n⌊log(βk)⌋− (1 − β)k⌊log(βk)⌋
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Proof :

We prove the bound by showing that for any algorithm, there exists a matrix (filled by adversary) that forces
the learner to make such number of mistakes.

For entries in the first  columns, the adversary replies that the learner's prediction is incorrect.

For entries in the first  rows, the adversary also replies that the learner's prediction is incorrect.
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General bounds applied to all directors
Theorem 1 (Lower Bound) For any , any prediction algorithm makes at least 

 mistakes regardless of the query sequence.

Proof :

We prove the bound by showing that for any algorithm, there exists a matrix (filled by adversary) that forces
the learner to make such number of mistakes.

For entries in the first  columns, the adversary replies that the learner's prediction is incorrect.

For entries in the first  rows, the adversary also replies that the learner's prediction is incorrect.

Constraint for adversary: it cannot create too many row types.

By forcing mistakes in the first  columns, at most  row types can be created.

By forcing mistakes in the first  rows, at most  row types can be created.

0 < β ≤ 1
(1 − β)km + n⌊log(βk)⌋− (1 − β)k⌊log(βk)⌋

p

q

p 2p

q q

+ q = k2p
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Proof (cont'd):

By forcing mistakes in the first  columns, at most  row types can be created.

By forcing mistakes in the first  rows, at most  row types can be created.

Set , , we can get , .

The mistake bound: .

p 2p

q q

+ q = k2p

= βk2p q = (1 − β)k p = ⌊log(βk)⌋ q = (1 − β)k

(1 − β)k ⋅m + ⌊log(βk)⌋ ⋅ n− (1 − β)k⌊log(βk)⌋
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General bounds applied to all directors
Theorem 2 (Upper Bound) The halving algorithm achieves a  mistake bound.km + (n− k) log k
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General bounds applied to all directors
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Proof :
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We count how large  can be:

There are  ways to select  row types.
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General bounds applied to all directors
Theorem 2 (Upper Bound) The halving algorithm achieves a  mistake bound.

Proof :

We know halving algorithm makes at most  mistakes. The question is what is .

We count how large  can be:

There are  ways to select  row types.

There are  ways to assign one of the row types to each of the remaining  rows.

km + (n− k) log k

log |C| |C|

C

( =2m)k 2km k
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General bounds applied to all directors
Theorem 2 (Upper Bound) The halving algorithm achieves a  mistake bound.

Proof :

We know halving algorithm makes at most  mistakes. The question is what is .

We count how large  can be:

There are  ways to select  row types.

There are  ways to assign one of the row types to each of the remaining  rows.

.

km + (n− k) log k

log |C| |C|

C

( =2m)k 2km k
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General bounds applied to all directors
Theorem 2 (Upper Bound) The halving algorithm achieves a  mistake bound.

Proof :

We know halving algorithm makes at most  mistakes. The question is what is .

We count how large  can be:

There are  ways to select  row types.

There are  ways to assign one of the row types to each of the remaining  rows.

.

.

Note : Halving algorithm (in general) can be computationally expensive!

km + (n− k) log k

log |C| |C|

C

( =2m)k 2km k

k(n−k) n− k

|C| ≤ 2kmk(n−k)

log |C| ≤ km + (n− k) log k

56 / 97



Self-directed learning
Theorem 3 (Upper Bound) There exists an algorithm that achieves  mistake bound in self-
directed learning setting.

km + (n− k)⌊log k⌋
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directed learning setting.

Proof : We prove existence by showing one.
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Self-directed learning
Theorem 3 (Upper Bound) There exists an algorithm that achieves  mistake bound in self-
directed learning setting.

Proof : We prove existence by showing one.

Learner chooses to query row-by-row. Denote the learner's current estimate as . Initialize .

km + (n− k)⌊log k⌋

k ̂  = 1k ̂ 
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Self-directed learning
Theorem 3 (Upper Bound) There exists an algorithm that achieves  mistake bound in self-
directed learning setting.

Proof : We prove existence by showing one.

Learner chooses to query row-by-row. Denote the learner's current estimate as . Initialize .

For the first row:

Guess all entries. Record it as the first row type.
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k ̂  = 1k ̂ 
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Self-directed learning
Theorem 3 (Upper Bound) There exists an algorithm that achieves  mistake bound in self-
directed learning setting.

Proof : We prove existence by showing one.

Learner chooses to query row-by-row. Denote the learner's current estimate as . Initialize .

For the first row:

Guess all entries. Record it as the first row type.

