
COMS 6998-4 Fall 2017 Presenter: Kiran Vodrahalli
October 16, 2017 Scribe: Rong Zhou

Interactive Clustering

1 Introduction

Previously we have mostly been discussing binary classification problems, where the active
learner gets feedback from a teacher to know if the predictions are correct. We now extend
the active learner to solve clustering problems. Clustering algorithms group samples into
clusters such that samples within the same cluster are more similar than samples that are
not in the cluster. For example, documents are grouped by similar topics or similar writing
styles. There has been a wide range of techniques that produce clustering results, but many of
them rely on probabilistic assumptions such as Gaussian distributions. Interactive clustering
algorithms, in contrast, do not have any distributional assumptions. They query the user
who has the target clustering in mind to adjust to the “vague” feedback. We will show several
examples of interactive clustering and their query complexity analysis below.

1.1 Interactive clustering basic setting

Given a set of samples S with size m, and the hypothesis class C, we are going partition
S to produce k disjoint clusters {c1, . . . , ck} such that each ci ∈ C. The goal of interactive
clustering is to identify the target clustering {c1, . . . , ck} with as few queries as possible.

1.2 Split-merge query feedback

In interactive clustering algorithms, the learner proposes a candidate clustering {c′1, . . . , c′k} to
the user as a query. The user then provides vague responses based on the proposed clustering.
Given a proposed clustering {c′1, c′2, . . . , c′k} by the learner, the user’s feedback falls into the
following two kinds of responses:

• Split(c′i): The user asks the learner to split samples in cluster c′i since it contains
samples from multiple target clusters.

• Merge(c′i, c
′
j): The user asks the learner to merge the two clusters c′i and c′j since they

are both subsets of the same target cluster.

Note that the user does not provide the learner counterexamples or any information about
how to split the cluster. This is different from equivalence queries we talked about last week
since equivalence queries provide specific counterexamples.

1

1.3 A basic example of interactive clustering

We now propose a toy example to show the baseline of the query complexity that an interactive
clustering algorithm can achieve.

Algorithm 1 Algorithm Toy Example
1: Begin the clustering {c1, c2, . . . , cm} where each sample forms its own cluster for all m

points of S.
2: On a Merge request, merge the two clusters indicated.

If the user provides correct feedback over time, the target clustering can be obtained by
simply merging clusters. Each merge request will reduce the total number of clusters by
1. Since the target clustering has k clusters, the toy algorithm will conduct overall m− k

merges, indicating that the number of queries will also be m− k.

The above example has query complexity O(m), and we would like to have interactive
clustering algorithms with even lower query complexity if the user’s feedback has no noise.
Ideally, we are looking for algorithms with query complexity O(logm) or poly(k, logm, log |C|).

2 Concrete interactive clustering examples

2.1 Clustering 1-D Intervals

Consider an interactive clustering algorithm that produces k clusters on the line, which can
be represented as k disjoint intervals. The algorithm is shown below:

Algorithm 2 Cluster-Intervals
1: Begin with a single cluster containing all m points of S.
2: On a split to a cluster c′, partition c′ into two clusters of equal cardinality.
3: One a merge request, merge the two clusters indicated.

Theorem 1. Algorithm 2 requires O(k logm) queries for clustering the class of intervals on
the line.

Proof. Let a1, a2, · · · ak−1 as decision boundaries that separate the line into k segments in the
target clustering. ai can be any point between the largest point in the interval ci and the
smallest point in the interval ci+1.

Define size(ai) to be as

size(ai) =

 |c′t| if ai lies in interval c′t
0 otherwise

2

Figure 1: Clustering Intervals

When the target clustering is achieved, size(ai) will be 0 for all ai. The algorithm starts
with size(ai) = m, and as the algorithm proceeds, size(ai) changes based on the following
two requests:

• For a split(c′) request, the algorithm makes cluster c′ reduce its cardinality by a factor
of 2, and for all decision boundaries ai in c, size(ai) reduces by a factor of 2.

