
COMS 6998-4 Fall 2017 Presenter: Yuemei Zhang
November 27, 2017 Scribe: Che Shen

Learning from the Crowd

1 Introduction

In recent years crowdsourcing has become the method of choice for gathering labeled training
data for learning algorithms. However, in most cases, there are no known computationally
efficient learning algorithms that are robust to the high level of noise that exists in crowd-
sourced data, and efforts to eliminate noise through voting often require a large number of
queries per example. In this note we will introduce a computationally efficient algorithm
with much less overhead in the labeling cost. In particular, we mainly consider the case when
a noticeable fraction of labelers are perfect, and the rest behave arbitrary. we show that any
hypothesis space F that can be efficiently learned in the traditional realizable PAC model
can be learned in a computationally efficient manner by querying the crowd, despite high
amounts of noise in the responses.

2 The Setting

We consider the realizable PAC learning setting. Suppose we have an instance space X and
labels Y = {+1,−1}. Also, there is a distribution D over X × Y and a hypothesis class F .
We are considering the realizable setting. There exists f ∗ ∈ F such that errD(f ∗) = 0. Recall
that in the traditional PAC learning setting, to learn F with ε accuracy and δ confidence,
the label complexity is

mε,δ = O

(
d

ε

(
log

1

ε
+ log

1

δ

))
,

where d is the VC-dimension of F .Furthermore, we assume that efficient algorithms for the
realizable setting exist. That is, we consider an oracle OF that for a set of labeled instances
S, returns a function f ∈ F that is consistent with the labels in S.
In crowdsourced labeling, we have a set of labelers L, in which each labeler i is a classification
function gi : X → Y . A labeler i is called perfect if errD(gi) = 0. Also, we assume a uniform
distribution P over all labelers, and let α = Pri P [errD(gi) = 0] be the fraction of perfect
labelers. (So, when randomly draw a labeler, the probability of it being a perfect labeler is α)
In this note, we mainly focus on the case when α > 1

2
. In the following sections, unless

explicit stated, we always assume α = 1
2

+ Θ(1).

1

3 A Baseline Algorithm

A quite natural algorithm is to get enough samples and label them with majority vote by
labelers. If L is a set of labeler and x is an instance, we denote by MajL(x) the majority vote
of L on x.
Baseline Algorithm: Draw a sample of size m = mε,δ from DX and label each example x
by MajL(x), where L PK for k = O(ln m

δ
) is a set of randomly drawn labelers. Let S be the

resulting labeled set. Return classifier OF(S).
It can be seen that this algorithm needs O(mε,δ ln m

δ
) queries to the labelers, which is ln m

δ

times more than traditional PAC learning. We will try to improve this complexity.

4 An Interleaving Algorithm

We introduce a new algorithm for crowdsourced labeling that would significantly reduce the
query complexity. We call it an interleaving algorithm because, different from the baseline
algorithm that uses same amount of queries on every instance, this algorithm may use very
few queries for some instances, while more queries on others.
This note will focus on the intuition of the theorems and lemmas, but the proof may be
omitted. The detailed proof can be found in [1].
Before introducing the algorithm we need to show some basic techniques used in this algorithm.

4.1 Boosting

Boosting algorithms[2] provide a mechanism for producing a classifier of error ε using learning
algorithms that are only capable of producing classifiers with considerably larger error rates.
More specifically, the theorem in [2] states as follows

Theorem 1. Boosting (Schapire 1990): For any p < 1/2 and distribution D, consider three
classifiers:

1. h1: errD(h1) ≤ p;

2. h2: errD2(h2) ≤ p, where D2 = 1
2
DC + 1

2
DI , DC is D conditioned on {x|h1(x) = f ∗(x)},

and DI is D conditioned on {x|h1(x) 6= f ∗(x)};

3. h3: errD3(h3) ≤ p. D3 is D conditioned on {x|h1(x) 6= h2(x)}.

Then, the majority vote of h1, h2 and h3 has error ≤ 3p2 − 2p3 under distribution D.

This theorem is an important method that use weak classifiers (which requires less queries to
find) to construct strong classifiers. However, it requires a distribution D2 that pose equal
weight on the area that h1 is correct and that h1 is incorrect. To construct this distribution,
we need the following techniques.

2

4.2 Probabilistic Filtering

A naive way to simulate D2 in the boosting algorithm is to get O(1
p
mp,δ) samples and use

majority vote to get their label, then choose equal number of samples from the area that
h1 is correct or incorrect. However in our case p = O(

√
ε), so this naive method needs

O(mε,δ ln(mε
δ

)) label queries, which is as large as that of baseline. In this section we introduce
probabilistic filtering approach, called FILTER, which is shown as follows.

Algorithm 1 FILTER(S, h)
1: Let SI = ∅ and N = log(1/ε)

2: for x ∈ S do
3: for t = 1, 2, . . . , N do
4: Draw a random labeler i P and let yt = gi(x)

5: if t is odd and Maj(y1:t) = h(x) then
6: goto the next x
7: end if
8: end for
9: Let SI = SI ∪ x

10: end for
11: return SI

Intuitively, this algorithm tries to maintain instances that are mislabeled by h1 but discard
instances that h1 labels correctly. A more concise description of this property is proved in
the following lemma

Lemma 1. FILTER(S, h) has the following property:
If h1(x) = f ∗(x), then x ∈ FILTER(S, h1) with probability <

√
ε.

