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Selective Prediction

1 Introduction

In our previous discussion on a variation on the Valiant Model [3], the described learner has
the ability to output “I don’t know” in addition to the regular binary outputs. This is the
behavior of a selective classifier. In other words, a selective classifier is allowed to reject
decision making without penalty. Such classifiers are useful in making medical predictions,
because the cost of making a wrong prediction is usually much higher than refusing to make
any decision in these situations.

1.1 Ideal Selective Classifier

What would an ideal selective classifier looks like? Intuitively, misclassification rate should
not be the only measurement for selective classifiers. Imagine a selective classifier that
refuses making any prediction, such classifier is useless, but it has a misclassification rate of
0. Therefore, it makes sense to evaluate a selective classifier not only by its misclassification
rate, but also the probability it will refuse making prediction.

Let C be a selective classifier in binary classification setting, we define the following:

• Coverage (cover(C)): the probability that C predicts a label instead of refusing making
prediction.

• Erorr (err(C)): the probability that the true label is different from C’s prediction when
C makes prediction.

• Risk: risk(C) = err(C)
cover(C)

We seek to bound both error and coverage of an ideal classifier with high probability
(1− δ) where 0 ≤ δ ≤ 1.

2 Realizable Setting

Let X denote the feature space, D over X × {−1, 1} be the underlying unknown data
distribution. Set S = {{x1, y1}, {x2, y2}, ..., {xn, yn}} is a set of n labelled examples, and
U = {xn+1, xn+2, ..., xn+m} is a set of m unlabelled examples, where xi ∈ X and yj ∈ {−1, 1}
for 1 ≤ i ≤ n + m, 1 ≤ j ≤ n. Let H be a set of hypotheses, and h∗ ∈ H be the target
hypothesis such that the true label of x is the same as the prediction h∗(x). In addition, we
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define version space V with respect to S to be the set of hypotheses that are consistent with
the examples in S.

We introduce 3 selective classifiers: Confidence-rated Predictor, CZ Selective Classifier
and Selective Classifier Strategy.

2.1 Confidence-rated Predictor

A confidence-rated predictor C maps from U to a set of m distributions over {−1, 0, 1}. If the
j-th distribution is [βj, 1− βj − αj, αj ], then Pr{C(xn+j) = −1} = βj , Pr{C(xn+j) = 1} = αj
and Pr{C(xn+j) = 0} = 1− βj − αj.

Algorithm 1 Confidence-rated Predictor
input Labelled data S, unlabelled data U , error bound ε.
1: Compute version space V with respect to S.
2: Solve the linear program:

max
m∑
i=1

(αi + βi)

subject to:
∀i, αi + βi ≤ 1

∀i, αi, βi ≥ 0

∀h ∈ V,
∑

i:h(xn+i)=1

βi +
∑

i:h(xn+i)=−1

αi ≤ εm

3: return the confidence-rated predictor {[βi, 1− βi − αi, αi], i = 1, 2, ...,m}.

Theorem 1. A confidence-rated predictor produced by Algorithm 1 has an error guarantee ε
with optimal coverage for the unlabelled examples in U .

Proof. According the the constraints in the linear program, 0 ≤ αi ≤ 1, 0 ≤ βi ≤ 1, 0 ≤
1− αi − βi ≤ 1 and the probability the predictor makes a wrong decision with respect to the
uniform distribution over U is less than εm/m = ε. Moreover, the linear program maximizes

m∑
i=1

αi + βi,

which is equivalent as minimizing

1

m

m∑
i=1

1− αi − βi

that is the coverage of the predictor.

Remark 1. The feasible region of the linear program in Algorithm 1 is always non-empty.

Proof. The candidate solution {[0, 1, 0], i = 1, 2, ..., 3} will always be in the feasible solution
set.
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2.2 CZ Selective Classifier

A CZ selective classifier C is defined by a tuple (h, (γ1, γ2, ..., γm)) where h ∈ H and 0 ≤ γi ≤ 1

for all i = 1, 2, ...,m. Given unlabelled example xn+i ∈ U , C predicts 0 with probability 1− γi
and predicts C(xn+i) = h(xn+i) with probability γi.

