The Ladder: A Reliable Leaderboard for Machine Learning Competitions

COMS 6998-4 2017, Topics in Learning Theory

Qinyao He qh2183@columbia.edu

Columbia University

November 30, 2017

Outline

Introduction

Problem Formulation

Ladder Mechanism
Parameter Free Modification

Boosting Attack

Experiment in Real

Outline

Introduction

Problem Formulation

Ladder Mechanism

Boosting Attack

Experiment in Real

Kaggle Competition

Figure: Public and Private Leaderboard

Overfiting

- ▶ Repeated submission to Kaggle leaderboard tends to overfit the public leaderboard dataset.
- ▶ Public leaderboard score may not represent the actual performance, participants can be mislead.

Overfiting

- Repeated submission to Kaggle leaderboard tends to overfit the public leaderboard dataset.
- Public leaderboard score may not represent the actual performance, participants can be mislead.
- In fact the error between the public leaderboard and actual performance can be large as $O(\sqrt{\frac{k}{n}})$, k is number of submission.
- ▶ How should we deal with that? How to maintain a leaderboard with reliable accurate estimation of the true performance.

Ways to Reduce that Effect

- Limit the rate of submission (maximum of 10 submission per day).
- Limit the numerical accuracy returned by the leaderboard (rounding to fixed decimal digits).

Ways to Reduce that Effect

- Limit the rate of submission (maximum of 10 submission per day).
- Limit the numerical accuracy returned by the leaderboard (rounding to fixed decimal digits).

We want theoretical guarantee even for very large times of submission.

Outline

Introduction

Problem Formulation

Ladder Mechanism

Boosting Attack

Experiment in Real

Preliminaries and Notations

- ▶ Data domain \mathcal{X} and label domain \mathcal{Y} , unknown distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$.
- ▶ Classifier $f: \mathcal{X} \to \mathcal{Y}$, loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to [0,1]$.
- ▶ Set of sample $S = \{(x_1, y_1), \dots, (x_n, y_n)\}$ drawn i.i.d from \mathcal{D} .
- Empirical loss

$$R_{\mathcal{S}}(f) = \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i)$$

► True loss

$$R_{\mathcal{D}}(f) = \underset{(x,y)\sim\mathcal{D}}{\mathbb{E}}[\ell(f(x),y)]$$

Leaderboard Model

- 1. Each time t a competitor submit a classifier f_t (in practice a prediction over holdout dataset).
- 2. The leaderboard return a estimate of score R_t to the competitor using public leaderboard dataset S.
- 3. Finally the true score over \mathcal{D} is estimated over another set of private dataset.

Error Evaluation

Given a sequence of classifier f_1, f_2, \ldots, f_k , and score by the leaderboard R_t , we want to bound

$$\max_t |R_{\mathcal{D}}(f_t) - R_t|$$

i.e., we should make

$$\Pr[\exists t \in [k] : |R_{\mathcal{D}}(f_t) - R_t| > \epsilon] \leq \delta$$

The error on private leaderboard should be close to the true loss since those private data are not revealed to the competitor.

Kaggle Algorithm

Algorithm 1 Kaggle Algorithm

```
Input: Data set S, rounding parameter \alpha>0 (typically 0.00001) for each round t\leftarrow 1,2,\ldots do Receive function f_t:X\to Y return [R_S(f_t)]_{\alpha} end for
```

 $[x]_{\alpha}$ denote rounding x to the nearest integer multiple of α . e.g., $[3.14159]_{0.01} = 3.14$.

Simple Non-adaptive Case

- ▶ Assume all $f_1, ..., f_k$ are fixed independent of S
- ▶ Just compute empirical loss $R_S(f_t)$ as R_t .
- Directly apply Hoeffding's inequality and union bound we have

$$\Pr[\exists t \in [k] : |R_{\mathcal{D}}(f_t) - R_{\mathcal{S}}(f_t)| > \epsilon] \le 2k \exp(-2\epsilon^2 n)$$

Simple Non-adaptive Case

- ▶ Assume all $f_1, ..., f_k$ are fixed independent of S
- ▶ Just compute empirical loss $R_S(f_t)$ as R_t .
- Directly apply Hoeffding's inequality and union bound we have

$$\Pr[\exists t \in [k] : |R_{\mathcal{D}}(f_t) - R_{\mathcal{S}}(f_t)| > \epsilon] \le 2k \exp(-2\epsilon^2 n)$$

