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Kaggle Competition

Public Leaderboard

This leaderboard is calculated with approximately 30% of the test data.

Private Leaderboard

The final results will be based on the other 70%, so the final standings may be different.
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Overfiting

» Repeated submission to Kaggle leaderboard tends to overfit
the public leaderboard dataset.

» Public leaderboard score may not represent the actual
performance, participants can be mislead.



Overfiting

» Repeated submission to Kaggle leaderboard tends to overfit
the public leaderboard dataset.

» Public leaderboard score may not represent the actual
performance, participants can be mislead.

» In fact the error between the public leaderboard and actual
performance can be large as O(\/%) k is number of
submission.

» How should we deal with that? How to maintain a leaderboard
with reliable accurate estimation of the true performance.



Ways to Reduce that Effect

» Limit the rate of submission (maximum of 10 submission per
day).

» Limit the numerical accuracy returned by the leaderboard
(rounding to fixed decimal digits).



Ways to Reduce that Effect

» Limit the rate of submission (maximum of 10 submission per
day).

» Limit the numerical accuracy returned by the leaderboard
(rounding to fixed decimal digits).

We want theoretical guarantee even for very large times of
submission.
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Preliminaries and Notations

v

Data domain X and label domain ), unknown distribution D
over X x V.

Classifier f : X — Y, loss function ¢£: Y x Y — [0, 1].
Set of sample S = {(x1,y1),- -, (Xn,yn)} drawn i.i.d from D.
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True loss

v

Ro(f)= E [(f(x),y)]
(x.y)~D



Leaderboard Model

1. Each time t a competitor submit a classifier f; (in practice a
prediction over holdout dataset).

2. The leaderboard return a estimate of score R; to the
competitor using public leaderboard dataset S.

3. Finally the true score over D is estimated over another set of
private dataset.



Error Evaluation

Given a sequence of classifier f1, >, ..., fr, and score by the
leaderboard R;, we want to bound

mtax|Rp(ft) — R|
i.e., we should make
Pr[3t € [k] : |[Rp(f:) — Re| > €] <0

The error on private leaderboard should be close to the true loss
since those private data are not revealed to the competitor.



Kaggle Algorithm

Algorithm 1 Kaggle Algorithm

Input: Data set S, rounding parameter o > 0 (typically 0.00001)
for each round t + 1,2,... do
Receive function f; : X - Y
return [Rs(f;)]a
end for

[x]o denote rounding x to the nearest integer multiple of «.
e.g., [314159]001 = 3.14.



Simple Non-adaptive Case

» Assume all f1,...,f; are fixed independent of S
» Just compute empirical loss Rs(f:) as Ry.

» Directly apply Hoeffding's inequality and union bound we have

Prl3t € [K] : [Ro(%) — Rs(f)| > €] < 2k exp(—2¢%n)



Simple Non-adaptive Case

v

Assume all f1,..., f are fixed independent of S

v

Just compute empirical loss Rs(f;) as R:.

v

Directly apply Hoeffding's inequality and union bound we have

Prl3t € [K] : [Ro(%) — Rs(f)| > €] < 2k exp(—2¢%n)




Adaptive Setting

» Classifier f; may be chosen as a function of previous estimate.
ft‘ — A(ﬂa Rl? ey ﬂ*l) Rtfl)

independence of fi, ..., fi never holds, no longer union
bounds over k!
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independence of fi, ..., fi never holds, no longer union
bounds over k!

» We will later show an simple attack for the Kaggle algorithm

k

to have error € = Q(4/ 7).



Adaptive Setting

» Classifier f; may be chosen as a function of previous estimate.
ft‘ — A(fia Rl? ey ﬂf*l) Rtfl)

independence of fi, ..., fi never holds, no longer union
bounds over k!

» We will later show an simple attack for the Kaggle algorithm

k

to have error € = Q(4/ 7).