• A merge(c′i, c
′
j) request happens only when neither of the two clusters has any decision

boundaries, thus a merge request will not increase or decrease size(ai) for any ai.

For one decision boundary ai, we need logm split requests to achieve size(ai) = 0, and
k − 1 such boundaries require (k − 1) logm split requests. This indicates that there are at
most (k − 1) logm merge requests.

2.2 Clustering Rectangles

Now we extend the problem to a 2-D space where each cluster is in shape of a rectangle. We
parametrize each rectangle using four points ai, aj, bi and bj to represent the boundaries of a
cluster ck such that if (x, y) ∈ ck , then ai < x < aj and bi < y < bj.

The algorithm for clustering rectangles Algorithm 3 is shown below and we will show
that the algorithm uses at most O((k logm)2) queries. Note that Algorithm 3 can also be
extended to clustering rectangles in a d-dimensional space. The extended algorithm has query
complexity O((k logm)d).

Theorem 2. Algorithm 3 can cluster the class of rectangles in 2 dimensions using at most
O((k logm)2) queries.

Proposition 1. There is an algorithm which can cluster the class of rectangles in d dimensions
using at most O((kd logm)d) queries.

3

Algorithm 3 Cluster-Rectangles
Require: A graph G over m points, two sets for maintaining points on the x-axis and the

y-axis.
1: Begin with points a′start, a′end on the x-axis and b′start, b′end on the y-axis such that we

have a single cluster containing all m points of S.
2: At each step, cluster the m points based on the region, if the points in two regions form

a clique in G merge the regions. Repeat until no more regions can be merged.
3: On a merge request, create a clique in G corresponding the samples in the two clusters.
4: On a split to a cluster a′i, a′j , b′i, and b′j , create a new point a′r such that a′i < a′r < a′j , and

a′r divides the projection of all the samples on (a′i, a
′
j) by half in the cluster. Similarly,

create a new point b′r such that b′i < b′r < b′j, and b′r divides the projection of all the
samples on (b′i, b

′
j) by half in the cluster.

Figure 2: A split request in cluster rectangles

Proof. (Proof of Theorem 2) Since there are overall k clusters in the target clustering, there
will be at most 2k points on the x-axis and 2k points on the y-axis. Let a1, a2, . . . be the
points on x-axis representing the target clustering, and b1, b2, . . . be the points on the y-axis
representing the target clustering.

Each split of a′i, a′j, b′i, b′j happens if there exist some target points ai or bj within the
current region. After splitting, the number of samples in the region that still contains target
point will be reduced by a factor of 2. Similar as the previous example, for each axis it
requires O(k logm) splits to achieve 2k intervals. As there could be at most O((k logm)2)

clusters, the number of merges will be at most ((2k − 1) logm)2, which is O((k logm)2).

4

3 A generic algorithm for finite class C and its query com-
plexity

We now discuss a more general algorithm for interactive clustering. Using the idea similar to
halving algorithm, the following generic algorithm guarantees a removal of at least 1

2
of the

version space for every split or merge request.

Definition 1. Given a concept class C, let CV S = {all possible k clusterings using concepts
in the finite class C}. Let R be a subset of points in S, a clustering is consistent with R if R
appears as a subset of one of the clusters in the clustering. A Consistent Cluster Set (CCS)
of R is a set of clusterings that are consistent with R in CV S. More formally,

CSS(R) = {{c1, c2, . . . , ck} ∈ CV S : {c1, c2, . . . , ck} is consistent with R}

Algorithm 4 Generic Clustering
1: Initialize i = 1, empty cluster list L.
2: While |CV S| > 1:

3: Find the largest set of points Ri ⊆ S , s.t. |CCS(Ri)| ≥ 1
2
|CV S|.

4: Append Ri into L as a cluster, and increment i by 1.
5: Repeat step 3-4 until all points in S are assigned to the cluster.