Þ

$$\epsilon = O(\sqrt{\frac{\log k}{n}})$$
$$k = O(\exp(\epsilon^2 n))$$

Adaptive Setting

ightharpoonup Classifier f_t may be chosen as a function of previous estimate.

$$f_t = \mathcal{A}(f_1, R_1, \dots, f_{t-1}, R_{t-1})$$

independence of f_1, \ldots, f_k never holds, no longer union bounds over k!

Adaptive Setting

ightharpoonup Classifier f_t may be chosen as a function of previous estimate.

$$f_t = \mathcal{A}(f_1, R_1, \dots, f_{t-1}, R_{t-1})$$

independence of f_1, \ldots, f_k never holds, no longer union bounds over k!

• We will later show an simple attack for the Kaggle algorithm to have error $\epsilon = \Omega(\sqrt{\frac{k}{n}})$.

Adaptive Setting

ightharpoonup Classifier f_t may be chosen as a function of previous estimate.

$$f_t = \mathcal{A}(f_1, R_1, \dots, f_{t-1}, R_{t-1})$$

independence of f_1, \ldots, f_k never holds, no longer union bounds over k!

- We will later show an simple attack for the Kaggle algorithm to have error $\epsilon = \Omega(\sqrt{\frac{k}{n}})$.
- In fact no computational efficient way to achieve o(1) error with $k \ge n^{2+o(1)}$.

Leaderboard Error

Previous setting of bounding error for every step is not possible. Introduce a weaker notion, we only cares about the best classifier submitted so far rather than accurately estimate all f_i .

Let R_t returned by the leaderboard at time t represent the estimated loss of the currently best classifier.

Definition

Given adaptively chosen f_1, \ldots, f_k , define leaderboard error of estimates R_1, \ldots, R_k ,

$$\mathsf{Iberr}(R_1,\ldots,R_k) = \max_{1 \leq t \leq k} \left| \min_{1 \leq i \leq t} R_{\mathcal{D}}(f_i) - R_t \right|$$

Outline

Introduction

Problem Formulation

Ladder Mechanism

Boosting Attack

Experiment in Real

Ladder Algorithm

Algorithm 2 Ladder Algorithm

```
Input: Data set S, step size \eta > 0
   Assign initial state R_0 \leftarrow \infty
  for each round t \leftarrow 1, 2, \dots do
       Receive function f_t: X \to Y
       if R_{S}(f_{t}) < R_{t-1} - \eta then
            Assign R_t \leftarrow [R_S(f_t)]_n
       else
            Assign R_t \leftarrow R_{t-1}
       end if
       return R<sub>t</sub>
  end for
```

Require an increase by some margin η to be considered as the new best.

Error Bound

Theorem

For any adaptively chosen f_1, \ldots, f_k , the Ladder Mechanism satisfy for all $t \leq k$ and $\epsilon > 0$,

$$Iberr(R_1,\ldots,R_k) = O(\frac{\log^{1/3}(kn)}{n^{1/3}})$$

Error Bound

Theorem

For any adaptively chosen f_1, \ldots, f_k , the Ladder Mechanism satisfy for all $t \leq k$ and $\epsilon > 0$,

$$Iberr(R_1,\ldots,R_k) = O(\frac{\log^{1/3}(kn)}{n^{1/3}})$$

Put it another way, we can have up to

$$k = O(\frac{1}{n} \exp(n\epsilon^3))$$

submissions but still expect the leaderboard error to be small. Previously, $k = O(n^2)$.

 Recall the union bound technique we apply in non-adaptive setting

$$\Pr[\exists t \in [k] : |R_{\mathcal{D}}(f_t) - R_{\mathcal{S}}(f_t)| > \epsilon] \le 2k \exp(-2\epsilon^2 n)$$

- No longer only k possible classifiers, need to consider all possible classifiers may appear to apply the union bound.
- Now the problem becomes counting the total number of different classifiers.

