
COMS 6998-4 Fall 2017 Presenter: Che Shen
October 11, 2017 Scribe: Fei Peng

Query in active learning

1 Introduction

Active learning is the process of learning a hypothesis based on the interaction between a
learner and an instructor. An active learner sends a series of queries to an oracle to obtain
information about the target hypothesis and eliminate wrong hypotheses.

Recall the setting of active learning. Let D be a distribution over X × Y where X is the
input space and Y = {±1} are the possible labels. (X, Y) is a pair of random variables drawn
from D. Let H be a set of hypotheses mapping from X to Y. The error of a hypothesis
h : X → Y is

err(h) := Pr(h(X) 6= Y)

Let h∗ := arg minh∈Herr(h) be a hypothesis of minimum error in H, the goal of active
learning is to find a hypothesis ĥ ∈ H with error err(ĥ) close to err(h∗). In realizable case,
we assume that there exists a hypothesis that makes no mistake on all the possible input
x ∈ X and thus err(h∗) = 0.

An algorithm for active learning proceeds by iteratively drawing a (X, Y) pair from D
where the true label Y is hidden and deciding whether to ask the oracle for Y . A good
algorithm should find the target hypothesis and also minimize the number of unlabeled points
and queries.

In this lecture, we will see how query is applied in active learning.

2 Deterministic Setting

In deterministic setting, we have an input space X and a target hypothesis h∗ : X → {0, 1}.
We assume that the hypothesis space is finite H = {h1, h2, ..., hn} and h∗ ∈ H. The learner
can send two types of queries to an oracle:

• Membership: The input is any x ∈ X and the output is its label h∗(x)

• Equivalence: The input is a hypothesis ĥ. The output is yes if h∗ = ĥ. Otherwise,
answer no with a counterexample x ∈ X s.t. h∗(x) 6= ĥ(x)

Since we assume h∗ ∈ H, the algorithm will always exactly identify the target hypothesis
by seeing enough examples and eliminating all the wrong hypotheses.

Notice that the response of an equivalence query will include a counterexample if the
input hypothesis is not the same as h∗. Such an equivalence query is called unrestricted
equivalence query. Also, there exists restricted version which only answers yes or no without

1

any counterexample. In this lecture, we only consider unrestricted equivalence query since
the counterexample provides important information about target hypothesis and help reduce
complexity.

The choice of counterexample also affects the performance of active learning. A good
strategy to properly choose counterexample may result in a more efficient algorithm. Here
we assume the selection of a counterexample is arbitrary and consider the worst case.

Next, we will consider two cases. The input ĥ of the equivalence query can be any function
f : X → {0, 1} or is limited to be an element of H, i.e. ĥ ∈ H.

2.1 Case 1: Input can be any function

We first consider the case where the input of equivalence query can be any function f : X →
{0, 1}. A naive method to find the target hypothesis is to conduct exhaustive searching.
Recall we have a finite hypothesis space H, every time the algorithm chooses a candidate
hypothesis h ∈ H and sends an equivalence query. If the answer is no, then h will be removed
from hypothesis set. Thus at least one hypothesis can be removed in each iteration until the
target hypothesis is found. In the worst case, the algorithm will make |H| − 1 queries.

Actually we can do this better using Majority Vote. Construct a fake hypothesis ĥ that
may not exist in H

ĥ(x) =

1
∑

h∈H h(x) ≥ |H|/2
0 o.w.

In each iteration, the algorithm constructs ĥ and sends an equivalence query. Every query
answered no must reduce the cardinality of H by at least one half. Thus, log(|H|) queries
suffice for the algorithm to find h∗.

Notice that exhaustive search and Majority vote algorithm are exactly the same as the
consistent algorithm and halving algorithm introduced in online learning. Online learning
and active learning are actually equivalent. Since this is not relevant to what we will discuss
in the next section, the proof will be described in Appendix A.

2.2 Case 2: Input must be a member of H
Now consider the setting that the input of equivalence query must be a member of the
hypothesis space H. Exhaustive search still works, but Majority vote algorithm is not
applicable because the fake hypothesis ĥ may not exist in the hypothesis space. Angluin,
1988 [1] gives the lower bound of queries.

Lemma 1. Suppose the hypothesis space contains a class of distinct sets L1, L2, ..., Ln and
there exists a set L∩, such that for any pair of distinct indices i and j,

Li ∩ Lj = L∩

2

Then any algorithm that exactly identifies each of the hypotheses Li using restricted equivalence
and membership queries must make at least n− 1 queries in the worst case.

