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Splitting Index

1 Introduction

Recall that in the active learning setting, learner is provided with unlabeled samples, and
can query teacher for the label. The goal is to learn a concept close enough to the target
concept while minimizing the number of labels queried. Ideally the number of labels needed
is much smaller than Ω(1/ε), which is the number of labeled examples in the passive learning
setting. To characterize the sample complexity, in this lecture we discussed another quantity
to measure the effectiveness of active learning on particular concept classes and distributions:
splitting index. We provide motivating examples, definition of splitting index, and a (coarse)
lower and upper bound for label complexity based on it.

2 Motivating examples

2.1 Good example: linear separator in R1

We first examine the typical example of learning a threshold in R1 (Figure 1). If the underlying
distribution P is separable, then as we learned in previous lectures/paper, VC theory shows
we can achieve an error rate less than ε by drawing m = O(1/ε) labeled examples. Can we
do better with active learning?

The answer is yes. If we draw m unlabeled samples, we can perform a binary search
to find the threshold, which only requires logm = O(log 1/ε) labels. Going from O(1/ε) to
O(log 1/ε), we see an exponential improvement. Great!

Figure 1: Example of a threshold function in R1 [1]

2.2 Bad example: linear separator in R2

We then consider the case of R2, where the hypothesis class is all linear separators in R2 and
the input distribution P is supported on the perimeter of the unit circle. Unfortunately, we
can construct a setting where Ω(1/ε) labels have to be obtained.

Consider the following setting, shown in Figure 2. h0 is an all-positive separator, and
for each hi(1 ≤ i ≤ 1/ε), they classify all points as positive, except for a small slice Bi with
probability mass ε. Note that all Bi are disjoint on purpose.
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Figure 2: Example of linear separators on R2 [1]

Why this is bad? each time when we query the label of x ∈ Bi, we can only get rid of hi
one at a time. Therefore, in order to distinguish between h0, . . . , hi, the label complexity can
be as bad as Ω(1/ε).

2.3 Why there are good and bad examples?

It is worth thinking why there are good and bad examples. For good examples, somehow,
each query to label helps to reduce the ‘size/volume’ of ‘search space’ by a constant factor
(say 1/2), and therefore, we get exponential improvement from binary-search-like algorithm.
However, it is not always the case. In Section 2.2, we observe two indicators of bad examples:

1. There aren’t good examples that can eliminate hypotheses in an effective way.

2. Even if there are good examples, in some bad scenario, your chance of drawing them
from P can be low.

As we will see soon, splitting index is essentially defined based on those two observations.

3 Problem setting

We consider a binary classification setting. Denote the instance space as X , with underlying
probability distribution P. Let H be the hypothesis class, where each hypothesis h ∈ H maps
from X to {0, 1}.

We make three assumptions:

1. The scenario is realizable, meaning there exists a hypothesis h∗ ∈ H that perfectly
classifies all instances.
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2. The VC dimension of H, d is finite.

3. We consider non-Bayesian setting, so no prior on the space H is assumed.

Now we can define a pseudometric on H, which is naturally suggested by the distribution
P:

d(h, h′) = P{x : h(x) 6= h′(x)}.

Essentially, this pseudometric provides us with a measure of ‘distance’ between two
hypotheses based on the distribution P. Equipped with the pseudometric, we can further
define:

• Error of a hypothesis: err(h) = d(h, h′)

• Ball (neighborhood): B(h, r) = {h′ ∈ H : d(h, h′) ≤ r}

• Diameter of a set S: diam(S) = sup
h,h′∈S

d(h, h′)

As mentioned in the lecture, it can be helpful to think of the idea of “packing number”.
Consider Figure 3. The triangle represents the version space, and each ball inside represents a
hypothesis and its neighbors with ε radius. Then the ‘volume’ of this version space is related
to how many balls it can pack (i.e. the packing number), and as we will see in the next
chapter, we are interested in those ‘edges’ connecting from the center of one ball to another
ball, and how each sample x interact with them. More information on packing numbers can
be found at [2].

