
COMS 6998-4 Fall 2017 Presenter: Kiran Vodrahalli
October 16, 2017 Scribe: Benjamin Kuykendall

Interactive Clustering

1 Introduction

The clustering problem on a data set is to partition it into clusters that reflect some similarity
between the elements of a cluster. There are many different ways in which objects can
be similar and dissimilar, so it is not always clear what the correct clustering is. But this
ambiguity does not mean that clustering is impossible. Take a data set of newspaper articles
including articles on {Nobel Prize, Columbia Lions Football, GRE Scores, US Soccer}. Then
clearly we could make two clusters: one cluster Academics = {Nobel Prize, GRE Scores}
and another Sports = {Columbia Lions Football, US Soccer}. But what model of input best
models this sense of topical clustering?

Perhaps the most studied type of clustering is the generative model where we assume
that the data set comes from a distribution. For example, each cluster may be drawn from a
Gaussian as in [Das99]. Regardless of successes in that model, we will make no distribution
assumption and treat this problem in the worst case over possible clusterings, i.e. clustering
without assumptions.

So instead, we will use an active query model to learn the target clusters. To make our
model realistic, we will stick to types of queries that seem easy for a human or algorithmic
teacher to answer. This probably excludes the equivalence queries we studied last week.
Instead, we will look at a new type of oracle based on the idea that a user will “know [a
correct or incorrect cluster] when they see it”. We will first introduce the split/merge model
introduced by Balcam and Blum and then present their algorithms along with the later work
of Awaasthi and Zadeh [BB08, AZ10].

2 Formal Setting

Take a universe S = {x1, x2, . . . , xm}.

C is k-clustering if it partitions S into k sets;
i.e. C = {c1, c2, . . . , ck} such that the ci are disjoint and union to C.

A hypothesis class C is the subsets of S considered valid clusters;
then {c1, c2, . . . ck} belongs to C if each ci ∈ C.

H is a candidate clustering such that each hi ∈H is a subset of S;
this is the easiest problem. We discuss restrictions to the candidates later.

1



The split/merge oracle O for the target hypothesis C takes a candidate H = {h1, h2, . . . , h`}
and returns one of three types of outputs:

Correct if H = C

Split(hi) if hi contains elements from multiple clusters, i.e.

∃x1, x2 ∈ hi, ∃cj, ck ∈ C∗ such that x1 ∈ cj and x2 ∈ ck.

Merge(hi, hj) if all elements of hi, hj belong to the same cluster, i.e.

∃ck ∈ C∗ such that hi ∪ hj ⊂ ck.

We say a deterministic learner learns a hypothesis class C with query complexity q(k) if for
every k-clustering C belonging to C, the learner outputs C after at most q uses of the oracle.

2.1 Trivial algorithm

To get a sense of this setting and an easy upper bound, consider the following algorithm.

Algorithm 1 trivial algorithm for finite clustering
H0 ← {{x} ∶ x ∈ S} ▷ begin with all singletons
for t = 0,1, . . . do

R ← O(Ht)
if R = Merge(hi, hj) then

Ht+1 ← (Ht ∖ {hi, hj}) ∪ {hi ∪ hj}
else R = Correct then ▷ never Split as proven below

return Ht

end if
end for

Theorem 1. Algorithm 1 learns any class C over S = {x1, x2, . . . , xm} in time m − k.
Proof. Claim the oracle never returns a Split answer. The clusters in Ht are one of two types

{xi}: clearly a singleton can not be split.

hi ∪ hj such that we received Merge(hi, hj): then hi ∪ hj ⊂ cj for some ck ∈ C, and
because the hypothesis clusters are disjoint any other c` ∈ C gives c` ∩ (hi ∪ hj) = ∅.

By this claim, we know that each round we successfully merge, giving ∣Ht+1∣ = ∣Ht∣−1 = nm− t.
So ∣H(m−k)∣ = k, and we know the h ∈ H(m−k) are a partition of S, and each h ⊆ c for some
c ∈ C. So we conclude H(m−k) = C and that the query complexity is m − k.

This algorithm gives us a way to calibrate better approaches. If O(n) is trivial, then maybe
we can expect an efficient algorithm to achieve something like

q(k) = poly(logm,k, log ∣C∣).

