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Active Learning Analysis in Agnostic Case

1 Introduction

Last lecture has introduced an active learning algorithm works in realizable case, while the
assumption on the optimal hypothesis of set H may not hold in most cases. In other words,
probably there isn’t a “perfect” hypothesis included in H, and even when all h ∈ H agree on
a certain point X, h(X) could be wrong. If we still run CAL algorithm, the correctness is
not guaranteed.

This lecture talks about how to apply active learning in agnostic setting. We know that
the basic idea of active learning is that instead of all labels, the learning algorithm only
queries those it is not sure about, and infers the rest. Therefore, a specific understanding is
needed to define "not sure about" in the new setting. In following paragraphs, we will firstly
give an agnostic active learning algorithm, which uses error difference to measure uncertainty,
then prove its correctness, and finally analyze the label complexity.

2 Algorithm

X is the input space and Y = {±1} are the possible labels. Let s be a subset of X × Y.
Define two modified empirical risk minimization oracles:

A(s) = argmin
h∈H

errs(h), A
(
s,
(
X
′
, Y

′
))

= argmin
h∈H s.t.
h(X

′
)6=Y ′

errs(h).

Algorithm 1 shows the agnostic active learning algorithm. Keep maintaining st, which is
the “correct data-label pair” from learner’s perspective, and apply ERM oracle A(s) to pick
an optimal hypothesis. During each iteration, since label of Xt is either at or −at, the learner
can check errst−1(h

′
t−1) and errst−1(ht−1) to figure out which label fits current st−1 better.

As we have motioned before, the learner makes a query if and only if it is not sure about
a certain example. Intuitively, a decision is hard to make from previous examples when
errst−1(h

′
t−1) and errst−1(ht−1) are very close to each other. Define βt as a given bound, “not

sure about” particularly means:

errst−1(h
′

t−1)− errst−1(ht−1) ≤ βt−1

in this case.
We pick βt = Radt,p(H) +O

(√
log(1/δ)

t

)
mainly based on the conclusion introduced by

the previous lecture on statistical learning.
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Algorithm 1 Agnostic Active Learning Algorithm
Initialize s0 := ∅, h0 := A(s0), β0 :=∞.
1: for t = 1, 2, ..., n: do
2: Obtain unlabeled data point Xt

3: Predict at = ht−1(Xt)

4: Obtain h′t−1 = A(st−1, (Xt, at))

5: if errst−1(h
′
t−1) ≤ errst−1(ht−1) + βt−1 then

6: Get Yt
7: st = st−1 ∪ {(Xt, Yt)}
8: else
9: st = st−1 ∪ {(Xt, at)}

10: end if
11: Let the bound βt = Radt,p(H) +O

(√
log(1/δ)

t

)
, ht = A(st)

12: end for
13: return hn = A(sn).

3 Correctness analysis

Note that sn is different from the empirical distribution on {(Xi, Yi)}ni=1 because it has
make-up data, whose label comes from inferences of the learner. Let h∗ = argminh∈H errp(h)

as the optimal hypothesis on the true distribution, and we need to illustrate hn = A(sn),
has an error rate close to h∗ in order to prove the correctness of the algorithm. Define
event En, where p is the true unknown distribution, and pn is the empirical distribution on
{(Xi, Yi)}ni=1 :

maxh∈H
∣∣errp(h)− errpn(h)

∣∣ ≤ Radn,p(H) +O

(√
log(n(n+1)/δ)

n

)
∣∣errp(h∗)− errpn(h

∗)
∣∣ ≤ O

(√
log(n(n+1)/δ)

n

)
Claim 1.

⋂∞
n=0En hold with probability at least 1− δ.

These results come directly from previous statistical learning lecture by replacing 1
δ
with

n(n+1)
δ

.

Lemma 1 (Favorable bias lemma (FBL)). Suppose sn has property: whenever ai is used in
place of Yi, we have ai = h∗(Xi), for all i = 1, 2, .., n, then for any h, errsn(h)− errsn(h

∗) ≥
errpn(h)− errpn(h

∗).

Proof. Pick i s.t. ai 6= Yi but is used in sn. Pick any h. If h(Xi) = h∗(Xi), then LHS =

RHS = 0. If h(Xi) 6= h∗(Xi), then h(Xi) at least makes one more mistake, therefore
LHS = 1 ≥ RHS. In cases when ai = Yi, obviously, LHS = RHS.
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Corollary 1. Suppose sn has the identical property in FBL, then hn = argminh∈H errsn(h)

satisfies errp(hn) ≤ errp(h
∗) + βn.

Proof.

errp(hn)− errp(h
∗) ≤ errpn(hn)− errpn(h

∗) + βn (according to En event)

≤ errsn(hn)− errsn(h
∗) + βn (according to FBL)

≤ βn.