» In fact no computational efficient way to achieve o(1) error
with k > p?+e(),



Leaderboard Error

Previous setting of bounding error for every step is not possible.
Introduce a weaker notion, we only cares about the best classifier
submitted so far rather than accurately estimate all f;.

Let R; returned by the leaderboard at time t represent the
estimated loss of the currently best classifier.

Definition
Given adaptively chosen fi, ..., fx, define leaderboard error of
estimates Ry, ..., Rk,

lberr(Ry, ..., Rx) = max | min Rp(f;) — Ry

1<t<k |1<i<t
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Ladder Algorithm

Algorithm 2 Ladder Algorithm

Input: Data set S, step size n > 0
Assign initial state Ry < oo
for each round t + 1,2,... do
Receive function f; : X — Y
if Rs(f;) < Ri—1 —n then
Assign R. « [Rs(%)],
else
Assign Ry + Ri_1
end if
return R;
end for

Require an increase by some margin n to be considered as the new
best.



Error Bound

Theorem
For any adaptively chosen fi, ..., f, the Ladder Mechanism satisfy
for allt < k and e > 0,

log!/3(kn)

Iberr(Ry, ..., Rx) = O( nl/3



Error Bound

Theorem

For any adaptively chosen fi, ..., f, the Ladder Mechanism satisfy
for allt < k and e > 0,

log!/3(kn)

Iberr(Ry, ..., Rx) = O( Y )

Put it another way, we can have up to

k = O(% exp(ne®))

submissions but still expect the leaderboard error to be small.
Previously, k = O(n?).



Proof

» Recall the union bound technique we apply in non-adaptive
setting

Pr[3t € [K] : |Rp(f;) — Rs(f:)| > €] < 2k exp(—2€%n)

> No longer only k possible classifiers, need to consider all
possible classifiers may appear to apply the union bound.

» Now the problem becomes counting the total number of
different classifiers.



Proof

» Construct a Tree T of depth t, with root to be f; = A(D).
Each node in depth 1 </ < t correspond to one realization of
fi=A(f,n,...,fi_1,ri—1). The children of the nodes are
defined by each possible value of output R; of Ladder
Mechanism.

» Every possible classifier will be some node in 7, denote the
whole set of classifiers to be F.

» Need to bound |F| = |T]|.



Proof

» Construct an encoding scheme to specify each node in the
Tree.

» A is deterministic, any nodes in depth i can be specified by
sequence of output (Ry,...,Ri_1).

> In a sequence, at most (1/n + 1) of them satisfy
R < Ri_1— n, other R; = R;_1.

> We only need to specify those index i with R; # R;j_1 to
determine the whole sequence.



Proof

> Use [log(t)] < log(2t) bits to specify the depth.

» At most [1/n] possible value for R;, use
[log(1/n)] < log(2/n) bits to specify the value.

» Total number of bits used

(1/m+ 1)(log(2t) + log(2/n)) + log(2t)
<(1/n+ 2)(log(2t) + log(2/n)) = B
» The size of the tree 7 is at most 28, apply union bound over
size of T,
Pr[3f € F : |Rp(f) — Rs(f)| > €] < 2|T|exp(—2€¢n)
< 2B+ exp(—262n)
< exp(—2¢°n+ B +1)



Proof

> If we denote /* = argmin; ;< Rp(f;), then

H ) 1 )| < v ) — [*
| min Ro(F) — min Rs(£)] < [Ro(f) — Rs(f:)

1<i<t

> SO

Pr|| 12}2tRp(f,) min, Rs(fi)| > €] < exp(—2e“n+ B + 1)



Proof

» With |m|n1<,<t Rs( ) Rt| <mn,

Pr[| m|n Rp( 1) — Re| > e+ 1] < exp(—2?n+ B+ 1)

> Fix the right hand side to be § and choose proper 7 to make
€ + 1 to be small.



Estimate Leaderboard Error

Set both € and 7 to O(W), the Ladder Mechanism achieve

with high probability

(log'3(kn))

lberr(Ry, ..., Rk) < O( nl/3 )



Adaptively Step Chosen

» In practice difficult to choose 1 ahead of time.

