
COMS 6998-4 Fall 2017 Presenter: Arushi Gupta
November 20, 2017 Scribe: Jinyi Zhang

Learning from Partial Correction

1 Introduction

In active learning, given a distribution D over X × Y and a set of hypothesis H that maps
X to Y, the learner observes an data point xt ∈ X and decides whether or not to query its
label at time t. In this interactive learning model, the learner asks a question and receives
a complete answer at a time. In a binary classification problem, a complete answer is a
single bit. However, as the learning problem becomes much more complex than predicting
a single bit, it might be too expensive to give a complete answer at each round of the
interaction. Thus, we introduce the idea of partial feedback for interactive learning, in which
an expert examines the predictions of a learner and partially fixes them if they are wrong.
For example, let’s consider a hierarchical clustering problem. Given a huge set of species,
the learner aims to build a tree over this set. Instead of giving the entire tree to the expert
and asking the expert to label every corner of the tree, the learner actually takes a small
subset of species, builds the subtree over this subset, and shows the subtree to the expert
for feedback. We denote the small subset of species as a question q and denote the learner’s
prediction as h(q). If h(q) is correct, the expert accepts it; otherwise, the expert provides a
partial feedback such as a minor structure that the correct tree must satisfy. This kind of
feedback is easier than fixing the entire h(q). As shown in Figure 1, a small subset (question)
q = {dolphin, elephant, mouse, rabbit, whale, zebra} is randomly chosen, and the learner
returns h(q) as the left part of the figure. The expert provides feedback, as the right part
of the figure, of the form h∗(x), where x = {dolphin, whale, zebra} ⊂ q on which h is not
correct, and h∗ is the target hierarchy.

Figure 1: Left: The learner makes a prediction on a subset of species. Right: The expert
gives a feedback to correct a part of this subtree.

1

Formally, we propose the partial feedback interactive learning framework as the following.
There is a hypothesis class H and a target hypothesis h∗ ∈ H. Any hypothesis h ∈ H can be
uniquely identified by its answer of a set of questions Q. For each round of learning,

• The learner selects a hypothesis h ∈ H based on all previously received feedback.

• A question q ∈ Q is chosen at random.

• The learner displays q and h(q) to an expert.

• If h(q) is correct, the expert accepts it; otherwise the expert corrects a part of it.

Now, new problems pops up. What do we mean by "part of it"? And how to we choose
the question q for each round? We assume that q has c atomic components, and we denote
components as (q, 1), ..., (q, c). Correcting a part of q means that the expert picks an index j
from 1 to c where h(q, j) 6= h∗(q, j) and reveals h∗(q, j) to the learner. Also, we define µ as
the probability distribution on Q and write q ∈µ Q to indicate q was chosen according to
probability distribution µ from Q and [c] = {1, 2, ..., c}. Thus, we could measure the error of
a hypothesis either by the full question q like

err(h) = Pr
q∈µQ

[h(q) 6= h∗(q)]

or in terms of components like

errc(h) = Pr
q∈µQ,j∈R[c]

[h(q, j) 6= h∗(q, j)]

where R is some probability distribution over [c].

2 Threshold functions

Let’s consider a concrete example. Suppose we have X = [0, 1] and we aim to learn a threshold
function. Therefore, we can write our hypothesis class H as H = {hv : v ∈ [0, 1]} and we
have hv(x) = 1{x>v}.

Figure 2: A threshold function hv over [0, 1].

Suppose our target hypothesis h∗ = h0. This means the threshold classifier we want to
learn returns 0 if x = 0 and returns 1 otherwise. And our queries will consist of c numbers

2

in [0, 1] (Q = X c). These numbers are our atomic components. Assume µ is the uniform
distribution over the components, then we have

errc(hv) = v

for any v ∈ [0, 1] in this particular case h∗ = h0. This is obvious since the disagreement
region between h∗ and hv is (0, v]. And we can compute the error of hv by the full answer as

err(hv) = 1− (1− v)c,

where (1− v)c is the probability that all the c components are correct.
Let vt be the threshold learned so far by the learner. It matters that which component

the expert chooses to label during the interactive learning process. At the beginning, the
learner labels [0, 1) as 0 and point 1 as 1 because he picks threshold classifier that consistent
with all data samples seen so far and he hasn’t seen any samples yet. At each round, the
learner picks c points to label and the expert chooses one of them to correct if there exists at
least one error. There are two policies that the expert can use for picking a component.

• Largest. For the c points, the expert picks the largest point in error to correct.

• Smallest. For the c points, the expert picks the smallest point in error to correct.

The "largest" policy seems to be intuitive because the expert tries to fix the largest error
in the c components. However, this would be the least informative correction and it would
take much more steps for the learner to realize the target threshold. On the other hand, the
"smallest" policy is more helpful as the learner could approach the target much faster.

Let Vt+1 be the random variable that is the threshold value the learner determines at step
t+ 1. And we denote the c components as x1, ..., xc ∈ [0, 1]. We are looking for how the two
policies compare in terms of the expectation value of vt − Vt+1 as the benefit from step t.