Proof. Suppose the target hypothesis is L∗. In the worst case, the algorithm cannot find
the target hypothesis by luckily choosing L∗ or x ∈ L∗. For an equivalence query with the
hypothesis L 6= L∗, the answer is no and L will be removed. For a membership query with an
element x ∈ L∩, the reply is yes. Otherwise, the reply is no. If x ∈ L∩, then the hypothesis
set has no change because x ∈ Li for any i. If x ∈ Li\L∩, then x /∈ Lj for any j 6= i. So only
Li will be removed.

Each query removes at most one hypothesis, so n− 1 queries are required in the worst
case, which proves Lemma 1.

Lemma 1 can be strengthened if L∩ is not a hypothesis.

Lemma 2. Suppose the hypothesis space contains a class of distinct sets L1, L2, ..., Ln and
there exists a set L∩ which is not a hypothesis, such that for any pair of distinct indices i and
j,

Li ∩ Lj = L∩

Then any algorithm that exactly identifies each of the hypotheses Li using equivalence and
membership queries must make at least n− 1 queries in the worst case.

We now show that k-CNF formulas can be identified using queries. Let k-CNF denote the
set of formulas in conjunctive normal form over n variables x1,x2,...,xn with at most k literals
per clause. A literal refers to x or ¬x for any variable x. k-CNF has a natural hypothesis
space over {0, 1}n.

First consider a simple case that k = 1 and each variable appears only once. The
hypothesis of H has the form of

P1 ∧ P2 ∧ ... ∧ Pn

where Pi is either xi or ¬xi.
Obviously, |H| = 2n. Each 1-CNF formula is satisfied by exactly one assignment and

any two formulas cannot be satisfied by the same assignment. According to Lemma 1, any
algorithm that exactly identifies these 1-CNF formulas using restricted equivalence and
membership queries must make at least 2n − 1 queries in the worst case.

For the general cases where k ≥ 1 and unrestricted equivalence query is allowed, we have
the following proposition.

Proposition 1. There is an algorithm that achieves exact identification of k-CNF formulas
using equivalence queries, and the number of equivalence queries is polynomial in nk.

Proof. Initially let φ be the conjunction of all clauses C over n variables with at most k
literals per clause. There are at most (2n + 1)k such clauses. All the clauses in the target
formula φ∗ must exist in φ. The goal of the algorithm is to remove all the incorrect clauses
from φ.

3

Send an equivalence query with φ. If not equivalent, a counterexample x will be returned.
Since φ∗(x) = true, we can remove all the clauses in φ that are not satisfied by assignment x.
Each query removes at least one clause, so the number of equivalence queries is bounded by
(2n+ 1)k which is polynomial in nk.

3 Stochastic Setting

Equivalence query sometimes may be inefficient because it has to ensure the input hypothesis
predicts the same result as h∗ for any x ∈ X . Suppose x is randomly drawn from a hidden
distribution D, then it is impossible to cover all the possible input values. Thus, instead
of exactly identifying the target hypothesis, we wish to find an approximate hypothesis
that has a large probability of predicting the true label h∗(x) for any x ∈ X . Another
problem of equivalence query is that the counterexample from the oracle may provide no
useful information. So we want to find a natural way to restrict the searchable space to a set
of good counterexamples instead of returning an arbitrary one.

One way to do stochastic equivalence checking is to randomly draw a set of examples
from D, send membership queries to the oracle and check whether the candidate hypothesis
ĥ is consistent with all these samples. If yes, then we may conclude that ĥ is close to h∗.
However, this method suffers from class imbalance problem, since finding an example from
the rare class will be really difficult and also increase label complexity.

In this section, we will introduce a new oracle Search proposed by Beygelzimer, Hsu,
Langford, Zhang, 2016 [2] and then reveal its advantage through a union-intervals example.
We consider learning with a nested sequence of hypotheses classes H0 ⊂ H1 ⊂ ... ⊂ Hk ⊂ ...,
where Hk ⊆ YX has VC dimension dk. For a set of labeled samples S ⊂ X × Y, let
Hk(S) := {h ∈ Hk : ∀(x, y) ∈ S, h(x) = y} be the set of hypotheses in Hk consistent
with S. Let err(h) := Pr(x,y)∼D[h(x) 6= y] denote the error of hypothesis h with respect
to distribution D, and err(h, S) be the error rate of h on the labeled example of S. Let
h∗k = arg minh∈Hk

err(h) and k∗ = arg mink≥0 err(h∗k). For simplicity, we assume the minimum
is attained at some finite k∗. Finally, we define h∗ := h∗k∗ , the optimal hypothesis in the
sequence of classes. The goal of the learner is to learn a hypothesis which has a error rate
not much more than that of h∗.

