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Splitting Index

1 Introduction

In the setting of active learning, the data comes unlabeled and querying the label of a data
point is expensive. The goal of an active learner is to reduce the number of labels needed
and output a hypothesis with error rate ≤ ε. Recall that the usual sample complexity of
supervised learning is Ω(1/ε). The motivation for defining splitting index is to characterize
the sample complexity of active learning. In the following parts of this section, we give some
examples to show that the label complexity depends on the underlying distribution P and
the target hypothesis h∗.

1.1 Motivating examples

Good example: linear separators in R1

− − − − − + + + +

w

Suppose the data lie on the real line, and the hypothesis class contains all the thresholding
functions, that is, H = {hw : w ∈ R}, where

hw(x) =

{
1 if x ≥ w,

0 if x < w.

To learn the linear separator in R1 with error rate less than ε, we only need to find two
consecutive points with different labels, and require the gap between them to be less than
ε. The sample complexity of supervised learning is O(1/ε). For active learning, we instead
draw m = O(1/ε) unlabeled points from P. Then a simple binary search over these unlabeled
points needs only logm = O(log 1/ε) labels. This example shows that compared with the
sample complexity O(1/ε) of regular supervised learning, active learning gives an exponential
improvement in label complexity over supervised learning.

Bad example: linear separators in R2

In this example we want to learn a linear separator in R2, and the underlying distribution P
is supported on the unit circle. Consider the case where the target hypotheses is one of the
following n+ 1 hypotheses (n = 1/ε):
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h0: all points are positive.
hi, i = 1, . . . , n: each Bi = {x : hi(x) = 0} lies on an arc of probability mass ε, and all

the Bi are distinct.

h1

h2

h3

h0

Each time we ask for a point x, if x turns out to be positive, its label eliminates at most
one hypothesis in h1, . . . , hn. In order to distinguish between h1, . . . , hn, we need at least
Ω(1/ε) labels. This example shows that there are cases where active learning makes little
improvement in the number of labels needed.

2 Preliminaries

2.1 The setting

Let X be an instance space with underlying distribution P. The hypothesis class H is a set
of functions from X to {0, 1} with finite VC dimension. We focus on the realizable case of
active learning where the target hypothesis h∗ ∈ H, with the non-Bayesian setting, that is,
we have no prior on the space H. To measure the distance between hypotheses in H, we
introduce a pseudometric induced by P:

d(h, h′) = P{x : h(x) 6= h′(x)}.

Likewise, the notion of neighborhood is defined as B(h, r) = {h′ ∈ H : d(h, h′) < r}. The
error rate of a hypothesis h is thus its distance to h∗. With this pseudometric we can measure
the volume of a version space S ⊂ H with its diameter:

diam(S) = sup
h,h′∈S

d(h, h′).
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2.2 Basic definitions

The goal of an active learning algorithm is to output a hypothesis h ∈ H with d(h, h′) < ε.
To do this, it is sufficient to reduce the diameter of the version space to at most ε, and output
any hypothesis in the version space.

What we care about is how to quantify the amount by which a point x ∈ X reduces the
diameter of the version space S. Towards this end we imagine a graph with H as vertices
and {h, h′} ∈

(H
2

)
as edges.

For any finite Q ∈
(H
2

)
, a point x ∈ X is said to ρ-split Q if it can eliminate at least a

fraction ρ of edges in the edge-set Q, that is, if:

max


∣∣∣∣∣Q ∩

(
H+
x

2

)∣∣∣∣∣ ,
∣∣∣∣∣Q ∩

(
H−x
2

)∣∣∣∣∣
 ≤ (1− ρ)|Q|.

Reducing the diameter of S to at most ε is equivalent to eliminating all the edges of
length > ε. Therefore, we only care about edges of length more than ε:

Qε = {{h, h′} ∈ Q : d(h, h′) > ε}.

A subset of hypotheses S ∈ H is (ρ, ε, τ)-splittable if for all finite edge-sets Q ∈
(S
2

)
,

P{x : x ρ-splits Qε} ≥ τ.

Another way to measure the volume of the version space is to use the covering number. A
set of hypotheses S0 = {h1, . . . , hn} is an ε-cover of H if any h ∈ H is within distance ε of
some hi ∈ S0, that is, if

H ⊂
n⋃
i=1

B(hi, ε).

The ε-covering number of H the minimal size of such set:

N(H, ε) = min{n : ∃ ε-cover over H of size n}.

Upon defining the ε-cover of H, suppose the closest element to h∗ in S0 is h0. Then h0
has an error rate at most ε. The ε-cover of H serves as a surrogate for the hypothesis class,
and our algorithm only need to choose the best hypothesis in S0.

3 Lower bound

The splitting index gives a natural lower bound of label complexity.The lower bound shows
that if the target hypothesis is in a subset of the hypothesis space with low splitting index,
active learning makes little improvement in sample complexity over supervised learning.
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Theorem 1. Suppose that a set S ⊂ H is not (ρ, ε, τ)-splittable for some 0 < ρ, ε < 1 and
some 0 < τ < 1/2. Then any active learning algorithm that outputs a hypothesis of error
≤ ε/2 with probability > 3/4 on all target hypotheses in S needs either ≥ 1/τ unlabeled
samples, or ≥ 1/ρ labels.

Proof. Suppose that we draw m < 1/τ unlabeled samples x1, . . . , xm. Let Qε be a edge-set
such that with probability at least 1 − τ , a point x eliminates less than ρ|Qε| edges in Qε.
Then, with probability at least (1− τ)1/τ > 1/4, none of x1, . . . , xm ρ-splits Qε. We need at
least 1/ρ labels to eliminate all the edges in Qε.