Figure 3: An illustration of packing number
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4 Definition of splitting index

Consider any finite edge space Q ⊂
(H
2

)
. Let x ∈ X , we define the splitting index ρ as follows:

we say x ρ-splitQ if

max


∣∣∣∣∣Q ∩

(
H0
x

2

)∣∣∣∣∣ ,
∣∣∣∣∣Q ∩

(
H1
x

2

)∣∣∣∣∣
 ≤ (1− ρ)|Q| ,

where H0
x = {h ∈ H : h(x) = 0}, and H1

x = {h ∈ H : h(x) = 1}.
Since our target accuracy is ε, for each Q we can construct Qε to only contain edges of

length more than ε:
Qε = {{h, h′} ∈ Q : d(h, h′) > ε}.

Then, a subset of hypotheses S ⊂ H is (ρ, ε, τ)-splittable if ∀Q ⊂
(
S
2

)
:

P{x : x ρ-splitQε} ≥ τ.

Echoing with Section 2.3, ρ essentially models observation 1 (how good a good example can
be), and τ models observation 2 (how easy is it to find a good example). Apparently, the
bigger ρ and τ is, the better.

5 Analysis

We first prove the lower bound. The high level idea is, if splitting index in some region of H
is too low, then it must contain hypotheses which active learning cannot improve.

Theorem 1. Suppose S ⊂ H is not (ρ, ε, τ)-splittable for some 0 < ρ, ε < 1, and some
0 < τ < 1/2. Then with probability > 3/4, for any active learning strategy that achieves an
accuracy of ε/2 must either draw ≥ 1/τ unlabeled samples, or request ≥ 1/ρ labels.

Proof. The proof is straightforward. Let’s draw less than 1/τ unlabeled samples. Then with
probability at least (1− τ)1/τ ≥ 1/4, none of these points ρ-splits Qε. Then there must exist
a hypothesis in V for which at least 1/ρ labels are needed.

The upper bound is shown via a simple algorithm. We first present the algorithm.

Algorithm 1 Main algorithm A
input Hypothesis class H, ε > 0.
1: Let S0 be an (ε/2)-cover of H.
2: for t = 1, 2, . . . , T = log 2/ε do
3: St = split(St−1,1/2t)
4: end for
5: return any h ∈ ST .
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Algorithm 2 split(S,∆)
input Version space S, ∆ > 0.
1: Let Q0 = {{h, h′} ∈

(
S
2

)
: d(h, h′) > ∆}.

2: t← 0

3: repeat
4: Draw m unlabeled examples xt1, . . . , xtm
5: Find the xti which maximally splits Qt

6: Query the label
7: Let Qt+1 be the remaining edges
8: t← t+ 1

9: until Qt+1 = ∅
10: return remaining hypotheses in S

Lemma 1. Suppose that S ⊂ H is (ρ, ε, τ)-splittable. Then with probability at least 1 −
(1/ρ)(ln|Q0|)e−mτ , Algorithm 2 will terminate after making at most (1/ρ) ln|Q0| queries.

Proof. Denote the number of rounds for Algorithm 2 to terminate as k. We ‘hope’ at each
time t < k, among the m unlabeled examples we always have at least one xti that can ρ-splits
Qt. Then each query we can reduce the size of Qt by (at least) a factor of ρ. Since when we
terminate, the number of edges remaining should be less than one (i.e. Qt+1 = ∅), we see:

(1− ρ)k ·|Q0| ≤ 1. (1)

Solve for k, we get:

e−ρk ·|Q0| ≤ 1 (2)

k ≤ (1/ρ) ln|Q0| . (3)

From (1) to (2) we use the analytic lemma that (1− α)m ≤ e−mα, 0 < α ≤ 1.
Now we show that our hope is actually quite likely to happen. Formally, we bound:

P(for some t < k, no xti can ρ-splits Qt) ≤
k−1∑
t=0

P(no xti can ρ-splits Qt) (4)

≤ k(1− τ)m (5)

≤ ke−mτ (6)

≤ (1/ρ)(ln|Q0|)e−mτ , (7)

where (4) uses union bound, and (6) uses the analytic lemma again.
Now we examine how big |Q0| is. Note that Q0 is initially built on an (ε/2)-cover of H,

which is of size O(1/(ε/2)2d) [2], then |Q0| ≤
∣∣∣(S2)∣∣∣ = O(1/(ε/2)4d). Plugging it in (3), we get:

k ≤ (1/ρ) ln|Q0| = O

(
d

ρ
log

1

ε

)
. (8)
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If we further set R.H.S of (6) as δ, and solve for m, we can get:

m =
1

τ
log

k

δ
. (9)

Then the total number of unlabelled examples in k iterations is:

mk =
k

τ
log

k

δ
(10)

= Õ

(
d

ρτ
log

1

ε

)
. (11)

Now we prove Theorem 2 based on the above lemma:

Theorem 2. Suppose H is (ρ,∆, τ)-splittable for all ∆ ≥ ε/2. To get a version space V such
that h∗ ∈ V and diam(V ) < ε, the following sample and label complexity apply:

• Sample complexity: Õ( d
ρτ

(log 1
ε
)2)

• Label complexity: Õ(d
ρ
(log 1

ε
)2),

where d is VC-dimension of H.

Proof. In Algorithm 1, for all t ≤ T − 1, we have:

St ⊂ B(h∗, 1/2t + ε/2) ⊂ B(h∗, 1/2t−1).

Therefore, St is (ρ, ε, τ)-splittable by definition. Then we need to call Algorithm 2 O(log 1/ε)

times. By Lemma 1, the total sample and label complexity would be:

• Sample complexity = mk ·O(log 1/ε) = Õ( d
ρτ

(log 1
ε
)2)

• Label complexity = k ·O(log 1/ε) = Õ(d
ρ
(log 1

ε
)2)

6 Application of splitting index

6.1 Linear separator in R1

Claim 1. Let H be the hypothesis class of linear separators in R1. Then for any ε > 0, H is
(1/2, ε, ε)-splittable.

Proof. Consider any finite set of edges Q = {{hwi
, hw′

i
} : i = 1, . . . , n}. Without losing

generality, let’s rank all threshold in non-decreasing order, and make sure hwi
≤ hw′

i
, and

only consider those edges with hw′
i
− hwi

> ε. Now, let’s pick x where half the edges have
left end less than x, and half the edges have right end greater than x. To put it in another
way, x cuts at least half of the edges. Then we can see x can 1/2-split Qε and by calling
Algorithm 2, we achieve the desired label complexity.
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6.2 Linear separator in R2

Claim 2. Let H be the hypothesis class of linear separators in R2. The setting introduced in
Section 2.2 has a label complexity of Ω(1/ε).

Proof. Since ∀i, d(h0, hi) > ε, because of the disjoint slices Bi. Then the region containing
h0 and any of the hi is not (ρ > ε, ε, τ)-splittable. By Theorem 1, the label complexity is
Ω(1/ε).

7 Further discussion

One question we discussed in class is why we need an iterative algorithm to step-by-step
reduce the version space, rather than just calling split(H, ε)?

The answer is that if we do so, ρ may not be ‘nice’ when searching on a really big
hypothesis class with a small ε. It is more efficient to step by step reduce the size of the
version space, and change our threshold from ∆ to our target ε gradually.

Bibliographic notes

The definition and analysis of the splitting index are due to [1]. Figure 1 and Figure 2 are
also referred from [1]. The presenter also mentioned [3], a recent work on splitting index,
which provides an efficient algorithm that is able to realize the upper bound.
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