Let’s consider a point v in [0, vt). If the expert chooses the "largest" policy, Vt+1 can
exceed v only if there is at least one component xi lies in (v, vt) or all the c components are
to the right of vt. We show this in Figure 3. On the other hand, if the expert chooses the
"smallest" policy, Vt+1 can exceed v only if none of xi lies in [0, v] as shown in Figure 4. Then,
we have

E[Vt+1|Vt = vt] =

∫ vt

0

Pr(Vt+1 > v|Vt = vt)

as the expectation of Vt+1 given vt. For the "largest" policy, we can calculate the probability
and then determine the integral for the expectation value as

E[Vt+1|Vt = vt] = vt −
1− (1− vt)c · (1 + c · vt)

c+ 1
.

Similarly, we have

E[Vt+1|Vt = vt] =
1− (1− vt)c+1

c+ 1

3

for the "smallest" policy. If c = 1, then the two policies yield the same value as vt − v2
t /2.

Then, the expected reduction (benefit) from step t, that is E[vt − Vt+1] would be v2
t /2.

However, when c 6= 1, the two policies apparently provide different amount of information.
In Figure 5, we show the ratio of the expected reduction with c-point queries to the expected
reduction with 1-point queries for c = 4, 8. As shown in the figure, c-point queries always
provide more information than 1-point queries under the "smallest" policy, while this is true
when vt is sufficiently small under the "largest" policy. If vt closes to zero, a c-point query
under either policies yields information roughly same as c 1-point queries.

Figure 3: Top: One component lies in (v, vt). Bottom: All components are to the right of vt.

Figure 4: All components are to the right of v.

We have seen which component the expert chooses to correct does matter. Now, we
consider the different distributions on Q. Suppose we have a question distribution µ, instead
of being supported on [0, 1], it is supported on a single point (1/c, 2/c, ..., c/c = 1). And
we assume the expert corrects the most glaring error – the "largest" policy. Therefore, the
expert corrects the point x = 1 at the first, the point x = (c− 1)/c at the second, and so on.
Thus it takes c/2 rounds to bring the error down to 1/2.

Let’s pick any ε > 0 and consider another distribution µ over Q that is supported on two
points: (

1

2c
,

2

2c
, ...,

1

2

)
with probability 2ε, and (

1

2
+

1

2c
,
1

2
+

2

2c
, ..., 1

)
4

Figure 5: The ratio of the expected reduction with c-point queries to the expected reduction
with 1-point queries for c = 4, 8.

with probability 1− 2ε. We want to achieve errc(h) ≤ ε. Thus, we want

Eq∈µQ,j∈R[c][1h(q,j)6=h∗(q,j)] ≤ ε.

For any hv, it will always agree with h∗ on the region [v, 1]. So we want

Pr[pick xi ∈ [0, v]] ≤ ε.

This implies that v ≤ 1/4. So the learner must see the first point at least c/2 times which
requires Ω(c/ε) examples. Now, we introduce the first theorem based on all the previous
analysis.

Theorem 1. There is a concept class H of VC-dimension 1 such that for any ε > 0 it is
necessary to have Ω(c/ε) rounds of feedback in order to be able to guarantee that with high
probability, all consistent hypotheses have error ≤ ε.

3 Main results

Now, we present our main theorem. Even if the expert is not helpful, we can still achieve
some lower bound of learning complexity. For any h ∈ H, let

B(h) = {q ∈ Q s.t. h is incorrect on q},

G(h) = {q ∈ Q s.t. h is correct on q}.

Theorem 2. The base algorithm of partial feedback interactive learning produces an ε-good
hypothesis within 2N steps with probability at least 1−δ, where N = c·

(
l
ε′

+ 1
)
, l = log(|H|/δ),

and ε′ = ε/2.

5

It’s clear that what happens to the next step depends on which question is sampled. Once
a question q in G(h) is sampled, it’s in there forever. On the other hand, if q is not sampled,
we don’t necessarily have information on it. If a question is sampled from B(h), the expert
will correct one component of it. For this component, the learner will not make mistake
again. All the h that have this bad component will be corrected. The intuition behind this
theorem is if we sample a particular question or a particular component a lot, then we can
be reasonably certain that the hypothesis h we learned is a good hypothesis because it has to
be consistent with all previously received questions and answers. Before formally proving our
theorem, let’s first introduce some notations.

• ht is the hypothesis selected at the beginning of step t.

• Q̄ = Q× [c].

• B̄(h) = B(h)× [c] = {(q, j) ∈ Q̄ : q ∈ B(h) and h(q, j) 6= h∗(q, j)}.

• Ḡ(h) = G(h)× [c].

• γ(q, j) is the conditional probability that the expert provides feedback on j given that q
is queried. And we define wt(q, j) = µ(q) · γ(q, j), as the product of the probability that
a question q is chosen and the component j is fixed by the expert. For all q ∈ G(ht),
we have the summation of wt(q, 1), ..., wt(q, c) equals to µ(q).

• Wt(q, j) = w1(q, j) + w2(q, j) + ...+ wt(q, j) is the sum of the individual distributions
up to step t.

