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Hierarchical Concept Learning

1 Introduction

It has been shown that learning arbitrary polynomial-size circuits is computationally in-
tractable [3]. To resolve this difficulty, we can introduce a more powerful teacher that breaks
the target concept into subconcepts and teaches the learner in stages.

2 PAC-learning Recap

Definition 1. Given an instance space X and probability distribution P on that space, we
say a concept c′ is ε-approximation of concept c if

Pr
x∼P

(
c′(x) 6= c(x)

)
≤ ε.

Theorem 1. Let H be a finite hypothesis set, and ε, δ ∈ [0, 1]. Let

m =
1

ε

(
ln |H|+ ln

1

δ

)
.

With probability at least 1− δ, every concept c ∈ H that is consistent with a size-m iid sample
from a distribution P labeled by a target concept c∗ is an ε-approximation of c∗.

Proof. See [3, 1].

2.1 Reliable PAC-learning

In the original PAC-learning setting, the learner is required to output a prediction for every
input instance. In the Reliable PAC-learning setting, we allow the learner to output a
prediction (0 or 1) only when it is “sure” of the prediction; it may output “unsure” in other
cases.

Definition 2. A reliable learner outputs 1 only on positive instances, and outputs 0 only on
negative instances.

The fraction of instances a reliable learner output “unsure” is the error rate. So for reliable
PAC-learning, the algorithm is required to output an classifier Q which say “unsure” only on
at most ε fraction of all samples.
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3 Problem Formulation

The idea of learning subconcept hierarchically can be seen as an imitation of human learning
process. For human learning, we typically do not learn a complicated concept directly.
Instead, we do by gradually learning the hierarchical decomposition of the original concept
and then compose them up.

Take a simple example. Let concept c denote “a good PhD applicant”. In a very simplified
setting, define this concept in natural language:

A good PhD applicant must have high GPA, GRE scores, good recommen-
dation letters. If the student is master student, he/she must have a conference
paper.

We can break this complicated concept into small pieces and combine then up. Let

x1 = undergraduate

x2 = master

x3 = good recommendation

x4 = conference paper

x5 = high GPA

x6 = high GRE

as boolean variables, so the target concept can be represented as

c = x5 ∧ x6 ∧ x3 ∧ ((x2 ∧ x4) ∨ x1).

We can introduce a set of boolean variables yi and construct the target concept in a hierarchical
manner

y1 = x5 ∧ x6
y2 = y1 ∧ x3
y3 = x2 ∧ x4
y4 = y3 ∨ x1
y5 = y2 ∧ y4 = c.

We then formally define our notion of hierarchical concept learning. We consider only the
case where each level of subconcept is conjunction or disjunction of two variables (both can
be negative) chosen from a set L, which contains original instance attributes and previously
learned subconcepts. We assume the target concept c∗ to be represented as a straight-line
program like the previous example and contains s lines. Let the input to be x1, x2, . . . , xn,
and output to be ys. The ith line of the program is of the form

yi = zi,1 ◦ zi,2,
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where ◦ may be one of ∧ and ∨, and every zi,k is either an input literal xj or x̄j, or previous
computed yj or ȳj.

Define Vi = {x1, . . . , xn, y1, . . . , yi−1} to be the set of instance attributes and previously
learned subconcepts, and EB(Vi) = {true, false, zi,1 ◦ zi,2|zi,1, zi,2 ∈ Vi} is the set of all boolean
formulas that are conjuction or disjunction of two variables in Vi, where “EB” stand for “Easy
Boolean”.

We should examine and bound the size of EB(Vi). |Vi| = n+ i− 1, the size of EB(Vi) is
equal to choose 2 from n+ i− 1 elements, multiplied by a factor which represent the choice
of ∧ and ∨ and either of the two variables may be negated, then added by 2 which is two
trivial cases of true and false:

|EB(Vi)| = 8

(
n+ i− 1

2

)
+ 2 ≤ 8

(
n+ s− 1

2

)
+ 2 = K.