- Construct a Tree \mathcal{T} of depth t, with root to be $f_1 = \mathcal{A}(\varnothing)$. Each node in depth $1 \leq i \leq t$ correspond to one realization of $f_i = \mathcal{A}(f_1, r_1, \ldots, f_{i-1}, r_{i-1})$. The children of the nodes are defined by each possible value of output R_i of Ladder Mechanism.
- ▶ Every possible classifier will be some node in \mathcal{T} , denote the whole set of classifiers to be \mathcal{F} .
- ▶ Need to bound $|\mathcal{F}| = |\mathcal{T}|$.

- Construct an encoding scheme to specify each node in the Tree.
- ▶ A is deterministic, any nodes in depth i can be specified by sequence of output (R_1, \ldots, R_{i-1}) .
- ▶ In a sequence, at most $(1/\eta + 1)$ of them satisfy $R_i \leq R_{i-1} \eta$, other $R_i = R_{i-1}$.
- We only need to specify those index i with R_i ≠ R_{i-1} to determine the whole sequence.

- ▶ Use $\lceil \log(t) \rceil \le \log(2t)$ bits to specify the depth.
- At most $\lceil 1/\eta \rceil$ possible value for R_i , use $\lceil \log(1/\eta) \rceil \le \log(2/\eta)$ bits to specify the value.
- Total number of bits used

$$(1/\eta + 1)(\log(2t) + \log(2/\eta)) + \log(2t)$$

 $\leq (1/\eta + 2)(\log(2t) + \log(2/\eta)) = B$

▶ The size of the tree \mathcal{T} is at most 2^B , apply union bound over size of \mathcal{T} ,

$$\Pr[\exists f \in F : |R_{\mathcal{D}}(f) - R_{\mathcal{S}}(f)| > \epsilon] \le 2|\mathcal{T}| \exp(-2\epsilon^{2}n)$$

$$\le 2^{B+1} \exp(-2\epsilon^{2}n)$$

$$\le \exp(-2\epsilon^{2}n + B + 1)$$

▶ If we denote $i^* = \arg\min_{1 < i < t} R_{\mathcal{D}}(f_i)$, then

$$|\min_{1\leq i\leq t}R_{\mathcal{D}}(f_i)-\min_{1\leq i\leq t}R_{\mathcal{S}}(f_i)|\leq |R_{\mathcal{D}}(f_{i^*})-R_{\mathcal{S}}(f_{i^*})|$$

► SO

$$\Pr[|\min_{1 \leq i \leq t} R_{\mathcal{D}}(f_i) - \min_{1 \leq i \leq t} R_{\mathcal{S}}(f_i)| > \epsilon] \leq \exp(-2\epsilon^2 n + B + 1)$$

• With $|\min_{1 \le i \le t} R_S(f_i) - R_t| < \eta$,

$$\Pr[|\min_{1 \le i \le t} R_{\mathcal{D}}(f_i) - R_t| > \epsilon + \eta] \le \exp(-2\epsilon^2 n + B + 1)$$

Fix the right hand side to be δ and choose proper η to make $\epsilon + \eta$ to be small.

Estimate Leaderboard Error

Set both ϵ and η to $O(\frac{(\log^{1/3}(kn))}{n^{1/3}})$, the Ladder Mechanism achieve with high probability

$$\operatorname{Iberr}(R_1, \dots, R_k) \leq O(\frac{(\log^{1/3}(kn))}{n^{1/3}})$$

Adaptively Step Chosen

- ▶ In practice difficult to choose η ahead of time.
- Perform statistical significant test to judge whether the submission improves upon previous ones.
- ▶ As the classifier gets more accurate, the step size shrinks.

Paired t-tests

- ▶ Given two vector of n values x and y, calculate the difference $d_i = x_i y_i$.
- \triangleright For sufficiently large n, d is approximately normal distribution.
- Calculate t-statistics as follow

$$t = \frac{\sqrt{n} \cdot \bar{d}}{\sqrt{1/(n-1)\sum_{i}(d_{i} - \bar{d})^{2}}}$$

- ▶ t follows student distribution of n-1 degree of freedom, $Pr(t > 1) \approx 0.15$ for large n.
- ▶ If t > 1 then we assert x increase over y at significance level of 0.15.

