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Teaching Dimensions

1 Introduction

1.1 Learning Model

Thinks through the setting of the online learning with different directors trying to give a
query sequence for a consistent learner in their own purpose. To be clear, let’s define the
consistency.

Definition 1 (Consistency). A learner is consistent if for any t, there exist some c ∈ C such
that

∀i < t, c(xi) = c ∗ (xi), and f(xt) = yt.

As you can see, the basic idea is that the learner won’t provide an unreasonable answer
on purpose. Its predictions are all come from history. In the online model, the problem of no
consistent learner will make a mistake at t > i is completely equivalent with that in finding
one exact hypothesis that is consistent with x<t.

Now let us go further and think about this teacher setting. How can we define the
capability of this model in a practical problem? We can start from the definition of the query
sequence, or from teachers point, teaching sequence.

Definition 2 (Teaching Sequence). Input x1, . . . , xm are a teaching sequence for c ∈ C if
there’s no other g ∈ C that

∀i ≤m,g(xi) = f(xi).

So a teaching sequence is a set of instances from sample space which can uniquely specify
the target concept. Apparently, the length of a teaching sequence can highly depend on what
kind of concept the teacher is trying to teach. Still, we will need a standard criterion to
measure the complexity of a problem, i.e. the concept class C. Thus we have the teaching
dimension.

Definition 3 (Teaching dimension). The teaching dimension of a concept class C is the
smallest integer t that for all c ∈ C will have the teaching sequence of length at most t.

t = TD(C) =max
c∈C

( min
τ∈T (c)

∣τ ∣) .
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1.2 Generic bounds

Here we are trying to introduce some bound of teaching dimension in various settings.

Theorem 1 (Teaching Upper Bound on finite set). Any finite concept class will have a
teaching dimension at most

t ≤ ∣C∣ − 1

Proof. This is trivial. For the arbitrary c ∈ C, the teacher just enumerate its difference
between every other hypothesis, i.e. for ci ≠ c, teacher can choose xi s.t. ci(xi) ≠ c(xi) .

Theorem 2 (Teaching Lower Bound on finite set). Any finite concept class will have a
teaching dimension at least

t ≥ log ∣C∣ − 1

log ∣X ∣

Proof. For each c, it will uniquely be identified by some x1, . . . , xt, then

∣C∣ ≤ 2t(∣X ∣
t

) ≤ 2∣X ∣t.

Combine two-part and do the log we can get the result.

2 Motivation example

Here we are trying to give some examples to give motivation for specific problems. We will
start with the most difficult concept class for teaching in the finite setting.

2.1 Least Teachable Class

We are now considering the concept class over {1,2, . . . , n}:

C = {X ∖ {1},X ∖ {2}, . . . ,X ∖ {n}} ∪X.

You will have to list all i = 1, . . . , n to teach the X. Thus we have the teaching dimenson
t = ∣C∣ − 1.

2.2 Axis Aligned Boxes

In this problem, we are trying to teach the learner of the joint of some box-areas that aligned
to the axis. First, we consider a simple situation. In Z2, the boxes shrink to the rectangles in
the Plane. The teacher is trying to teach the rectangle area has integer vertices.

Teaching sequence:

• Positive examples: x and y;
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• Negative examples: x − (1,0), x − (0,1), y + (1,0) , y + (0,1) .

Thus we have teaching dimension of 6. In the higher dimension space as Zd, we just use d
negative examples for each positive example, add them together we will get

t = 2(d + 1).

3 Teaching versus Learning

3.1 Disparities

Definition 4 (Shattered set). The class C shatters a set S ⊂ X when

{S ∩ c ∶ c ∈ C} = P(S).

Definition 5 (VC Dimension). The integer d is the Vapnik-Chervonenkis dimension of a
class C if it is the minimum d such that C shatters no sets of d + 1 points.

As the teaching dimension represents the difficulty of teaching the class, the VC dimension
denotes the difficulty of learning the concept. So what is the connection between this two
value, since in real world we take teaching and learning as two sides of a coin. Sadly, as for
these two dimensions, we can’t see the relation between them. We are now present some
examples to show the disparities between them.