3.1 Oracle

We introduce two oracles Label and Search. Label is the same as the membership query.
Given an input x ∈ X , Label returns its true label h∗(x). Search is similar to equivalence
query but has some difference.

The input of Search is a version space V . Search checks the predictions of all the
hypotheses in V . If there exists a specific input x for which all the hypotheses in V predict the
wrong label, then Search will return x as a counterexample. Here x is a systematic mistake

4

Oracle 1: SearchH(V) (where H ∈ {Hk}∞k=0)
input : Set of hypothesis V ⊂ H

output :Labeled example (x, h∗(x)) s.t. h(x) 6= h∗(x) for all h ∈ V , or ⊥ if there is
no such example.

which results from the complexity of current model. It implies that current hypotheses are too
simple and the learning algorithm should consider more complicated model. i.e. hypothesis
in Hk+1

Now we consider the connection between these two oracles. Take learning threshold
classifiers as an example, we’ll show that Search is as effective as Label in reducing the
region of disagreement.

The hypothesis set is H := {hw : w ∈ [0, 1]} on the input space X = [0, 1]. In the
realizable case,

hw(x) =

+1 if w ≤ x ≤ 1

−1 if 0 ≤ x ≤ w

A learner with only the Label oracle can achieve logarithmic query complexity by binary
search.

Assume that binary search starts with querying the label of x. Let Vx = H+1(x) = {h ∈
H : h(x) = 1}. We can query Search(Vx). If Search returns ⊥, there is no counterexample
(x′,−1) such that x′ ≥ x and h∗(x′) = −1, which means the target threshold w∗ ≤ x. So we
can reduce the region of disagreement to [0, x). Else if Search returns a counterexample
(x′,−1), it means w∗ > x′, so we can reduce the region of disagreement to (x′, 1]. As a result,
Search can reduce the region of disagreement no less than Label and achieve logarithmic
query complexity without getting the label of a particular point.

Proposition 2. For any call x ∈ X to Label such that Label(x) = h∗(x), we can construct
a call to Search that achieves a no lesser reduction in the region of disagreement.

Proof. Let Vx := H+1(x) := {h ∈ H : h(x) = +1}. We will show that any call to Label
can be transformed to a call to Search with Vx. For simplicity, assume that there is no
systematic mistake. Let HLabel(x) denote the candidate hypotheses after calling Label(x)

and HSearch(S) the candidate hypotheses after calling Search(S).
There are two cases: If h∗(x) = +1, then a call to Label will return (x, 1) which

will remove all the hypotheses that predict −1. HLabel(x) = Vx. We can do the same
thing by calling Search(Vx). Because all the hypotheses in Vx predict the correct label
for x, Search(Vx) returns ⊥ and H\Vx is removed. So HSearch(Vx) = Vx = HLabel(x). If
h∗(x) = −1, HLabel(x) = H\Vx. Search(Vx) returns a counterexample (x,−1) eliminating
Vx. So HSearch(Vx) = H\Vx = HLabel(x).

In both cases, we haveHSearch(Vx) ⊆ HLabel(x) and hence Dis(HSearch(Vx)) ⊆ Dis(HLabel(x)).

5

3.2 Larch

We introduce an algorithm Larch that combines Label and Search. It is different from
Label-only algorithm in that it first calls Search to check if there exists a systematic
mistake. If so it will move to Hk+1 and consider more complicated hypothesis classes.

