
COMS 6998-4 Fall 2017 Presenter: Qinyao He
November 29, 2017 Scribe: Geelon So

Leaderboards

1 Introduction

When learning algorithms overfit to training data, they fail to generalize onto new data; even
though they might have achieved low empirical risk, they haven’t reduced the true risk.

Two techniques commonly used to mitigate overfitting are (1) reducing the capacity of
the model, and (2) obtaining more training data. But what can we do if both techniques
are unavailable, and as a result, the model must train repeatedly on the same data? One
recourse is modifying how the model learns from the training data.

Sometimes, we can change the model itself, implementing resampling methods such as
crossvalidation or bootstrapping. But sometimes, we can change only the feedback that the
model receives, and perhaps different feedback can help prevent overfitting.

Feedback often comes in the form of empirical risk—indeed, if the model is independent
of the sample, then the empirical risk is an unbiased estimator of the true risk. And so,
minimizing empirical risk should also reduce the true risk. However, empirical risk is no
longer unbiased in the adaptive setting, where an algorithm may produce classifiers that
depend on (and thus, adapt to) previous feedback. Here, if empirical risk forms the feedback,
then as time goes on, classifiers become ever more prone to overfitting.

So we turn to determining whether we can provide models with more accurate estimators
of the true risk. But of course, as the shrewd reader might ask, ‘more accurate’ with respect to
what? To answer this, we’ll define the leaderboard accuracy, and from there, we can describe
the Ladder mechanism, which gives learners that more (leaderboard) accurate feedback.

2 Setting

For motivation, let’s concretely place ourselves in the machine learning competition situation,
say, the Kaggle platform. Here, competitors train different learning models on a public
dataset before finally being ranked according to their performance on a private test dataset.
While the competition is in progress, Kaggle provides an additional public leaderboard test
set that approximates the final leaderboard ranking.

Because competitors are allowed multiple submissions, their models can adapt to the
feedback the leaderboard ranking provides; thus, the models may become overfitted to this
public leaderboard test set. Both the empirical risk feedback and the estimate of the final
leaderboard become biased.

Current methods Kaggle uses to combat overfitting include limiting the number of times
a competitor can submit a model and limiting the precision of the returned feedback. Still,
we hope for theoretical guarantees, so let’s formalize this problem.

1

2.1 Definitions and Notation

As usual, we have an instance space X with label set Y. There is an unknown distribution
D over X × Y. Then for any classifier f : X → Y and loss function ` : Y × Y → [0, 1], we
define the true loss as

RD(f) := E
(x,y)∼D

[
`(f(x), y)

]
.

Given a collection of n i.i.d. samples drawn from D, say S = {(x1, y1), . . . , (xn, yn)} ⊂ X ×Y ,
we can estimate the true loss by the empirical loss,

RS(f) :=
1

n

n∑
i=1

`(f(xi), yi).

The problem at hand: given a sample S of size n and a collection f1, . . . , fk of k classifiers, can
we estimate their respective true losses R1, . . . , Rk? And can we ensure that with probability
greater than 1− δ, for all t ∈ [k], ∣∣Rt −RD(ft)

∣∣ < ε.

Exercise 1. Let f1, . . . , fk be classifiers fixed independently of a sample S of size n. Assuming
that loss is bounded between 0 and 1, use Hoeffding’s inequality to prove an upper bound on

Pr
[
∃t ∈ [k] :

∣∣RS(ft)−RD(ft)
∣∣ > ε

]
.

Deduce that we can achieve o(1) error on k classifiers using a sample size O(log k).

Solution. Since the classifiers are fixed independently of S, the empirical loss is an unbiased
estimator of the true loss. Thus, we may apply Hoeffding’s inequality, which states that

Pr
[∣∣RS(ft)−RD(ft)

∣∣ ≥ ε
]
≤ 2 exp

(
−2ε2n

)
.

Then, union bound over k empirical losses gives us an upper bound 2k exp(−2ε2n). Thus, we
don’t need more than O(log k) samples to achieve constant probability of success.

Now, we consider the adaptive setting, in which the classifiers are no longer independent of
the sample S. In particular, the learning algorithm A generates new classifiers with respect
to previous feedback—let Rt the loss estimator for ft. Then, for all t ∈ [k],

ft = A(f1, R1, . . . , ft−1, Rt−1).

Here, as [1] writes, “no computationally efficient estimator can achieve error o(1) on more
than n2+o(1) adaptively chosen functions” (assuming one-way functions exist).[2, 3]

That is, in the adaptive setting, to achieve o(1) error on k classifiers using a computationally
efficient estimator, we’ll essentially need at least Ω(

√
k) samples, which is exponentially worse

than the upper bound in the nonadaptive setting of O(log k).

2

This suggests that within the adaptive setting, achieving bounds with respect to our usual
notion of accuracy,

∣∣Rt −RD(ft)
∣∣ < ε, is too hard. Let us define a weaker notion of accuracy

with respect to leaderboards. Let Rt estimate the error of the best classifier so far:

Rlb
t := min

1≤i≤t
RD(fi).