Algorithm 2 CZ Selective Classifier
input Labelled data S, unlabelled data U , error bound ε.
1: Compute version space V with respect to S.
2: Randomly choose h0 ∈ V
3: Solve the linear program:

max
m∑
i=1

γi

subject to:
∀i, 0 ≤ γi ≤ 1

∀h ∈ V,
∑

i:h(xn+i)6=h0(xn+i)

γi ≤ εm

4: return the CZ selective classifier (h0, (γ1, γ2, ..., γm)).

Theorem 2. Let P be a confidence-rated predictor produced by Algorithm 1. A CZ selective
classifier C produced by Algorithm 2 has an error guarantees ε with cover(C) ≥ cover(P)− ε.

Intuitively, there exists h1 ∈ V that produces the most different predictions on U from h0.
If h1 and h0 lies in two opposite ends of the version space, cover(C) would be worse than the
average case.

2.3 Selective Classifier Strategy

There are a few drawbacks using confidence-rated predictors and CZ selective classifiers.
First, the number of constraints can be infinite. Second, we need to input unlabelled dataset
U and these two methods only produce prediction of examples in U . However, we want to
generalize the problem and provide a solution under inductive setting. Thus, we are going to
remove U from the input to the algorithm.

In order to use selective classifier strategy, we introduce a few additional definitions:

• Let d be the VC dimension of H.

• True error rate of hypothesis h is:

errP (h) = Pr
(X,Y )∼D

{h(X) 6= Y }.
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• empirical error rate of hypothesis h is:

errS(h) =
1

n

n∑
i=1

1{h(xi)6=yi}.

• For any hypothesis class H, distribution D over X , and real number r > 0,

V(h, r) = {h′ ∈ H : errP (h′) ≤ errP (h) + r}

V̂(h, r) = {h′ ∈ H : errS(h′) ≤ errS(h) + r}

and
B(h, r) = {h′ ∈ H : Pr

X∼D
{h′(X) 6= h(X)} ≤ r}.

• Disagreement region of hypothesis class H is:

DIS(H) = {x ∈ X : ∃h1, h2 ∈ H s.t. h1(x) 6= h2(x)}

for G ⊆ H, let ∆G the volume of the disagreement region:

∆G = Pr{DIS(G)}.

• disagreement coefficient is:

θ = sup
r>0

∆B(h∗, r)

r
.

• A new type of selective classifier C s.t.

C(x) = (h, g)(x) =

{
h(x) if g(x) = 0

0 if g(x) = 0.

and
cover(h, g) = E[g(X)].

Algorithm 3 Selective Classifier Strategy
input n labelled data S, d, δ.
Output a selective classifier (h, g) s.t. risk(h, g) = risk(h∗, g)

1: Compute version space V with respect to S.
2: Randomly choose h0 ∈ V .
3: Set G = V .
4: Construct g s.t. g(x) = 1 if and only if x ∈ {X \DIS(G)}.
5: Set h = h0.
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Theorem 3. (Consistent Hypothesis error rate bound in terms of VC dimension, theorem
2.15 from lecture notes). For any n and δ ∈ (0, 1), with probability at least 1 − δ, every
hypothesis h ∈ V has error rate

errP (h) ≤
4d ln(2n+ 1) + 4 ln 4

δ

n
.

Theorem 4. Let C = (h, g) be a selective classifier output by Algorithm 3, then h achieves 0
error rate when it makes prediction, and C achieves near optimal coverage with probability
1− δ.

Proof. Given g(x) = 1 if and only if x is not in the disagreement region of the version space
V , when h makes a prediction, it will always agree with all hypotheses in V including h∗.
Thus, h achieves 0 error rate, moreover risk(h, g) = risk(h∗, g).

Now, we will show that C achieves near optimal coverage with probability 1 − δ. Let
r =

4d ln(2n+1)+4 ln 4
δ

n
, then for any h ∈ V , h ∈ V(h∗, r) and V ⊆ V(h∗, r). Furthermore, if h ∈

V(h∗, r), h ∈ B(h∗, r) in the realizable setting. Also, we know that ∀r ∈ (0, 1),∆B(h∗, r) ≤ θr.
Therefore, with probability at least 1− δ,

∆V ≤ ∆B(h∗, r) ≤ θr

and

cover(h, g) = 1−∆V ≥ 1− θr = 1− θ
4d ln(2n+ 1) + 4 ln 4

δ

n
.