Now, we show some lemmas.

3.1 How to pick the weights

Lemma 1. For all q ∈ G(ht), non-negative values w(q, 1), ..., w(q, c) summing up to µ(q)

can be calculated such that

Wt(q, j) = Wt−1(q, j) + wt(q, j) ≤
t · µ(q)

c

Proof. First, we have Wt(q, [c]) = t · µ(q). The average of Wt(q, j) over [c] is t·µ(q)
c

. We pick
components j1, ..., jc such that

Wt−1(q, j1) ≤ Wt−1(q, j2) ≤ ... ≤ Wt−1(q, jc).

Let ∆ = µ(q). We initialize all the wt(q, ji) to 0, repeat

wt(q, ji) = min

{
t · µ(q)

c
−Wt−1(q, ji),∆

}
till ∆ = 0, and reset ∆ = ∆− wt(q, ji).

6

3.2 Eliminating inconsistent hypotheses

Lemma 2. With probability at least 1− δ, the following holds. ∀h ∈ H: If there is a step t
for which Wt(B̄(h)) ≥ l, then h is not consistent with the feedback received up to that step.

Proof. First, any hypothesis h is eliminated with probability at least wt(B̄(h)). Let t be the
first step for which Wt(B̄(h)) ≥ l. Then the probability that h is not eliminated by the end
of step t is

(1− w1(B̄(h))) · (1− w2(B̄(h))) · ... · (1− wt(B̄(h))) ≤ exp(−Wt(B̄(h))) ≤ δ

|H|
.

Now, we take a union bound over H. Thus any hypothesis h is eliminated from the version
space by the step at which Wt(B̄(h)) ≥ l with probability 1− δ.

3.3 Analyzing the first N steps

Let τ = N
c

= l
ε′

+ 1 be a threshold value. We will think of an atomic component as having
been adequately sampled when Wt reaches τ · µ(q). At the beginning of step t, let

L̄t−1 = {(q, j) ∈ Q̄ : Wt−1(q, j) ≤ τ · µ(q)},

Wt−1(L̄t−1) =
∑

(q,j)∈L̄t−1

Wt−1(q, j) ≤ c · τ = N, and

L̄′t−1 = {(q, j) ∈ Q̄ : Wt−1(q,j) ≤ (τ − 1) · µ(q) =
l

ε′
· µ(q)}.

Lemma 3. Any any step t, if Wt−1(B̄(ht)) < l, then

wt(B̄(ht) ∧ L̄′t−1) ≥ µ(B(ht))− ε′.

Proof. Note that

µ(B(ht)) = wt(B̄(ht)) = wt(B̄(ht) ∧ L′t−1) + wt(B̄(ht) \ L′t−1),

then we can see that

l > Wt−1(B̄(ht)) ≥ Wt−1(B̄(ht) \ L′t−1) ≥ l

ε′
· wt(B̄(ht) \ L′t−1).

It follows that
wt(B̄(ht) \ L′t−1) ≤ ε′.

So, we have
µ(B(ht)) ≤ wt(B̄(ht) ∧ L′t−1) + ε′, and thus

wt(B̄(ht) ∧ L̄′t−1) ≥ µ(B(ht))− ε′.

7

Lemma 4. For any step t ≤ N , wt(L̄t) ≥ 1− ε′.

Proof. Note that
wt(L̄t) = wt(B̄(ht) ∧ L̄t) + wt(G(ht) ∧ L̄t).

Since any (q, j) ∈ B̄(ht) ∧ L̄′t−1 satisfies (q, j) ∈ B̄(ht) ∧ L̄′t, the previous lemma 3 implies
that wt(B̄(ht) ∧ L̄t) ≥ µ(B(ht))− ε′. For q ∈ G(ht), any (q, j) with wt(q, j) > 0 satisfies

Wt(q, j) =
t · µ(q)

c
≤ τ · µ(q).

Thus (q, j) ∈ L̄t and it follows that

wt(Ḡ(ht) ∧ L̄t−1) = µ(G(ht)).

Overall, we have
wt(L̄t−1) ≥ µ(B(ht))− ε′ + µ(G(ht)) = 1− ε′.

Corollary 1. Let Ŵt(q, j) = min
{
Wt(q, j), τ · µ(q)

}
. As we have seen, Ŵt(Q̄) ≤ N . We

can see as a corollary to before that

ŴN(Q̄) ≤ (1− ε′)N.

3.4 Analysis of the next N steps

If µ(B(ht)) ≥ 2ε′, then µ(B(ht)) − ε′ ≥ 1
ε
. During one of the steps in the second N steps,

µ(B(ht)) < 2 · ε′ = ε at which point the algorithm can return ht.

Bibliographic notes

Partial feedback in interactive learning and all its analysis is due to Dasgupta & Luby [1].

References

[1] Sanjoy Dasgupta, Michael Luby. Learning from partial correction. at arXiv, 2017.

8

	Introduction
	Threshold functions
	Main results
	How to pick the weights
	Eliminating inconsistent hypotheses
	Analyzing the first N steps
	Analysis of the next N steps