We should note that K is polynomial in n and s which are the size of the concept class.
With those notations, we could write the hierarchical concept learning procedure as follow

algorithm 1

Algorithm 1 Hierarchical Concept Learning
Teacher break the target concept c∗ into subconcepts y1, . . . , ys.
for i = 1 to s do

Teacher draw random i.i.d samples
(
x = (x1, . . . , xn), yi(x)

)
.

Learner learns yi and tell the teacher when this stage complete.
end for
return ys.

For the ith stage, we are about to learn yi in space EB(Vi−1). However we are only given
the sample x1, . . . , xn, and the correct value of y1, . . . , yi−1 are never shown to the learner.
The reason not to do so is that providing this help to the learner requires large amount of
extra information which is not very satisfying. We assume at each stage i the learner has
successfully learned yi, and the teacher continue to teach yi+1 and will never return back to
yi.

But we may have error when learning yi at each stage. If we use any learned yi at stage i
for future learning, we may be influenced by the error of the learned concept.

To resolve this issue we should maintain a full list of all possible candidates, including the
correct concept, for any yi, i.e. the version space. As shown previously, the size of the version
space is only at most polynomial in n and s, which makes it tractable to keep all of them.

We filter EB(Vi) to a version space Fi, which is consistent to all given samples in ith stage,

EB(Vi)→ Fi = {y|y ∈ EB(Vi), y consistent with all m samples}.

Since the previously learned F1, . . . , Fi−1 have many possible candidates yi, their values on
any sample x may be different, and we only want those with correct value. We say a sample
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x1, . . . , xn is “good” if for every previously learn Fj, 1 ≤ j < i, all yj in Fj take the same truth
value on x1, . . . , xn. We only use “good” examples in every stage of learning.

Definition 3. F = {f1, . . . , fs} is a set of boolean formulas defined in terms of x1, . . . , xn.
F is coherent on x1, . . . , xn if f1(x1, . . . , xn) = f2(x1, . . . , xn) = . . . = fs(x1, . . . , xn).

Note that for every previously learned Fj, for any (x1, . . . , xn) if Fj is coherent on
x1, . . . , xn, then the common value must be the correct value yj(x1, . . . , xn), since we know
that the ground truth formula is actually contained in Fj . This can be concluded by noticing
that Fj is constructed by selecting consistent hypothesis in EB(Vi).

4 Learning Algorithm

We first give the learning algorithm for each stage i, given all previous Fj as an input to
learn Fi for the ith stage. See algorithm 2

Algorithm 2 CSL Coherent Set Learner
Input: F1, . . . , Fi−1, i,K, εi, δi
Output: Fi
pick m = 1

εi
(lnK + ln 1

δi
).

ask 2m samples from teacher, a1, . . . , a2m.
for aj ∈ {a1, . . . , a2m} do
if F1, . . . , Fi−1 coherent on aj then
aj =

(
x1, . . . , xn, F1(aj), . . . , Fi−1(aj)

)
else

discard aj
end if

end for
if m samples is gathered then
Fi = {f ∈ EB(Vi)|f consistent with all m samples}
return Fi

else
return failed

end if

Given CSL algorithm, we can apply this on each stage i and learn Fi. See algorithm 3
With F1, . . . , Fs learned, for any given instance x to query, we use algorithm 4 to return

the classification result.
The algorithm return “unsure” when some of F1, . . . , Fs is not coherent on input x. From

previous discussion we know that, when all F1, . . . , Fs are coherent on x, the output ys must
be the ground truth value. So the learner is reliable.
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Algorithm 3 Reliable Learner
K ← 8

(
n+i−1

2

)
+ 2

ε′ ← ε
sK

δ′ ← δ
2s

for i← 1 to s do
Fi ← CSL(i, F1, . . . , Fi−1, K, ε

′, δ′)

end for
return (F1, . . . , Fs)

Algorithm 4 Q(x)
Input: x ∈ X , F1, . . . , Fs.
for i← 1 to s do
if Fi coherent on (x1, . . . , xn, y1, . . . , yi−1) then
yi = Fi(x)

else
return unsure

end if
end for
return ys(x)

5 Theoretical Analysis

Definition 4. Let Xi(F1, . . . , Fi−1) = {x|all Fj coherent on x, x ∈ {0, 1}n, 1 ≤ j < i}, say
Fi is accurate, if ∀x ∈ Xi, f ∈ Fi, Pr(f(x) = yi(x)) ≥ 1− ε

sK
.