Then, we can think of leaderboard accuracy as the error of our estimator
∣∣Rlb

t −Rt

∣∣. And so,
if we want to bound

∣∣Rlb
t −Rt

∣∣ by ε for the sequence of estimates, we want∥∥∥(Rlb
t)kt=1 − (Rt)

k
t=1

∥∥∥
∞
< ε.

Let’s define the left-hand side term as the leaderboard error. Explicitly,

Definition 2. Given an adaptively chosen sequence of classifiers f1, . . . , fk, the leaderboard
error of estimates R1, . . . , Rk is

lberr(R1, . . . , Rk) := max
1≤t≤k

∣∣∣∣min
1≤i≤t

RD(fi)−Rt

∣∣∣∣ .
3 The Ladder Mechanism

Here, we’ll give an example of a leaderboard that achieves low leaderboard error. In the
algorithm below, we’ll use the notation [x]η to denote x rounded to the nearest integer
multiple of η.

Algorithm 1 Ladder Mechanism
input Data set S, step size parameter η > 0

1: Assign initial estimate R0 ←∞
2: for each round t← 1, 2, . . . do
3: Receive classifier ft : X → Y
4: if RS(ft) < Rt−1 − η then
5: Assign Rt ←

[
RS(ft)

]
η

6: else
7: Assign Rt ← Rt−1

8: end if
9: return Rt

10: end for

Theorem 3. For any sequence of adaptively chosen classifiers f1, . . . , fk, the Ladder Mecha-
nism achieves with high probability

lberr(R1, . . . , Rk) ≤ O

(
log1/3(kn)

n1/3

)
.

3

This theorem then implies that in the adaptive setting, we can achieve o(1) leaderboard
error provided that the number of classifiers is less than O

(
1
n

exp(n)
)
.

To prove this, we’ll show something a bit more general:

Lemma 4. Given the previous conditions,

Pr

[∣∣∣∣min
1≤i≤t

RD(fi)−Rt

∣∣∣∣ > ε+ η

]
≤ exp

(
−2ε2n+ (1/η + 2) log(4t/η) + 1

)
.

Letting η = O(n−1/3 log1/3(kn)) immediately obtains Theorem 3.

Proof of lemma. First, notice that the ladder mechanism truncates the feedback to the nearest
integer multiple of η. So, the returned value for Rt can take on at most

⌈
1
η

⌉
different values.

This lets us view an adaptive algorithm A as just a
⌈
1
η

⌉
-ary decision tree: at each time

step, depending on the feedback the learner receives, the learner then presents the next
classifier for testing. Recalling

ft = A(f1, R1, . . . , ft−1, Rt−1),

the sequence (R1, . . . , Rt−1) corresponds to the path through the decision tree that leads
to the node containing ft. But in fact, the tree T representing A is smaller than the full
decision tree because the ladder mechanism will never return a Rt that is greater than Rt−1.

This means that the total number of possible classifiers that the algorithm can possibly
produce is finite, bounded by the number of nodes in the tree T . To this end, we have:

Claim: an upper bound on the number of nodes in T is 2(1/η+2) lg(4k/η).

For now, let’s assume the claim. And let’s call F the collection of classifiers, so |F | ≤ |T |.
Then, we can bound the error of their empirical risks in the same way as in Exercise 1:

Pr
[
∃f ∈ F :

∣∣RD(f)−RS(f)
∣∣ > ε

]
≤ 2|F | exp(−2ε2n).

Substituting the upper bound in and using the fact that 2x ≤ ex when x is nonnegative, we
obtain a right-hand side that matches that of Theorem 3. And so, with high probability, all
estimates RS(f) are within ε of RD(f).

If we consider the classifier fi∗ with the lowest true risk,

i∗ = arg min
i

RD(fi)

it follows that with high probability,∣∣∣∣RD(fi∗)− min
1≤i≤t

RS(fi)

∣∣∣∣ ≤ ∣∣RD(fi∗)−RS(fi∗)
∣∣ ≤ ε.

4

In other words, with probability less than 2|F | exp(−2ε2n),∣∣∣∣min
1≤i≤t

RD(fi)− min
1≤i≤t

RS(fi)

∣∣∣∣ > ε.

Now, as Rt truncates min1≤i≤tRS(fi) to the nearest η, we obtain:

Pr

[∣∣∣∣min
1≤i≤t

RD(fi)−Rt

∣∣∣∣ > ε+ η

]
≤ 2|F | exp(−2ε2n),

as desired. All that’s left to prove is the above claim.

Exercise 5. Prove the above claim. Specifically, note that each node at depth t is uniquely
determined by the sequence of feedback (R1, . . . , Rt−1), where each of the Ri’s can take on at
most

⌈
1
η

⌉
≤ 2

η
values. Furthermore, the sequence (Ri) is nonincreasing. How many nodes are

there? (Hint: n objects can be encoded using no less than lg n bits).