Theorem 1. Assume that err(h∗) = 0. For each k′ ≥ 0, let θk′(·) be the disagreement
coefficient of Hk′(S[k′]), where S[k′] is the set of labeled examples S in Larch at the first time
that k ≥ k′. Fix any ε, δ ∈ (0, 1). If Larch is run with inputs hypothesis classes {Hk}∞k=0,
oracles Label and Search, and learning parameters ε, δ, then with probability at least 1− δ:
Larch halts after at most k∗ + log(1/ε) for-loop iterations and returns a classifier with error
rate at most ε; furthermore, it draws at most Õ(k∗dk∗/ε) unlabeled examples from DX , makes
at most k∗ + log(1/ε) queries to Search, and at most Õ((k∗ + log(1/ε) · (maxk′≤k∗θk′(ε)) ·
dk · log2(1/ε)) queries to Label.

Algorithm 1: Larch
input : a nested sequence of hypotheses classes H0 ⊂ H1 ⊂ ...; oracles Label and

Search; learning parameters ε, δ ∈ (0, 1)

initialize : S ← ∅, (index)k ← 0, l← 0

for i = 1, 2, ... do
e← SearchHk

(Hk(S))

if e = ⊥ then // no counterexample found
if 2−l ≤ ε then

return any h ∈ Hk(S)

else
l← l + 1

end
else // counterexample found

S ← S ∪ {e}
k ← min{k′ : Hk′(S) 6= ∅}

end
S ← S ∪ CAL(Hk(S),Label, 2−l, δ/(i2 + i))

end

Union-of-intervals example
Consider a hypothesis class where each hypothesis is a union of non-trivial intervals in

X := [0, 1], assuming that DX is uniform.
For k ≥ 0, let Hk be the hypothesis class of the union of up to k intervals in [0, 1] and H0

contains only negative hypothesis. The target hypothesis h∗ is the union of k∗ non-empty
intervals.

Because the disagreement coefficient of H1 is Ω(1/ε), the probability that a Label-only
active learner draws an input that an help distinguish hypotheses in H1 can be really small

6

and the learning will not be very effective.
However, the first Search query by Larch provides a counterexample to H0, which

must be a positive example (x1,+1). Hence, H1(S[1]) is the class of intervals that contain x1
with disagreement coefficient θ1 ≤ 4.

Before Larch advances its index to a value k (for any k ≤ k∗), S must already contain
at least k positive examples and k − 1 negative examples separating them. The disagreement
coefficient of the set of unions of k intervals consistent with S[k] is at most 4k, independent of
ε.

Search actually narrows the searchable space and increases the probability of finding
useful inputs to eliminate wrong hypotheses. As a result, the sample complexity and label
complexity is polynomial in log(1/ε) which is a great improvement compared with Õ(1/ε).

4 Appendix

A Online learning and Active learning

We will show that online learning and active learning are equivalent problems. Given an online
learning algorithm, we can construct another algorithm to solve active learning problem, and
vice versa.

Proposition 3. Given an algorithm A that makes less then M equivalence queries in the
active learning problem, we can construct an algorithm B that makes less than M mistakes in
online learning.

Proof. Every time A makes an equivalence query with hypothesis ĥ, B will predict ĥ(xt) for
each xt until it makes one mistake on (x′, y′). Then B presents (x′, y′) toA as a counterexample.
Since A makes at most M equivalence queries, the loop will happen at most M times. It
means that B will make at most M mistakes.

Proposition 4. Suppose we have an algorithm B that makes less than M mistakes in the
online learning problem, then we can construct an algorithm A that makes less than M queries
in active learning.

Proof. AlgorithmAmakes N copies of the current state of B and feeds them with x1, x2, ..., xN
to see the output B(x1), ...,B(xN) where N = |X |. A constructs a hypothesis ĥ s.t. ĥ(xi) =

B(xi) and get a counterexample (x’,y’). Now A knows the true label of x′ is y′. It uses the
copy of B fed with x′ and reveals y′ to it. Repeat until A gets answer yes.

Notice that every time A makes an equivalence query and gets answer no, it indicates that
A finds a mistake of B. Since B makes at most M mistakes, A makes at most M equivalence
queries before it gets answer yes.

7

References

[1] Dana Angluin. “Queries and concept learning”. In: Machine learning 2.4 (1988), pp. 319–
342.

[2] Alina Beygelzimer et al. “Search Improves Label for Active Learning”. In: CoRR
abs/1602.07265 (2016). url: http://arxiv.org/abs/1602.07265.

8

http://arxiv.org/abs/1602.07265

	Introduction
	Deterministic Setting
	Case 1: Input can be any function
	Case 2: Input must be a member of H

	Stochastic Setting
	Oracle
	Larch

	Appendix
	Online learning and Active learning