3 The Noisy Setting

In the noisy setting, the labels are corresponding to the prediction of target hypothesis h∗

with noises. We will show that with high probability, the selective classifier produced by
Algorithm 4 achieves same error rate as h∗ when it makes prediction, and its coverage is near
optimal.

Algorithm 4 Selective Classifier Strategy - Noisy
input n labelled data S, d, δ.
Output a selective classifier (h, g) s.t. risk(h, g) = risk(h∗, g) with probability 1− δ.
1: Set ĥ = ERM(H, S) so that ĥ is any empirical risk minimizer from H.

2: Set G = V̂(ĥ, 4

√
2
d ln( 2ne

d
)+ln 8

δ

n
).

3: Construct g s.t. g(x) = 1 if and only if x ∈ {X \DIS(G)}.
4: Set h = ĥ.

Before we prove the error bound and coverage of Algorithm 4, let’s introduce some new
definitions:
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• We would like to generalize the definition of risk using a loss fuction L(Y ,Y), then

risk(h, g) =
E[L(h(X), Y )g(X)]

cover(h, g)
.

• Excess loss class is defined as

F = {L(h(x), y)− L(h∗(x), y) : h ∈ H}.

• Given 0 ≤ β ≤ 1 and B ≥ 1, class F is said to be a (β,B)-Bernstein class with respect
to D, if every f ∈ F satisfies E[f 2] ≤ B(E[f ])β.

Lemma 1. If F is a (β,B)-Bernstein class with respect to D, then for any r > 0,

V(h∗, r) ⊆ B(h∗, Brβ)

Proof. If h ∈ V(h∗, r), by definition of V

E[1{h(X)6=Y }] ≤ E[1{h∗(X)6=Y }] + r

E[1{h(X)6=Y } − 1{h∗(X)6=Y }] ≤ r.

Also

E[1{h(X) 6=h∗(X)}] = E[|1{h(X) 6=Y } − 1{h∗(X)6=Y }|]
= E[(1{h(X)6=Y } − 1{h∗(X)6=Y })

2] (1)

= E[(L(h(X), Y )− L(h∗(X), Y ))2] (2)

= E[f 2]

≤ B(E[f ])β

= B(E[1{h(X)6=Y } − 1{h∗(X)6=Y }])
β

≤ Brβ

From (1) to (2) we assume using 0-1 loss function.

Intuitively, we can imagine that B(h∗, Brβ) as having a bigger tolerance such that the
ball includes V(h∗, r) as the 2D visualization Figure 1 shown below.

Theorem 5. (Lemma 1 from [1]) For any δ > 0, if H has VC dimension d, with probability
at least 1− δ

∀h ∈ H, errP (h) ≤ errS(h) + 2

√
2
d ln(2ne

d
) + ln 2

δ

n
.

Similarly, under the same condition,

∀h ∈ H, errS(h) ≤ errP (h) + 2

√
2
d ln(2ne

d
) + ln 2

δ

n
.
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Figure 1: 2D visualization of intuition behind Lemma 1. Left: The yellow region
depicts the hypothesis class H. The yellow region that lies inside the green dotted circle
represents the hypotheses in V(h∗, r). Right: The yellow region inside the red dotted circle
represents the hypotheses in B(h∗, Brβ). By Lemma 1 we show that the red dotted circle fully
contains the green dotted circle. Also, because the difference in definition, the red dotted
circle and green dotted circle have different centers.

Lemma 2. For any r > 0, 0 < δ < 1, with probability at least 1− δ,

V̂(ĥ, r) ⊆ V(h∗, 2σ(n, δ/2, d) + r)

where

σ(n, δ, d) = 2

√
2
d ln(2ne

d
) + ln 2

δ

n
.