Solution. Let’s construct an encoding scheme for the tree. We have k classifiers, so all nodes
may be specified by a sequence (R1, . . . , Rk) of at most length k. Thus, naively, this encoding
scheme requires at most k · lg 2

η
bits.

However, many bits are wasted because the sequence is monotonic decreasing:

R1 ≥ R2 ≥ · · · ≥ Rk.

And so, we could just specify the indices i where the sequence is strictly monotonic decreasing.
That is, Ri > Rj. It takes dlg ke ≤ lg 2k bits to encode the index i, and as before, lg 2

η
bits

the corresponding value Ri. There are at most 1
η
such pairs we need to encode, in addition to

two more for the head and tail of the path. Thus, the number of required bits B to encode a
node is at most

B =

(
1

η
+ 2

)(
lg 2k + lg

2

η

)
.

And so, the number of nodes in T is at most 2B = 2(1/η+2) lg(4k/η).

4 A Parameter-Free Ladder Mechanism

In the Ladder Mechanism algorithm, it is not clear what the choice of η should be. A larger
η means that the feedback will be less sensitive to improvements, while a smaller η might
pick up on less statistically significant improvements.

If the goal is to report back whenever a classifier has significantly improved over the
previous classifier, then it makes sense to increase sensitivity over time, so that as classifiers
become more accurate, the value of η decreases as well. The following algorithm implements
this heuristic:

5

Algorithm 2 Parameter-Free Ladder Mechanism
input Data set S = {(x1, y1), . . . , (xn, yn)} of size n
1: Assign initial estimate R0 ←∞ and loss vector l0 = (0)ni=1

2: for each round t← 1, 2, . . . do
3: Receive classifier ft : X → Y
4: Compute loss vector lt ← (`(ft(xi), yi))

n
i=1

5: Compute the sample standard deviation s← SD(lt − lt−1)
6: if RS(ft) < Rt−1 − s/

√
n then

7: Assign Rt ←
[
RS(ft)

]
1/n

8: else
9: Assign Rt ← Rt−1 and lt ← lt−1

10: end if
11: return Rt

12: end for

5 Boosting Attack

We will now construct a method to overfit to the sample data by incorporating the feedback
given by the leaderboard. In particular, let’s assume we’re in the a binary classification
problem with the 0/1 loss. Suppose a learner submits a classification u ∈ {0, 1}n on n objects,
while y is the true classification. Then, the loss on the submission is the average loss:

`(u, y) :=
1

n

n∑
i=1

1{ui 6= yi}.

In this scenario, consider the following attack:

1. Pick u1, . . . , uk ∈ {0, 1}n uniformly at random.

2. Observe loss estimates l1, . . . , lk ∈ [0, 1].

3. Let I = {i : li ≤ 1/2} be the collection of indices corresponding to classifications ui
that performed better than random.

4. Output u∗ = maj({uk : i ∈ I}) the majority vote over these classifiers.

Theorem 6. Assume that
∣∣li − `(ui, y)

∣∣ ≤ n−1/2 for all i ∈ [k]. Then, the boosting attack
finds a vector u∗ ∈ {0, 1}n so that with probability 2/3,

`(u∗, yi) ≤
1

2
− Ω

(√
k

n

)
.

So, if y is chosen uniformly at random, then the leaderboard error is

lberr(R1, . . . , Rk) ≥ Ω

(√
k

n

)
.

6

6 Discussion

One interesting application of the leaderboard mechanism might be to adapt it into a
resampling technique that a learner uses. One problem we would run into, however, is that
the feedback given by the leaderboard mechanism reports the empirical risk of the best
classifier so far. But, there isn’t a way to immediately determine which classifier achieved
that best performance. Naturally, one way to try determining this is by using a private
dataset, as done in a machine learning competition.

Another interesting point to consider is how the mechanism truncated the feedback. This
is very natural in some sense—the sample data only contains a fraction of the information of
the whole dataset. Reminiscent of how significant figures are propagated in other sciences,
the truncation here reflects that the sample data, as a ‘measurement’ of the whole data, has
limited precision. Perhaps this question could be pursued more information-theoretically.

Bibliographic notes

This lecture followed [1].

References

[1] A. Blum, M. Hardt. The ladder: a reliable leaderboard for machine learning competitions.
In Proceedings of the Twelfth Annual Conference on Computational Learning Theory,
pages 1006–1014, 2015. 54–463. IEEE, 2014.

[2] M. Hardt, J. Ullman. Preventing false discovery in interactive data analysis is hard. In
Proc. 55th Foundations of Computer Science (FOCS), pages 4

[3] T. Steinke, J. Ullman. Interactive fingerprinting codes and the hardness of preventing
false discovery. In Conference of Learning Theory, pages 1588–1628, 2015.

7

	Introduction
	Setting
	Definitions and Notation

	The Ladder Mechanism
	A Parameter-Free Ladder Mechanism
	Boosting Attack
	Discussion