Example. Recall the example of linear separators in R2. The distance between h0 and
hi satisfies that d(h0, hi) > ε for all i = 1, . . . , n, and the sets of points where h0 and hi
disagree on are disjoint. Therefore, any neighborhood of h0 containing h1, . . . , hn is not
(ρ, ε, τ)-splittable for τ > 0 and ρ > 1/n = ε. From the lower bound given by the splitting
index, the label complexity of learning a linear separators in R2 is Ω(1/ε).

4 Upper bound

Algorithm 1 gives an upper bound of label complexity. The algorithm chooses a hypothesis
in an (ε/2)-cover of H. By halving the diameter of the version space in each iteration, the
algorithm ensures that any hypothesis h remaining in the version space after T = log(2/ε)

iterations has error
d(h, h∗) ≤ d(h, h0) + d(h0, h

∗) < ε,

where h0 is a hypothesis in the (ε/2)-cover of H.

Algorithm 1 Active learning algorithm
input Hypothesis class H, ε > 0.
1: Let S0 be an (ε/2)-cover of H.
2: for t = 1, 2, . . . , T = log(2/ε) do
3: St = split(St−1, 1/2t).
4: end for
5: return any h ∈ ST .
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Algorithm 2 split(S,∆)

input Version space S, ∆ > 0.
1: Let Q0 =

{
{h, h′} ∈

(S
2

)
: d(h, h′) > ∆

}
.

2: t← 0.
3: repeat
4: Draw m unlabeled points xt1, . . . , xtm.
5: Find the xti which maximally splits Qt.
6: Ask for its label.
7: Let Qt+1 be the remaining edges.
8: t← t+ 1.
9: until Qt+1 = ∅

10: return remaining hypotheses in S.

To estimate the sample complexity of Algorithm 1, first we give a lemma that analyzes
the number of queries made by each iteration of the inner loop.

Lemma 1. Suppose that S is (ρ,∆, τ)-splittable. Then there is some setting of m that
guarantees with probability at least 1− δ, Algorithm 2 will terminate after making

Õ

(
d

ρ
log

(
1

ε

))

queries.

Proof. In each step t, we draw m unlabeled points. Since S is (ρ,∆, τ)-splittable,

Pr(xti ρ-splits Qt) > τ.

Thus, Pr(no xti ρ-splits Qt) ≤ (1 − τ)m. Let M denote that for some t, there is no
xti ρ-splits Qt. Then,

Pr(M happens at least once in the first k steps) ≤ k(1− τ)m

< ke−mτ .

By choosing

m =
1

τ
ln
k

δ
,

this probability is less than δ. If M does not happen, each query of labels reduce at least a
proportion ρ of the edges. With k = 1

ρ
ln |Q0|, we have

|Qk| ≤ |Q0|(1− ρ)k < |Q0|e−ρk < 1.
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Since there is an (ε/2)-cover of H of size O((1/(ε/2))2d), the size of edge-set |Q0| =

O((1/(ε/2))4d). The number of queries made by split is

k =
1

ρ
ln |Q0|

=
1

ρ
·O

(
d log

(
1

ε

))

= Õ

(
d

ρ
log

(
1

ε

))
.

The total number of unlabeled samples is

m · k =
1

τ
ln

1

δ
ln k

= Õ

(
d

ρτ
log

(
1

ε

))
.

Theorem 2. Suppose B(h∗, 4∆) is (ρ,∆, τ)-splittable for all ∆ > ε/2. Then, with probability
at least 1− δ, Algorithm 1 will return a hypothesis of error at most ε, with at most

Õ

(
d

ρτ

(
log

1

ε

)2
)

unlabeled points, and at most Õ

(
d

ρ

(
log

1

ε

)2
)

labels.

Proof. Let T = log(2/ε). For t = 1, . . . , T , we have

St ⊂ B(h∗, 1/2t + ε/2) ⊂ B(h∗, 1/2t−1).

Thus, St is (ρ, 1/2t+1, τ)-splittable according to our assumption. The function split is called
O(log(1/ε)) times in Algorithm 1. From the results in Lemma 1, we have:

sample complexity = Õ

(
d

ρτ
log

(
1

ε

)2
)
, and label complexity = Õ

(
d

ρ
log

(
1

ε

)2
)
.

Example. Let us return to the simple example of linear separators in R1 with threshold
hypotheses. In this example, H is (ρ = 1/2, ε, ε)-splittable for any ε > 0. To see this, consider
any finite edge-set Q = {{hi, h′i} : i = 1, . . . , n}, where h′i− hi > ε. Then the probability that
we choose a data point which cuts the edge {hi, h′i} is at least ε. We sort the edges according
to their left endpoints, and pick a point x ∈ [a, b], where exactly half the edges have left
endpoints less than a, and b is the right endpoint of a. This ensures that at least half of
the edges are eliminated. Note that in this example, the splitting index ρ is constant on the
whole hypothesis space. By directly calling split(S0, ε), we can achieve label complexity of
Õ
(
d/ρ log 1/ε

)
.
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Bibliographic notes

The Ω(1/ε) sample complexity of supervised learning and the covering number are due to
Haussler [1]. The definition and results of the splitting index are from Dasgupta [2]. More
recent work by Tosh and Dasgupta [3] takes the prior on H into consideration and improves
the bounds of sample complexity given by the splitting index.
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