
COMS 6998-4 Fall 2017 Presenter: Yanlin Duan
October 25, 2017 Scribe: Yiyang Li

Learning Binary Relations

1 Introduction

In former lectures, we have learned a lot about online learning. The basic idea is to keep a
subset of hypothesis space as the version space and reduce the version space by new data or
queries. And we consider the data in any arbitrary form, which means we don’t have any
specific hypothesis on data’s schema itself. Although it can be generalized easily, still we
want to make a practical effort for a real problem. Now we are considering learning a special
kind of concept–binary relations.

1.1 Motivation example

Considering the set of all students S and the set of all topics in course T . S and T are related
by some rules. In this specific term, we may consider which course. has been presented by a
certain student. It was clear that present it’s a binary relation that defined on the S and T .
We can also think of a predicate that takes one member from each set, and give the value of
true or false, where true denotes that the two object does have the relation.

1.2 Formal Definition

A binary relation R between two sets A and B is a subset of A×B. Each binary relation is
associated with a predicate P : A×B 7→ {0, 1}.

P (a, b) =

1, if (a, b) ∈ R
0, otherwise

Also, we must note that while a binary relation can be defined on two different sets, such
as Netflix users and the movies, it can be defined on a set with itself as well. The simple
example can be the divide relation within N+.

2 Notation and Preliminaries

2.1 Representations

Now we are introducing the representation for a binary relation. There may exists several
different ways that can do the job.
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2.1.1 Matrix Represent

For two set A and B with respect to |A| = n, |B| = m, we define an n ×m binary matrix
M . Each entry of M can be either 0 or 1. Where 1 means two corresponding items has the
relation and 0 means the opposite. Like in table 1, the matrix represents the course that the
student takes in this semester. And we can see Alan takes only Learning Theory while David
doesn’t take any courses.

Topics in Learning Theory Machine Learning Operating System
Alan 1 0 0
Bob 1 1 0

Cathy 0 0 1
David 0 0 0

Table 1: Take relation between students and courses.

2.1.2 Two-column Table

This kind of representation is kind of trivial. We just need to save all entries which have
value of 1 into a 2-column table. Table 2 shows the same relation for students and courses in
table 1 as an example.

student course
Alan Learning Theory
Bob Learning Theory
Bob Machine Learning
Cathy Operating System

Table 2: Take relation exact the same as table 1

2.1.3 Bipartite Graph

As for a graph, it is intuitive to use a bipartite graph as a representative for binary relations.
And the transform from both sides is simple. You can see from figure 1 for an illustration of
a bipartite graph in representing binary relations. The vertices represent the items in each
set, while the edges denote the existing relations.

2.2 Learning Problem for Binary Relations

2.2.1 Definition

Now we are trying to give the definition for Binary relation learning. Assuming we learned
binary relations between two set A and B represented by predicate P . Denote |A| = n and
|B| = m. In each trial t,
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• learner is given an unlabeled data pair xt = (at, bt), where at ∈ A and bt ∈ B;

• learner predicts ŷt = 0 or 1;

• teacher reveal the answer yt;

• if ŷt 6= yt, record as a mistake.

The goal of binary relation learning is to reduce the number of mistakes the learner made
before finally learned the complete relation. This setting is kind of like the Online Learning
we learned before. If we see xt = (at, bt) as one thing and target hypothesis is the predicate P ,
then we can convert a binary relation learning problem into a typical online learning problem
in realizable setting and apply some algorithms from online learning. However, we are not
doing that because a binary relation has its unique feature that can be used to improve the
performance.

2.2.2 Few More

We say a learner is consistent if on every trial t, there exist some concept c ∈ C,that

c(xk) =

ŷk, if k = t

yk, o.w.

And we consider a query sequence π =
〈
x1, x2, . . . , x|X |

〉
as a permutation of all element of

instance set X .

Figure 1: Bipartite Graph Example
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2.2.3 Motivation of k-binary-relations

We must keep in mind why we are giving so many extra definitions along with the typical
online learning. The binary relation can be special lying on several reasons.

1. We have two sets of objects while the normal online learning draws samples from one.

2. We learn the relations between this two sets instead of the concept of classification.

And while we are considering the relation between two sets, we don’t want to have a
random choice of which item will have relations with an arbitrary item in the other set.
We may want to have this assumption that there only exists a type of relations between
two sets which will be much less than 2m(m will be the total number of columns in matrix
representation). We use k to denote the total number of types of the column. We call this
type of binary relation k-binary-relations.

3 Different Directors

In matrix representing, the learner asks for an arbitrary entry’s value from teacher each time.
The learner will give a prediction then receive the answer. This procedure can be seen as a
sequence of positions, which we call query sequence.