2



2.2 Limiting Hypotheses

The intermediate hypotheses of the trivial algorithm are strange in a number of ways. This
suggests that perhaps we have defined too strong of an oracle. Consider two ways to restrict
oracle inputs that could make the problem more difficult.

In the trivial algorithm above, the singleton cluster hypothesis H0 seems ‘unnatural’ in
that it contains hypothesis clusters that may not be contained in C. One way to make the
problem harder is to only allow queries where H ⊂ C. Call this the natural query setting.

Another potential problem is the size of the Hi. There are up to m hypotheses, which is
potentially much larger than k. If we restrict to queries where ∣H ∣ < f(k), we get a weaker
model we will call f(k)-restricted.

We will explore restricted oracles after presenting some specific problems in the basic
setting, and seeing how they can be solved using potentially large sets of unnatural queries.

3 Specific Hypothesis Classes

3.1 Incremental Learners

The learners we build in this section will follow a similar pattern. An incremental learner
maintains a single hypothesis and greedily updates it after each round of feedback. This
category includes Algorithm 1 above. More generally, this template describes incremental
learners for the split/merge feedback interactive clustering problem.

Algorithm 2 template for incremental learner
Parameters: H0 an initial hypothesis, S and M splitting and merging functions
for t = 0,1, . . . do

R ← O(Ht)
if R = Split(h) then

Ht+1 ← (Ht ∖ {h}) ∪ S(h)
else if R = Merge(h0, h1) then

Ht+1 ← (Ht ∖ {h0, h1}) ∪M(h0, h1)
else R = Correct then

return Ht

end if
end for

Where a splitting function is S ∶ h↦ {a0, a1, . . . , ar} such that ai ∩ aj = ∅ and ⋃i ai = h.
And a merging function is M ∶ (h0, h1)↦ a such that a ⊇ h0 ∪ h1.

In Algorithm 1, we had no splitting function, and our merging function was just a union. But
even there we had an important property that helped the analysis of the proof. Say a merge
function M is a good merge function when the oracle can never output both Merge(hi, hj)

3



and Split(M(hi, hj)). This means that you can think of an incremental learner as performing
all of its splits, and then performing the merges. In practice, this means we only have to
bound the number of splits. Then, since after s splits of arity r there are (r − 1)s + ∣H0∣
clusters in Hs, we require (r − 1)s + ∣H0∣ − k merges to get the final k-cluster solution. This
bound will be used in both algorithms below.

3.2 Intervals on the Line

Let the universe consist of discrete points in [0, 1] ordered wlog S = {x1, x2, . . . , xm} with the
hypothesis class of closed intervals. As closed intervals are subsets of [0, 1], not of S, we have
to be a little more precise. So let C be the projections of closed intervals onto the data set,
namely S ∩ [a, b] for a, b ∈ [0,1], equating intervals with the same projection.

We have an incremental algorithm for this problem from [BB08]. Roughly, we begin with
the whole interval. Then to split an interval, we cut it into two at the median of the contained
x. To merge two intervals, take the smallest interval containing both. We give a more formal
description in the theorem below.

Theorem 2. The incremental learner

H0 = {[0,1]}

S([a, b]) = {[a,m−], [m+, c]} where m is the median of [a, b] ∩ S and
m−, m+ ∈ S are the largest element to the left and smallest to the right of m.

M([a, b], [c, d]) = [min{a, c}, max{b, d}]

learns the class of intervals in O(k logm) queries.

[● ● ● ● ● ●] → [● ● ●] [● ● ●]

Figure 1: The result of a Split in the incremental inverval learning algorithm.

Proof. First we need to show that M is good. This follows because if for some [α,β] ∈ C∗

both [a, b] ⊂ [α,β] and [c, d] ⊂ [α,β], then any point in between is in [α,β] as well.
Next consider the boundary points of the target hypothesis, namely a1, . . . , ak−1. We can

split an interval [x, y] only when some x < ai < y. So we can do no more splits when the ai
are contained in none of the hypothesis intervals.