» Perform statistical significant test to judge whether the
submission improves upon previous ones.

> As the classifier gets more accurate, the step size shrinks.



Paired t-tests

» Given two vector of n values x and y, calculate the difference
di = xi — yi.

» For sufficiently large n, d is approximately normal distribution.

» Calculate t-statistics as follow
t= vin-d
V(0= 1) S(d; - )2

> t follows student distribution of n — 1 degree of freedom,
Pr(t > 1) ~ 0.15 for large n.

> If t > 1 then we assert x increase over y at significance level
of 0.15.



Parameter Free Ladder

Algorithm 3 Parameter Free Ladder Algorithm

Input: Dataset S = {(x1,y1),-.,(Xn,¥n)}
Assign initial state Ry <— 0o, and initial loss vector ¢y = (0)7_;
for each round t + 1,2,... do
Receive function f; : X — Y
Compute loss vector £ <— (¢¢(fe(xi), yi))4
Compute sample standard deviation s < std(¢; — ¢¢_1)
if Rs(f;) < Rt—1 —s/+/n then
Assign Ry < [Rs(f:)]1/n
else
Assign Ry < Ri—1, b + {1
end if
return R;
end for
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Boosting Attack

We want to manually construct submissions which overfit to the
public leaderboard by incorporating feedback from the leaderboard.

» We submit vector u € {0,1}" as solution, and the ground
truth vector is y € {0,1}".

» Observe the loss ¢(u,y) = %Z, L2y,



Attack Procedure

1. Pick ug,...,ux € {0,1}" uniformly at random.
2. Observe loss (1, ...,4 € [0,1].

3.
4

. Final submission v* = maj(u; : i € ).

Let /=il <1/2.

In total kK + 1 submissions.



Error of Boosting Attack

Theorem
If |¢; — £(uj,y)| < n~Y2 (rounding parameter) for all i € [k], the
boosting attack find u* € {0,1}" s.t. with probability 2/3,

1 < 1 k
— v )y< - — _
SWUREE Q( ,,)

For completely uniformly random generated y, this indicate the
leaderboard error
k
Iberr(R1,...,Rx) > Q —=
n

Where R; is the minimum of first i loss returned by Kaggle
algorithm.



Result

12000 uniformly random {0, 1} numbers, 4000 for public
leaderboard, 8000 for private leaderboard.

Ladder vs Kaggle (normal precision) Ladder vs Kaggle (normal precision)
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Figure: Performance of Ladder compared to Kaggle. Left: Rounding
parameter 1/,/n = 0.0158; Right: Normal rounding parameter 0.00001.
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Experiment

Experiment on real data from Kaggle's “Photo Quality Prediction” .

Number of test samples 12000
— used for private leaderboard | 8400
— used for public leaderboard | 3600

Number of submissions 1830
- processed successfully 1785
Number of teams 200

Figure: Information about Kaggle competition



Experiment

Use parameter-free Ladder mechanism to recompute the score of

1785 submission by 200 teams.
The result ranking is closed to those computed by Kaggle, only

small perturbations.

Private Public
Kaggle |6 | 8 |5|6|7
Ladder |8 | 6 | 7|56

Table: Perturbations in the top 10 leaderboards




Statistical Test

Do paired t-test between top submission to rank r =23, ...
submissions.

0.80

0.60

p value

0.40

0.20

0.05

2 3 4 5 6 7 8 9 10
rank

The result shows this perturbations is within range of normal
fluctuation and below the level of statistical significance.

,10



Reason for no difference?

> In practice, competitors not tend to cheat and attack the
leaderboard for high score.

» The total number of submissions is not too large.



Conclusion

> This paper gives a new leaderboard mechanism which ensure
low leaderboard error even when total number of submission is
extremely large, and test its effectiveness both in adversarial
attack and in real competition.

> They gives a simple but yet effective idea to use union bound

even in full adaptively setting: by counting all possible
outcomes, if with in reasonable size.
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