After giving the whole definition, we can separate the problem by the different setting of
director. A director decides the query sequence of the learning procedure in its own purpose.
We have a different kind of director, and we may consider the problem in several settings.

1. Director Agnostic: We don’t care about a specific director and want to get general
bounds.

2. Self-directed: The learner chooses the π by itself.

3. Teacher-directed: A teacher who knows the target relation and learner’s former
predictions and wants to minimize the learner’s mistakes by choosing π.

4. Adversary-directed: An adversary who knows the learner’s algorithm and has un-
limited computation power. His purpose is to maximize the mistake the learner makes.

3.1 General bounds

In director agnostic setting, we won’t focus on the purpose of the query choice. We only
consider the bound that applied to all kind of query sequences.

Theorem 1. (Lower Bound) For any 0 ≤ β ≤ 1, any prediction algorithm makes at least
nblog βkc+ (1− β)km− nblog βkc(1− β)k mistakes regardless of the query sequence.
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Proof. We can prove the bound by showing the algorithm. Assuming we have the adversary
to determine the sequence. As the result of prior knowledge of learner’s algorithm and
unlimited computation power, the adversary can rearrange the matrix at its wish. For entries
in first p columns, the adversary will tell the learner that its prediction is incorrect.

Also, in the entries of first q rows, the adversary will tell the learner that its prediction is
incorrect. Now we consider the constraint on this p and q. Due to the limit of row types, the
p and q cannot be too large. Since making mistakes in first p columns will reproduce at most
2p row types, and mistakes in first q rows will make at least q row types, so we have

2p + q ≤ k

We set 2p = βk, q = (1− β)k, we can get the mistake lower bound

M ≥ nblog βkc+ (1− β)km− nblog βkc(1− β)k

Also the figure 2 illustrate this equation in a more intuitive way.

Figure 2: Illustration for lower query sequence in matrix form

Theorem 2. (Upper Bound) The halving algorithm achieves a km+ (n− k) log k mistake
bound.

Proof. This is trivial. There are no more than 2km ways to select k row types. And also no
more than kn−k ways to assign each row to a certain type. So halving algorithm will make at
most M mistake, where

M = log(2km · kn−k) = km+ (n− k) log k
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3.2 Self-directed Learning

Theorem 3. (Upper Bound) There exists an algorithm that achieves km+ (n− k)blog kc
mistake bound in self-directed learning setting.

Proof. Here’s what algorithm do:

• Guess all entries for the first row. Record it as a row type.

• For the rest rows, predict the row i, column j’s value by the majority vote of the
recorded row type that consistent with the row i’s known entries.

If no such row type exists, query all the rest and record it as a new row type.

For each row type, we made at most m mistakes. For each of row has its type known
before, we make at most blog kc mistakes. So combine the two parts we have the result.

3.3 Teacher-directed Learning

Note that in teacher-directed setting, we only consider the upper bound making by the worst
student it can have. That is because as long as we only consider the mistake bound, the
smartest student can always have some sort of protocol with teacher that will reduce the
mistake to some constant.

Theorem 4. (Upper Bound) The number of mistakes made with a helpful teacher as the
director is at most km+ (n− k)(k − 1).

Proof. The teacher will first present the learner with one row of each type. Then, for the
rest of (n− k) rows, the teacher presents (k − 1) entries to distinguish it from the incorrect
row types.

The reason why this bound is greater than self-directed learning is coming from the
fact that we are facing the "dumbest" student who will use only minority vote to make the
consistent prediction each time. Meanwhile, the log term in self-directed comes from the
majority vote which can discard at least half of consistent row types by any mistake.

3.4 Adversary-directed

In adversary-director setting, the lower bound is the same as the general lower bound. So we
only consider the upper bound. We may start from set k = 2.

Theorem 5. (Upper Bound when k=2) There exists a polynomial prediction algorithm
that makes at most 2m+ n− 2 mistakes against adversary-selected query sequence when k=2.

Proof. Considering 2-colorable problem, we have a matrix and a graph at the same time. For
each trial t, when the learner is querying Mij, there are several possibilities:
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1. no entry in column j is known, guess randomly;

2. all entries in j are the same. Predict the same;

3. Predict according to the row i′ that is the same color as i.

Every time the learner make a prediction, other than updating the entry in the matrix,
we also color the new vertex with a proper color. Also, connect it to some point that has a
different color(if exist).

When k ≥ 3, this problem becomes NP-Complete, since it can be reduced to a k-colorable
problem. We will set the problem aside here.

Bibliographic notes

The whole idea of learning binary relation comes from [1].
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