Let size(ai) be ∣I(ai)∩S ∣ where I(ai) is the interval containing ai, or 0 if there is no such
interval. At the beginning of the algorithm, each size(ai) =m. After a split, at least one of
the size(ai) decreases to ⌈size(ai)/2⌉. Further, when splitting I(ai) where size(ai) = 2, the
new size will be 0, because splitting an interval with two elements yields two singletons. Thus

4



each boundary point takes logm relevant splits before it has size 0. As each split is relevant
to at least one boundary, there are at most (k − 1) logm splits total possible.

After the splits, there are (k − 1) logm + 1 clusters, giving by the argument in Section 3.1
that there are at most 2(k − 1) logm + 1 − k queries total.

Note that this algorithm is “natural” in the sense that each hypothesis is a valid clustering
in the hypothesis class. However, the size of H might grow to m, so it is not valid in that
limitted model.

3.3 Boxes in Euclidean Space

Taking S to be points in [0,1]d instead, we get a similar problem. In [AZ10] this algorithm
is extended to give the following query complexity.

Theorem 3. There is a O((kd logm)d)-query learner for closed boxes in [0,1]d.

We will show how the algorithm extends to d = 2, higher dimensions are identical. This
algorithm is a bit different from the one dimensional case as the split operation is global: if
effects each cluster in the hypothesis. But the analysis is much the same.

Theorem 4. Take the following learner:

H0 = {[0,1]}

M(h0, h1) is the smallest rectangle containing both h0 and h1.

S([x0, x1] × [y0, y1]): project S ∩ [0, 1] × [y0, y1] onto the x-axis find the median, and if
any cluster in Ht that crosses the line, split it in two. Do the same for the y-axis.

learns the class of boxes in [0,1]d in O((k logm)2) queries.

Proof (sketch; pretending points never fall on the median). Follows much like Theorem 2.
Again merged rectangles are never split. But boundaries are now the lines between target clus-
ters. If a rectangle is split, that means it contains either a horizontal or vertical boundary line.
So the size of that line (which is the sum of the number of points in each rectangle crossing
that line) is decreased by ⌈1/2⌉. There are 2k lines, so a total of 2k logm splits may be used.
Now, s splits induces an s×s grid on the data, giving s2 total clusters. So after (2k logm)2−k
merges, we are back down to k clusters, giving a total of (2k logm)2+2k logm−k queries.

5



● ●

●

● ●

●

● ●

● ●

●

●

● ● ●

● ●

● ●

●

●

● ●● ●
● ●

● ● ●

● ●

● ●

● ● ●● ●

●

●

● ●

● ●
● ●

●

● ●

●
● ●

● ● ●
● ●

● ●

●

●
● ● ●

● ●

●

Figure 2: The x and y medians found by Split in the rectangle learning algorithm.

4 General Algorithm

Though the original [BB08] paper proposed a efficient generic algorithm, we will study the
more efficient and simpler algorithm from [AZ10]. Roughly, the original attempted to cut the
version space by a factor of 1 − 1/k2 each oracle class; the new manages 1/2.

We will use some new notation in the algorithm. Let CV S be all clusterings belonging to C.
Say a single cluster c is consistent with a clustering {c1, . . . , cn} if c ⊆ ci for some i. Let ccs(c)
denote the subset of CV S which is consistent with c.

Algorithm 3 generic clustering algorithm
V0 ← CV S

repeat for t = 0,1, . . .

Li ← ∅ for each i
repeat for i = 1,2, . . .

Li ← the largest r ⊆ S ∖⋃n<iLn such that ∣ ccs(r) ∩ Vt∣ ≥ ∣Vt∣/2
until the Li partition S
R ← O(L)
if R = Split(h) then

Vt+1 ← Vt ∖ ccs(h)
else if R = Merge(h0, h1) then

Vt+1 ← Vt ∩ ccs(h0 ∪ h1)
end if

until ∣V ∣ = 1

return the single v ∈ V

6



Theorem 5. Algorithm 3 learns any class C in O(log ∣CV S ∣) queries.

Proof. First we should show the construction of L is always feasible; this follows because
singletons are always consistent with any hypothesis. Thus there is always some choice of Li.