Figure 1: Illustration of learning rectangle in Z2
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3.1.1 Least Teachable Class

Recall the example setting we introduced above, each concept will have all instance but one of
the instance space. In this setting, teaching dimension will be n where n denote the number
of the instance in the sample set and VC dimension 2 because there will be no hypothesis
that induces (1,0,0) to an arbitrary triplet. So this is an example of which is hard to teach
but easy to learn.

3.1.2 Hybrid Concept

We define two set of functions. a set of n easy to teach function:

F = {{x} ∶ x ∈ [n]}

.
And also a set of 2m hard to learn functions:

G = 2[m]

.
Choose 2m = n and construct class over [n] ⊍ [m] like illustrated in table 1.

x1 x2 x3 . . . xn−1 xn y1 . . . ym−1 ym
h1 + − − . . . − − − . . . − −
h2 − + − . . . − − − . . . − +
h3 − − + . . . − − − . . . + −
⋮
hn−1 − − − . . . + − + . . . + −
hn − − − . . . − + + . . . + +

¯
Table 1: Illustration for hybrid concept

We say it is still easy to teach because we hi can be identified by positive example xi. Also,
it will be still hard to learn due to y1, . . . , ym is shattered Thus we have teaching Dimension
of 1 but VC Dimension of logn.

3.2 Bounds

Theorem 3 (Lower bound). With VC Dimension d, we have the lower bound of

t ≥ d − 1

log ∣X ∣ .

Proof. Follows directly from previous:

t ≥ log ∣C∣ − 1

log ∣X ∣ and log ∣C∣ ≥ d.
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Theorem 4 (Upper bound). With VC Dimension d, we have the upper bound of

t ≤ ∣C∣ − 2d + d.

Proof. We can build the teaching sequence like this: we have shattered set of size d, then we
use one example to exclude each remaining hypothesis. First step removes 2d − 1 hypotheses
with d examples. Then we just removes ∣C∣ − (2d − 1) − 1 hypotheses, 1 example each.

4 Recursive Teaching

4.1 Alomost maximal Classes

Theorem 5 (Concentration of Teaching Dimension). If the teaching dimension of C is
t ≥ ∣C∣ − k, then for some f ∈ C the class C ∖ {f} has teaching dimension at most k.

Since fixing f requiring a teaching sequence like x1, x2, . . . , xt of length t.In order to
prove, we may fix some f1 in the class C ∖ {f} and wlog take f1(x1) ≠ f(x).

The idea is to partition C ∖ {f} into two set:

• S will be a large set that disagrees with f1 on x1;

• T will be a small set.

To teach f1, use sequence xi plus one x to distinguish from each g ∈ T .
We will construct S and T inductively. First, let C = C ∖ ({f} ∪ S ∪ T ) the remaining

concepts. Define D(x) the set of g ∈ C such that g(x) ≠ f(x). Initially, we set S = {f1} and
T =D(x1) ∖ {f1}. Then for i = 2, . . . , t:

• Pick an arbitrary fi ∈D(xi).

• Add fi to S.

• Add any remaining D(xi) ∖ {fi} to T .

Proof. Now we try to validate the algorithm. We will begin by claiming that: fi ∈ S disagrees
with f1 on x1.

• Assume fi(x1) = f1(x1).

• fi(x1) ≠ f(x1) by construction.

• But then in first step fi ∈D(x1) so fi ∈ T

• T and S are disjoint, so fi /∈ S.

Then we will claim that ∣T ∣ = k − 1:
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• D(xi) non-empty at each step, otherwise {xj} ∖ xi a learning sequence

• One fi gets added to S each round, have ∣S∣ = t

• C ∖ {f} = S ∪ T implies ∣T ∣ = ∣C∣ − 1 − ∣S∣

• Assumed t = ∣C∣ − k so ∣T ∣ = k − 1.

4.2 Recursive Teaching Dimension

Let MinTD(C) be the set of f ∈ C with the shortest teaching sequences. Then we can
construct levels of C like this:

Ci =MinTD
⎛
⎝
C ∖ ⋃

j<i

Cj
⎞
⎠
.

Then we can define a robust notion of teaching dimension.

Definition 6 (Recursive Teaching Dimension). The recursive teaching dimension of C is the
maximum of the teaching dimensions of the levels Ci constructed above.

Bibliographic notes

The concept of teaching sequence comes from [2], and teaching dimension from [1]. The part
of recursive teaching dimension is from [3]
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