6: Output L to the user.
7: On a split(Ri) request, remove all the clusterings in CV S that are consistent with Ri.
8: On a merge(Ri, Rj) request, remove all the clusterings in CV S that are inconsistent with

Ri ∪Rj.

Theorem 3. The generic clustering Algorithm 4 can cluster any finite concept class C with
at most k log |C| queries.

Proof. The algorithm starts with the full version space CV S, and note that |CV S| < |C|k.
For each split(Ri) request, the clusterings in CV S where Ri appears to be a single cluster
are incorrect since the user asks the learner to split it. Thus, Algorithm 4 removes all the
clusterings that are consistent with Ri in the current version space. This also indicates that
at least half of the version space is removed based on line 3 in Algorithm 4.

Similarly, for each merge(Ri, Rj) request, the clusterings in CV S where Ri and Rj appear
to be two different clusters are incorrect since the user asks to merge the two clusters. In this
case, Algorithm 4 removes all the clusterings that are inconsistent with the idea of merging
two clusters and forming Ri ∪Rj. This means at least a half of the current version space is
removed based on line 3 in Algorithm 4.

5

Therefore, each request from the user helps the algorithm make progress by eliminating
at least half of clusterings from the current version space. The query complexity will be at
most log |CV S| ≤ log |C|k = k log |C|.

The query complexity in Theorem 3 can be further improved if the VC-dimension d of
the concept class C is much smaller than log |C|. The number of ways to split m points using
concept in C is bounded by md, and this gives us query complexity

log |CV S| ≤ logmkd = kd log(m)

4 Lower Bound

Notice that all algorithms mentioned above do not have any restrictions about the number
of clusters in the proposed clustering. However, if the algorithm is restricted to produce
clusterings with ploy(k, logm) clusters, then there exist classes that no algorithms can succeed.
A simple example can be as follows:

Theorem 4. There exist classes C of size m such that, even for k = 2, any algorithm that is
restricted to producing k-clusterings will require Ω(m) queries.

Proof. Consider the situation where all the m points lie on a circle, and the target clustering
is a random partition with two equal sized intervals. The concept class C is the class of
intervals. The algorithm proposes clusterings with 2 clusters all the time. The user will
return split request each time when the proposed two intervals are in different sizes. If the
two intervals have the same size, the user still returns split if the partition is not exactly
correct. These feedbacks, on the other hand, do not provide any information to the learner to
make progress. Since the target clustering is chosen by random, on expectation the algorithm
will require Ω(m) queries.

A more general result of the lower bound is proposed and proved in [2]:

Theorem 5. There exist classes C of size O(m) such that, even for k = 2, no algorithm
that is restricted to producing clusterings with only poly(k, logm) clusters can have even a

1
poly(k,logm)

chance of success after poly(k, logm) queries.

The analysis of the lower bounds further shows us that it is necessary for algorithms
to produce a large number of small clusters, even if the target clustering has much smaller
number of clusters.

6

Bibliographic notes

The problem setting is based on [2]. The Cluster intervals algorithm was proposed by [2].
The Cluster rectangles algorithm is due to [1]. The original generic algorithm is from [2], and
here we present an improved version from [1]. The upper bound of the query complexity with
known VC-dimension d in the generic algorithm is due to [3].

References

[1] Pranjal Awasthi and Reza B Zadeh. Supervised clustering. In Advances in neural
information processing systems, pages 91–99, 2010.

[2] Maria-Florina Balcan and Avrim Blum. Clustering with interactive feedback. In ALT,
pages 316–328. Springer, 2008.

[3] Vladimir Naumovich Vapnik and Vlamimir Vapnik. Statistical learning theory, volume 1.
Wiley New York, 1998.

7

	Introduction
	Interactive clustering basic setting
	Split-merge query feedback
	A basic example of interactive clustering

	Concrete interactive clustering examples
	Clustering 1-D Intervals
	Clustering Rectangles

	A generic algorithm for finite class C and its query complexity
	Lower Bound