By this point, we have known that the final result A(sn) has an error upper bound. Let’s
go back to see the condition of if-statement in Algorithm 1. The lemma below gives an idea
of why the learner is able to make an inference according to sn.

Lemma 2. Suppose
⋂n−1
n=0En holds. Then

errsm(h
′

m) > errsm(hm) + βm =⇒ am+1 = h∗(Xm+1), ∀m = 0, 1, ..., n− 1 (*)

Proof. Use induction on m. Base case is when m = 0. Since β0 = ∞, it’s trivial. As-
sume n ≥ 1,

⋂∞
n=0En. We need to show that if errsm(h

′
m) > errsm(hm) + βm, then

an+1 = h∗(Xn+1). Consider the contrapositive: if h∗(Xn+1) 6= an+1, an+1 = hn(Xn+1),
then errsn(h

′
n) ≤ errsn(hn) + βn. First we know that

errsn(h
∗)− errsn(hn) ≤ errpn(h

∗)− errpn(hn),

for (*) can reduce to FBL conditon. In addition, from event En,

errpn(h
∗)− errpn(hn) ≤ errp(h

∗)− errp(hn) + βn.

In all,
errsn(h

∗)− errsn(hn) ≤ errp(h
∗)− errp(hn) + βn ≤ βn.

By definition of h′n, errsn(h
′
n) ≤ errsn(h

∗). As a result,

errsn(h
′

n) ≤ errsn(hn) + βn.

4 Label complexity

Firstly, let’s define a couple of concepts. Recall that in the realizable case, we have ρ(h, h′),
B(h, r), and D(h, r) defined as,

ρ(h, h
′
) = Pr(h(X) 6= h

′
(X)),

B(h, r) =
{
h
′ ∈ H, ρ(h, h′) ≤ r

}
,
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D(h, r) =
{
X ∈ X , ∃h′ ∈ B(h, r), h(X) 6= h

′
(X)

}
.

Similarly, in agnostic case, we need a metric to measure the difference between two hypotheses,

ρ̃(h, h
′
) = errp(h)− errp(h

′
),

and also a description of a particular neighborhood,

B̃(h, r) =
{
h ∈ H, ρ̃(h, h′) ≤ r

}
.

Introduce the concept D̃ to represent the examples that can distinguish h from its neighbours,

D̃(h, r) =
{
X ∈ X , ∃h′ ∈ B̃(h, r), h

′
(X) 6= h(X)

}
.

In realizable setting, since errp(h
∗) = 0, actually ρ̃(h, h∗) = ρ(h, h∗) always holds. In general,

D̃(h∗, r) ≤ D(h∗, 2errp(h∗) + r). This is a direct result of the fact

ρ(h, h∗) ≤ errp(h
∗) + errp(h),

which is supported by triangle inequality of ρ metrics.
We are already very close to revealing the label complexity of agnostic active learning

algorithm. Next lemma helps us to understand when an example’s label is ambiguous to the
learner, and therefore, need a query.

Lemma 3. Assume
⋂n−1
n=0En hold, if errsn−1(h

′
n−1) ≤ errsn−1(hn−1) + βn−1, then Xn ∈

D̃(h∗, 2βn−1) ⊆ D(h∗, 2 errp(h∗) + 2βn−1).

Proof. Need to exhibit, h ∈ B̃(h∗, 2βn−1) s.t. h(Xn) 6= h∗(Xn).

Case 1: hn−1(xn) = h∗(Xn). We show that h′n−1 works, i.e. errp(h
′
n−1) ≤ errp(h

∗)+2βn−1 :

errp(h
′

n−1)− errp(h
∗) ≤ errpn−1(h

′

n−1)− errpn−1(h
∗) + βn−1 by (En−1)

≤ errsn−1(h
′

n−1)− errsn−1(h
∗) + βn−1 by (FBL)

≤ errsn−1(h
′

n−1)− errsn−1(hn−1) + βn−1

≤ 2βn−1

Case 2: hn−1(xn) 6= h∗(Xn). Basically the same as Case 1 for hn−1 is ERM.

This lemma can be used in exactly the same fashion as in the realizable setting for
bounding the expected number of labels requested.

Bibliographic notes

The agnostic active learning algorithm is due to Sanjoy Dasgupta, Daniel Hsu, and Claire
Monteleoni [1], while the material is quite different from the lecture given by Prof. Hsu. This
scibe is mainly written according to Prof. Hsu’s lecture. Event En comes from statistical
learning theory material contributed by Bousquet, Boucheron, and Lugosi [2]. Basic realizable
setting active learning algorithm and CAL algorithm is introduced in Cohn, Atlas, and Ladner
[3]’s paper
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