Parameter Free Ladder

Algorithm 3 Parameter Free Ladder Algorithm

```
Input: Data set S = \{(x_1, y_1), \dots, (x_n, y_n)\}
   Assign initial state R_0 \leftarrow \infty, and initial loss vector \ell_0 = (0)_{i=1}^n
   for each round t \leftarrow 1, 2, \dots do
        Receive function f_t: X \to Y
        Compute loss vector \ell_t \leftarrow (\ell_t(f_t(x_i), y_i))_{i=1}^n
        Compute sample standard deviation s \leftarrow \operatorname{std}(\ell_t - \ell_{t-1})
        if R_{S}(f_{t}) < R_{t-1} - s/\sqrt{n} then
             Assign R_t \leftarrow [R_S(f_t)]_{1/n}
        else
             Assign R_t \leftarrow R_{t-1}, \ell_t \leftarrow \ell_{t-1}
        end if
        return R<sub>t</sub>
   end for
```

Outline

Introduction

Problem Formulation

Ladder Mechanism

Boosting Attack

Experiment in Real

Boosting Attack

We want to manually construct submissions which overfit to the public leaderboard by incorporating feedback from the leaderboard.

- ▶ We submit vector $u \in \{0,1\}^n$ as solution, and the ground truth vector is $y \in \{0,1\}^n$.
- ▶ Observe the loss $\ell(u, y) = \frac{1}{n} \sum_{i} \mathbb{I}_{u_i \neq y_i}$.

Attack Procedure

- 1. Pick $u_1, \ldots, u_k \in \{0, 1\}^n$ uniformly at random.
- 2. Observe loss $\ell_1, \ldots, \ell_k \in [0, 1]$.
- 3. Let $I = i : I_i \le 1/2$.
- 4. Final submission $u^* = \text{maj}(u_i : i \in I)$.

In total k + 1 submissions.

Error of Boosting Attack

Theorem

If $|\ell_i - \ell(u_i, y)| \le n^{-1/2}$ (rounding parameter) for all $i \in [k]$, the boosting attack find $u^* \in \{0, 1\}^n$ s.t. with probability 2/3,

$$\frac{1}{n}\sum_{i=1}^n\ell(u_i^*,y_i)\leq \frac{1}{2}-\Omega\left(\sqrt{\frac{k}{n}}\right)$$

For completely uniformly random generated y, this indicate the leaderboard error

$$\mathsf{Iberr}(R_1,\ldots,R_k) \geq \Omega\left(\sqrt{\frac{k}{n}}\right)$$

Where R_i is the minimum of first i loss returned by Kaggle algorithm.

Result

12000 uniformly random $\{0,1\}$ numbers, 4000 for public leaderboard, 8000 for private leaderboard.

Figure: Performance of Ladder compared to Kaggle. **Left**: Rounding parameter $1/\sqrt{n} = 0.0158$; **Right**: Normal rounding parameter 0.00001.

Outline

Introduction

Problem Formulation

Ladder Mechanism

Boosting Attack

Experiment in Real

Experiment

Experiment on real data from Kaggle's "Photo Quality Prediction".

Number of test samples	12000
 used for private leaderboard 	8400
 used for public leaderboard 	3600
Number of submissions	1830
 processed successfully 	1785
Number of teams	200

Figure: Information about Kaggle competition

Experiment

Use parameter-free Ladder mechanism to recompute the score of 1785 submission by 200 teams.

The result ranking is closed to those computed by Kaggle, only small perturbations.

	Private		Public		
Kaggle	6	8	5	6	7
Ladder	8	6	7	5	6

Table: Perturbations in the top 10 leaderboards

Statistical Test

Do paired t-test between top submission to rank r = 2, 3, ..., 10 submissions.

The result shows this perturbations is within range of normal fluctuation and below the level of statistical significance.

Reason for no difference?

- ▶ In practice, competitors not tend to cheat and attack the leaderboard for high score.
- ▶ The total number of submissions is not too large.

Conclusion

- This paper gives a new leaderboard mechanism which ensure low leaderboard error even when total number of submission is extremely large, and test its effectiveness both in adversarial attack and in real competition.
- ► They gives a simple but yet effective idea to use union bound even in full adaptively setting: by counting all possible outcomes, if with in reasonable size.