Lemma 1. If all F1, . . . , Fs are accurate, then the unsure rate of Q(x) is less than ε.

Proof.

Pr(Q(x) = c(x))

= Pr(F1, . . . , Fs all coherent on x)

= Pr(Fs coherent on x|F1, . . . , Fs−1 coherent on x) Pr(F1, . . . , Fs−1 coherent on x)

=

∏
f∈Fs

Pr(f(x) = ys(x))

Pr(F1, . . . , Fs−1 coherent on x)

≥
(

1− ε

sK

)K
Pr(F1, . . . , Fs−1 coherent on x)

≥
(

1− ε

s

)
Pr(F1, . . . , Fs−1 coherent on x) ≥

(
1− ε

s

)s
≥ 1− ε.
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Lemma 2. If F1, . . . , Fi−1 is accurate, then at stage i, with probability at least 1 − δ
2s
, m

samples are drawn in CSL, and CSL doesn’t return “failed”.

Proof. For ∀x ∈ X ,

Pr(F1, . . . , Fi−1 coherent on x) ≥
(

1− ε

s

)i
≥
(

1− ε

s

)s
≥ 1− ε,

thus we conclude

Pr(x not selected, x ∈ X ) ≤ ε.

According to Hoeffding’s inequality, if we treat “x not selected” as a mistake,

Pr(more than m mistakes in 2m trials) ≤ e−2·2m( 1
2
−ε)2

= e−m(1−2ε)2 = e−
1
ε′ ln(

K
δ′ )(1−2ε)

2

=

(
K

δ′

)− 1
ε′ (1−2ε)

2

=

(
K

δ′

)− (1−2ε)2sK
ε

≤
(

2sK

δ

)−sK
<

δ

2s
.

Theorem 2. For Reliable Learner algorithm, with probability at least 1− δ, F1, . . . , Fs are
accurate, and the final classifier has unsure rate less than ε.

Proof. First we show with probability at least 1− δ, F1, . . . , Fs are accurate. Note that

Pr(Fi is accurate|F1, . . . , Fi−1 are accurate)

≥ Pr(more than m samples are drawn|F1, . . . , Fi−1 are accurate)

· Pr(Fi is accurate|more than m samples, F1, . . . , Fi−1 are accurate).

We know that

Pr(Fi is accurate|more than m samples, F1, . . . , Fi−1 are accurate) ≥ 1− δ

2s
,

which is direct conclusion of PAC-learning setting of each stage. And according to lemma 2

Pr(more than m samples are drawn|F1, . . . , Fi−1 are accurate) ≥ 1− δ

2s
,

thus

Pr(Fi is accurate|F1, . . . , Fi−1 are accurate) ≥
(

1− δ

2s

)
·
(

1− δ

2s

)
≥ 1− δ

s
.
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Then

Pr(F1, . . . , Fs are accurate) =
s∏
i=1

Pr(Fi is accurate|F1, . . . , Fi−1 are accurate)

≥
(

1− δ

s

)s
≥ 1− δ.

When all F1, . . . , Fs are accurate, according to lemma 1, the final classifier has unsure
rate less than ε.

6 Remove Circuits Size as Input

In previous analysis, we actually spread our tolerance ε to each line of ε/s. However, in
some case we may not know s for the target concept, then we must use different strategy to
distribute the error into unknown number of stages. We use equality

s∑
i=1

6ε

π2i2
<
∞∑
i=1

6ε

π2i2
= ε

and modify the ε′ and δ′ in Reliable Learner Algorithm 2 to

ε′ =
6ε

Kπ2i2

δ′ =
3δ

π2i2
.

We can apply similar approach as before to prove the Reliable PAC-learnability of the new
algorithm without s as an input.

Bibliographic notes

Analysis of PAC-learning is due to [1, 3]. The main result of this note is from [2].
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