Proof. If h ∈ V̂(ĥ, r), then
errS(h) ≤ errS(ĥ) + r (*)

errS(ĥ) ≤ errS(h∗). (**)

According to Theorem 5, with probability at least 1− δ,

errP (h) ≤ errS(h) + σ(n, δ/2, d) ∧ errS(h∗) ≤ errP (h∗) + σ(n, δ/2, d).

So with probability at least 1− δ,

errP (h) + errS(h∗) ≤ errS(h) + errP (h∗) + 2σ(n, δ/2, d)

errP (h) + errS(h∗) ≤ errS(ĥ) + r + errP (h∗) + 2σ(n, δ/2, d) [applying (*)]

errP (h) + errS(ĥ) ≤ errS(ĥ) + r + errP (h∗) + 2σ(n, δ/2, d) [applying (**)]

errP (h) ≤ errP (h∗) + 2σ(n, δ/2, d) + r

errP (h) ≤ B(h∗, 2σ(n, δ/2, d) + r)
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Similarly, we visualize the intuition below in Figure 2. Using Theorem 5, we construct a
slightly bigger ball around h∗ that includes the empirical error ball.

Figure 2: 2D visualization of intuition behind Lemma 2. Left: The blue region,
which is the intersection of the green dotted circle and H, represents the hypotheses in
V̂(ĥ, r). Right: The intersection of H and the red dotted circle represents the hypotheses in
V(h∗, r + ∆). In Lemma 2, we show that when we set ∆ = 2σ(n, δ/2, d), with probability at
least 1− δ, hypotheses in V̂(ĥ, r) are also in V(h∗, r + ∆).

Lemma 3. Assume that H has disagreement coefficient θ, and F is a (β,B)-Bernstein class
with respect to D, then for any r > 0 and 0 < δ < 1, with probability at least 1− δ,

∆V̂(ĥ, r) ≤ Bθ(2σ(n, δ/2, d) + r)β.

Proof. Combine Lemma 1 and Lemma 2, we get with probability at least 1− δ

V̂(ĥ, r) ⊆ V(h∗, 2σ(n, δ/2, d) + r) ⊆ B(h∗, B(2σ(n, δ/2, d) + r)β).

Thus,
∆V̂(ĥ, r) ≤ ∆B(h∗, B(2σ(n, δ/2, d) + r)β) ≤ Bθ(2σ(n, δ/2, d) + r)β.

Theorem 6. Assume that H has disagreement coefficient θ and that F is said to be a (β,B)-
Bernstein class with respect to D. Let (h, g) be selective classifier output by Algorithm 4 then
for any r > 0 and 0 < δ < 1, with probability at least 1− δ,

cover(h, g) ≤ 1− θB(4σ(n, δ/4, d) + r)β ∧ errP (h∗) = errP (h).
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Proof. By Theorem 5, with probability at least 1− δ/2,

errS(h∗) ≤ errP (h∗) + σ(n, δ/4, d) ∧ errP (ĥ) ≤ errS(ĥ) + σ(n, δ/4, d).

Then, with probability at least 1− δ/2,

errS(h∗) ≤ errS(ĥ) + 2σ(n, δ/4, d),

which implies h∗ ∈ V̂(ĥ, 2σ(n, δ/4, d)). So, for any x ∈ X , if g(x) = 1, ĥ(x) = h∗(x).
Therefore, errP (h∗) = errP (h).

Finally, using a union bound, we can applying Lemma 3, we get that with probability at
least 1− δ,

cover(ĥ, g) = 1−∆G ≥ 1− θB(4σ(n, δ/4, d))β ∧ errP (h∗) = errP (h).

One of the concern with Algorithm 4 is that it is no so clear how to set β or B. We
know that if the excess loss class is non-negative, then it is a (1, B)-Bernstein class for any B.
However, it is unrealistic to assume non-negative excess loss class for arbitrary datasets.

Another area may be interesting for future research is to challenge the idea of using h∗

for comparison in reliable learning under the noisy setting. Given that h∗ still make mistakes,
can we do better than h∗ when we decide to make a decision given a reasonable coverage?

Bibliographic notes

Besides explicitly marked references, the confidence-rated predictor and CZ selective classifier
are proposed by [2], and the selective classifier strategy in both realizable setting and noisy
setting are proposed by [4].
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