For the rest rows:

Predict row , column 's value according to a majority vote of the recorded row templates that are
consistent with row 

If no such consistent template exists, guess all the rest entries in row , and record it as a new type. 
.

km + (n− k)⌊log k⌋

k ̂  = 1k ̂ 

i j
i

i

= + 1k ̂  k ̂ 
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How many mistakes have we made?

For each new row template, we make at most  on each. Total is .

For each of the rest rows, we make at most  mistakes. The total is .

Add up, we have the desired bound .

m km

⌊log ⌋ ≤ ⌊log k⌋k ̂  (n− k)⌊log k⌋

km + (n− k)⌊log k⌋
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How many mistakes have we made?

For each new row template, we make at most  on each. Total is .

For each of the rest rows, we make at most  mistakes. The total is .

Add up, we have the desired bound .

Note :

1. Similar flavour as the halving algorithm -- but computationally tractable.

m km

⌊log ⌋ ≤ ⌊log k⌋k ̂  (n− k)⌊log k⌋

km + (n− k)⌊log k⌋
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How many mistakes have we made?

For each new row template, we make at most  on each. Total is .

For each of the rest rows, we make at most  mistakes. The total is .

Add up, we have the desired bound .

Note :

1. Similar flavour as the halving algorithm -- but computationally tractable.

2. Do not need to know  a priori.

m km

⌊log ⌋ ≤ ⌊log k⌋k ̂  (n− k)⌊log k⌋

km + (n− k)⌊log k⌋

k
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How many mistakes have we made?

For each new row template, we make at most  on each. Total is .

For each of the rest rows, we make at most  mistakes. The total is .

Add up, we have the desired bound .

Note :

1. Similar flavour as the halving algorithm -- but computationally tractable.

2. Do not need to know  a priori.

3. This bound is within a constant factor of the general lower bound (Theorem 1).

m km

⌊log ⌋ ≤ ⌊log k⌋k ̂  (n− k)⌊log k⌋

km + (n− k)⌊log k⌋

k
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Teacher-directed
Theorem 4 (Upper Bound) The number of mistakes made with a helpful teacher as the director is at most

.km + (n− k)(k− 1)
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Teacher-directed
Theorem 4 (Upper Bound) The number of mistakes made with a helpful teacher as the director is at most

.

Proof:

First, the teacher presents the learner with one row of each type.

km + (n− k)(k− 1)
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Teacher-directed
Theorem 4 (Upper Bound) The number of mistakes made with a helpful teacher as the director is at most

.

Proof:

First, the teacher presents the learner with one row of each type.

Then, for the rest of  rows, the teacher presents  entries to distinguish it from the incorrect row
types.

After this, for the rest of  rows, its row type can be uniquely identified, and no more mistakes will be
made.

km + (n− k)(k− 1)

(n− k) (k− 1)

(n− k)
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Teacher-directed
Theorem 4 (Upper Bound) The number of mistakes made with a helpful teacher as the director is at most

.

Proof:

First, the teacher presents the learner with one row of each type.

Then, for the rest of  rows, the teacher presents  entries to distinguish it from the incorrect row
types.

After this, for the rest of  rows, its row type can be uniquely identified, and no more mistakes will be
made.

In total, the learner makes at most  mistakes.

km + (n− k)(k− 1)

(n− k) (k− 1)

(n− k)

km + (n− k)(k− 1)
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Teacher-directed
Theorem 5 (Lower Bound) The number of mistakes made with a helpful teacher as the director is at least

.min{nm, km + (n− k)(k− 1)}
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Proof:

For the first  rows, they are of different row type.  mistakes are made.k km
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Proof:

For the first  rows, they are of different row type.  mistakes are made.

For the rest of the rows:

When : we need to know all first  columns to uniquely identify the row type.

When : we need to know all  columns to uniquely identify the row type.

k km

(m + 1) ≥ k k− 1

(m + 1) < k m
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Proof:

For the first  rows, they are of different row type.  mistakes are made.

For the rest of the rows:

When : we need to know all first  columns to uniquely identify the row type.

When : we need to know all  columns to uniquely identify the row type.

Adding up, the mistake bound is .

k km

(m + 1) ≥ k k− 1

(m + 1) < k m

min{km + (n− k)m, km + (n− k)(k− 1)} 73 / 97



Teacher-directed
Question: Recall that the mistake bound for learner director is , while teacher-directed
bound is . Why is it even worse?

km + (n− k)⌊log k⌋
km + (n− k)(k− 1)
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Teacher-directed
Question: Recall that the mistake bound for learner director is , while teacher-directed
bound is . Why is it even worse?