Next we claim that C∗ is never removed from V ; this follows from definitions. If Split(h) is
returned, then we know C∗ is inconsistent with h; if Merge(h0, h1) is returned, then we know
C∗ is consistent with h0 ∪ h1. So what remains to show is that ∣Vt+1∣ ≤ ∣V ∣/2.

For Split(Li): by construction we have that ∣ ccs(Li) ∩ Vt∣ ≥ ∣Vt∣/2.

For Merge(Li, Lj): assume towards contradiction ∣ ccs(Li ∪ Lj) ∩ Vt∣ ≥ ∣Vt∣/2. Wlog i < j.
But then we would have picked Li ∪ Lj in round i because it is larger than Li and it is
consistent with enough of V . This contradicts the fact that Li was picked; thus conclude
∣ ccs(Li ∪Lj) ∩ Vt∣ < ∣Vt∣/2 so we remove more than half of V .

We have a few useful bounds on ∣CV S ∣. To start, CV S ⊆ Ck, so the algorithm in fact runs
in O(k log ∣C∣) queries. Further, if d is the VC-dimension of C, we know there are at most
md ways to split S using C (the Sauer-Shelah lemma [Sau72, She72]), so we have ∣CV S ∣ ≤mkd

and O(kd logm) queries.
Note that this algorithm is not feasible to implement: like many of these generic algorithms,

the version space is simply too large to keep track of. In terms of our limited models, the
clusters are unnatural, and there are too many of them. There is in fact a lower bound that
precludes efficient generic poly(k, logm)-restricted algorithms [BB08].

5 Discussion

In active learning, we want a query model that balances utility to the learner with how easy
it is for a teacher to answer. How do the split/merge queries look by these metrics? The
algorithms above surely suggest they are useful. But they might not be easy to answer.

Merge(h0, h1) would be hard to check if cluster membership is hard to verify; the teacher
has to check that every single x ∈ h0 ∪ h1 is contained in some c.

Split(h) would be hard to check if cluster non-membership is hard to verify; the teacher
has to check that every single x ∈ h does not belong to the same c.

It seems the teacher in the worst case must spend in the worst case time mT , where T is the
time to verify or refute cluster membership, to answer a query.

Another possible remedy to the problem of hard queries is that the teacher is human, and
has some very effective heuristics or probabilistic techniques to check membership. But in
the case of human input, we would probably want a degree of error tolerance or noise.

7



The “noise” model considered by [AZ10] set some η and allowed Merge(h0, h1) responses
when an η-fraction of h0 ∪ h1 falls in some c. This modification certainly makes the task of
verifying a merge easier, and as shown in the paper, still allows some effective algorithms.
However, it does not address the possibility of actual errors in the response.

Another interesting modification of the model is to only allow hypotheses in CV S. This
is certainly harder than either modification made in the paper. We could also strengthen
the oracle considerably by allowing overlapping clusters in the hypothesis. To propose a
new model in the interactive clustering setting, we should have efficient algorithms and
well-motivated queries; perhaps some other modification of the [BB08] setting still makes
sense by this measure.

References

[AZ10] Pranjal Awasthi and Reza Bosagh Zadeh. Supervised clustering. In Proceedings
of the 23rd International Conference on Neural Information Processing Systems,
volume 1 of NIPS’10, pages 91–99, 2010.

[BB08] Maria-Florina Balcan and Avrim Blum. Clustering with interactive feedback. In
Proceedings of the 19th International Conference on Algorithmic Learning Theory,
ALT ’08, pages 316–328, 2008.

[Das99] Sanjoy Dasgupta. Learning mixtures of gaussians. In Proceedings of the 40th Annual
Symposium on Foundations of Computer Science, FOCS ’99, page 634, 1999.

[Sau72] N Sauer. On the density of families of sets. Journal of Combinatorial Theory, Series
A, 13(1):145–147, 1972.

[She72] Saharon Shelah. A combinatorial problem; stability and order for models and theories
in infinitary languages. Pacific J. Math., 41(1):247–261, 1972.

8


	Introduction
	Formal Setting
	Trivial algorithm
	Limiting Hypotheses

	Specific Hypothesis Classes
	Incremental Learners
	Intervals on the Line
	Boxes in Euclidean Space

	General Algorithm
	Discussion