If h1(x) 6= f ∗(x), then x ∈ FILTER(S, h1) with probability ≥ 1/2.

However, with only probabilistic filtering we still cannot precisely simulate D2. To ensure
that errD2(h2) ≤ p, we need another technique.

4.3 Super Sampling

Intuitively, super sampling states that, given a classifier h and two distributions D1, D2 such
that D1 is upper bounded by D2 times a constant, then errD1(h) is also bounded by errD2(h)

within a constant. We state it formally as follows:

Lemma 2. Given a hypothesis class F . consider any two discrete distributions D and D0,
with density function ρ and ρ′ respectively, such that for all x, ρ′(x) ≥ c · ρ(x) for an absolute
constant c > 0, and both distributions are labeled according to f ∗ ∈ F . There exists a constant
c′ > 1 such that for any ε and δ, with probability 1 − δ over a labeled sample set S of size
c′mε,δ drawn from D′, OF(S) has error of at most ε with respect to distribution D.

3

Although we cannot precisely simulateD2 required in the boosting algorithm, we can construct
a distribution that has the density function within some constant to it. With these tools in
hand, we are ready to introduce our algorithm.

4.4 The Interleaving Algorithm

Our algorithm is as follows.

Algorithm 2 Interleaving: boosting with probabilistic filtering
Input Given a distribution D|X , a class of hypotheses F , parameters ε and δ. And a

subroutine CORRECT-LABEL(S, δ) that label each instance in S with the majority
vote of k labelers, where k = O(log |S|

δ
)

Phase 1:
1: Draw S1 of size 2m√ε,δ/6 from D

2: S1 = CORRECT-LABEL(S1, δ/6)
3: h1 = OF(S1)

Phase 2:
4: Draw S2 of size Θ(mε,δ), SC of size Θ(m√ε,δ) from D

5: SI = FILTER(S2, h1)
6: CORRECT-LABEL(SI ∪ SC , δ/6)
7: Divide the labeled set into WI and WC according to whether the label agrees with h1
8: Draw W of size Θ(m√ε,δ) from a distribution that equally weights WI and WC

9: h2 = OF(W)

Phase 3:
10: Draw S3 of size 2m√ε,δ/6 from D3

11: S3 = CORRECT-LABEL(S3, δ/6)
12: h3 = OF(S3)

It involves a subroutine CORRECT-LABEL(S, δ), which returns the correct labels of each
instances in S with probability at least 1 − δ. The algorithm is divided into 3 phases. In
phase 1, the algorithm creates a classifier h1 with errD(h1) <

√
ε. In phase 2, the algorithm

uses FILTER to generate a distribution that has close weight on the instances that h1 labels
correct and incorrect, and use this distribution to construct a classifier h2. In phase 3, the
algorithm constructs a distribution on instances that is labeled incorrectly by h1 by rejective
sampling. It can be shown that h1, h2, h3 satisfy the properties required in boosting algorithm
and can be used to construct a classifier with lower error. This leads to our main theorem

Theorem 2. Algorithm 2 returns f ∈ F with errD(f) ≤ ε with probability 1 − δ, using

O

(
m√ε,δ log

(
m√

ε,δ

δ

)
+mε,δ

)
labels.

It can be seen that, when 1√
ε
≥ log

(
m√

ε

δ

)
, the query complexity is equal to O(mε,δ), which

is equal to the query complexity of traditional PAC learning.

4

We will prove this theorem through the following lemmas.

Lemma 3. With probability at least 1 − exp(−Ω(|S|
√
ε)), WI ,WC and SI all have size

Θ(m√ε,δ).

This is easy to see by combining lemma 1 with Chernoff bound.

Lemma 4. Let DC and DI denote distribution D when it is conditioned on {x|h1(x) = f ∗(x)}
and {x|h1(x) 6= f ∗(x)}, respectively, and let D2 = 1

2
DI + 1

2
DC , then with probability 1− 2δ/3,

errD2(h2) ≤
√
ε/2.

This is a direct result from super sampling. All we need to prove is that the density function
of D2 is within some constant factor of the density of W . This is true because we use
probabilistic filtering to intentionally choose W to have similar weight on DI and DC .

Lemma 5. Let S be a sample set drawn from distribution D, with probability at least
1− exp(−Ω(|S|

√
ε)), FILTER(S, h1) makes O(|S|) label queries.

This is because the filter algorithm would soon discard an instance in DC without querying
too much labels. So the amortized label complexity is O(1).
Now we are ready to prove theorem 2.
Proof of theorem 2: From the above lemmas, we can see that Phase 1 and Phase 3 use

O

(
m√ε,δ log

(
m√

ε,δ

δ

))
labels. In Phase 2, FILTER uses O(mε,δ) labels, and

CORRECT-LABEL uses O
(
m√ε,δ log

(
m√

ε,δ

δ

))
labels. So the total label complexity is

O

(
m√ε,δ log

(
m√

ε,δ

δ

)
+mε,δ

)
.

References

[1] Pranjal Awasthi, Avrim Blum, Nika Haghtalab, and Yishay Mansour. Efficient pac
learning from the crowd. arXiv preprint arXiv:1703.07432, 2017.

[2] Yoav Freund. Boosting a weak learning algorithm by majority. Information and computa-
tion, 121(2):256–285, 1995.

5

	Introduction
	The Setting
	A Baseline Algorithm
	An Interleaving Algorithm
	Boosting
	Probabilistic Filtering
	Super Sampling
	The Interleaving Algorithm