Teacher-directed case apply to all consistent learners!

km + (n− k)⌊log k⌋
km + (n− k)(k− 1)
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Teacher-directed
Question: Recall that the mistake bound for learner director is , while teacher-directed
bound is . Why is it even worse?

Teacher-directed case apply to all consistent learners!

A consistent learner may do minority-vote instead of majority-vote.

km + (n− k)⌊log k⌋
km + (n− k)(k− 1)
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Adversary-directed
Theorem 6 (Lower Bound) Any prediction algorithm makes at least  mistakes
against an adversary-selected query sequence.

min{nm, km + (n− k)⌊log k⌋}
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The high level idea is to do the reverse of what the helpful teacher does -- try not to reveal the full information
of row types!

First, the adversary presents entries in the first  columns for all  rows, and replies with each
prediction is incorrect.

Second, if , the adversary presents remaining  columns for each of the  row type,
and forces mistakes on all of them.
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Adversary-directed
Theorem 6 (Lower Bound) Any prediction algorithm makes at least  mistakes
against an adversary-selected query sequence.

Proof:

The high level idea is to do the reverse of what the helpful teacher does -- try not to reveal the full information
of row types!

First, the adversary presents entries in the first  columns for all  rows, and replies with each
prediction is incorrect.

Second, if , the adversary presents remaining  columns for each of the  row type,
and forces mistakes on all of them.

Adding up the number of mistakes, we get the desired bound.

min{nm, km + (n− k)⌊log k⌋}

min{m, ⌊log k⌋} n

m > ⌊log k⌋ m− ⌊log k⌋ k
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Adversary-directed
How about upper bound?
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How about upper bound?

Recall that if efficiency is not a concern, we can always run halving algorithm to get an upper bound of 
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Adversary-directed
How about upper bound?

Recall that if efficiency is not a concern, we can always run halving algorithm to get an upper bound of 
.

If efficiency is a concern...let's start by considering a smaller .

For , we are fine. Can achieve at most  mistakes.

How about ?

km + (n− k)⌊log k⌋

k

k = 1 m

k = 2
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Adversary-directed
Theorem 7 (Upper Bound when =2) There exists a polynomial prediction algorithm that makes at most 

 mistakes against adversary-selected query sequence when .
k

2m + n− 2 k = 2
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Adversary-directed
Theorem 7 (Upper Bound when =2) There exists a polynomial prediction algorithm that makes at most 

 mistakes against adversary-selected query sequence when .

Proof: Let's do it on board!

k
2m + n− 2 k = 2
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Adversary-directed
How about ?k ≥ 3

89 / 97



Adversary-directed
How about ?

We don't know!
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We don't know!

To find if there's a matrix with at most  row types that is consistent with a partially known matrix , is NP-
complete.

k ≥ 3

k M
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Adversary-directed
How about ?

We don't know!

To find if there's a matrix with at most  row types that is consistent with a partially known matrix , is NP-
complete.

To have a polynomial-time -colorability oracle, we need to prove P=NP.

k ≥ 3

k M

k
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Adversary-directed
How about ?

We don't know!

To find if there's a matrix with at most  row types that is consistent with a partially known matrix , is NP-
complete.

To have a polynomial-time -colorability oracle, we need to prove P=NP.

This is left as an exercise.

k ≥ 3

k M

k

93 / 97



Conclusion and Takeaways
1. In previous lectures, we usually focus on learner's algorithm, and assume the environment (director) as

the worst case (adversary). It turns out to be not true in many real life cases. Maybe the director is trying
to help learner to learn. And in those cases, we can indeed improve learner's performance.
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2. It may be interesting to consider other "structures" in the learning setting. It may also be interesting to see
how the results extend to k-ary relations.
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Conclusion and Takeaways
1. In previous lectures, we usually focus on learner's algorithm, and assume the environment (director) as

the worst case (adversary). It turns out to be not true in many real life cases. Maybe the director is trying
to help learner to learn. And in those cases, we can indeed improve learner's performance.

2. It may be interesting to consider other "structures" in the learning setting. It may also be interesting to see
how the results extend to k-ary relations.

3. Some learning on proof technique: to prove an upper bound, we can prove by showing an algorithm that
satisfies the bound; to prove a lower bound, we can prove by showing there exists an adversary setting
that all algorithms make at least this amount of mistake.
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