
COMS 6998-4 Fall 2017 Presenter: Che Shen
October 11, 2017 Scribe: Arushi Gupta

Queries in Active Learning

1 Introduction

Recall active learning. In active learning we had a distribution, D over X × Y where X is
the input space and Y is the output space. We focused on the case where Y is {0, 1}. Our
set of hypotheses, H is a mapping from X to Y . The error of a particular hypothesis is

err(h) = P(x,y)∼D[h(x) 6= y]. (1)

At each time step we observe xt ∈ X and decide whether or not to query its label with the
ultimate goal of returning a hypothesis ĥ ∈ H such that

err(ĥ) ≤ ε. (2)

Notice that in the active learning framework we looked at before, there was a presumed
probability distribution, D over X × Y . We assume that the learner receives points sampled
from DX , the marginal of D over X , and we evaluate the error of the model assuming that
points are drawn from D. We also assume that upon receiving a point from DX , all we may
do is choose whether or not to view its label. It would be interesting, however to see what
happens when these assumptions are challenged.

2 Extending the active learning framework to the deter-
ministic setting

Our hypotheses will be given similarly as before, as a mapping h : X → Y . We will focus on
the case where Y is {0, 1}. We will assume that our hypothesis class H is finite, and contains
hypotheses h1, . . . , hn. We are trying to learn a target hypothesis h∗ ∈ H. We are allowed
two query methods, Membership (also called Label) and Equivalence. Membership takes
as input some x ∈ X and returns its label h∗(x). Equivalent takes as input ĥ and returns
∅ if ĥ = h∗. If not, it may either be the restricted version of Equivalent, in which case it
simply returns False, or it may be the unrestricted version, in which case it returns a counter
example, x0 such that h(x0) 6= h∗(x0). Now, for the equivalence queries, we may or may not
require ĥ ∈ H, and this will change our querying strategy.

1

3 Unrestricted Equivalence queries and ĥ any function
from X to {0, 1}

3.1 The naive approach

The naive method would be to use an exhaustive search. That is, for each hypothesis in our
hypothesis class, you would run an equivalence query until Equivalent returns “yes”. You
would need n-1 queries in the worst case for this.

3.2 Majority Vote

We let

ĥ =

1 if
∑

h∈H h(x) ≥ |H|/2
0 o.w.

(3)

(this means that ĥ(x) is 1 if half or more of the hypotheses in H agree that it is 1). We
can make an equivalence query with ĥ. Since we are in the unrestricted equivalence query
case, our equivalence query will return a counter example, x0. Because of the way we designed
ĥ, at least half of the hypotheses in H will have h(x0) = ĥ(x0) and we may eliminate these
hypotheses. Therefore, we may eliminate at least half of the hypotheses in H every time, so
the algorithm halts after at most log n rounds.

We wish to consider the case where we cannot query any function ĥ that we would like,
but first we discuss the relationship between active and online learning.

4 Recall online learning

We have a set X and a function h∗ : X → {0, 1}. The learner has a finite hypothesis space
H = {h1, . . . , hn} which contains h∗.

Algorithm 1 Online learning
input Training data ((x1, y1), (x2, y2), . . .).
1: for t = 1, 2, . . . do
2: Teacher provides xt ∈ X .
3: Learner predicts at ∈ {0, 1}.
4: Teacher reveals yt = h∗(xt).
5: end for

The goal of the algorithm is to make as few prediction errors as possible. We saw earlier
that the halving algorithm is an example of an online learning algorithm.

2

5 Equivalence of online and active learning

We wish to compare online and active learning to see if they are equivalent problems. The
table summarizes some of the goals and operations of online and active learning.

Online learning Active learning
Known set X and hypothesis space H set X and hypothesis space H

Operation predict yt for xt and get feedback predict ĥ and get feedback
Goal make few mistakes make few queries

5.1 From active learning to online learning

We want to know if given an algorithm that solves active learning, can we construct an
algorithm that performs just as well to solve online learning. More formally, suppose we have
an algorithm A that makes less than M queries in the active learning problem. Can we use it
to construct an algorithm B that makes less than M mistakes in online learning?

1. A makes an equivalence query with ĥ

2. B makes every prediction with ĥ, i.e. predict the label of xt to be ĥ(xt) until it makes
at least 1 mistake on (x′, y′)

3. B presents (x′, y′) to A as a counter example.

4. Loop to the first step.

Notice that A makes ≤M mistakes by assumption, so it will propose at most M incorrect
ĥ’s. B will run each of these wrong ĥs until it finds it’s made an error, at which point it gives
this incorrect point back to A as a counter example.

5.2 From online learning to active learning

Suppose we have an algorithm B that makes less than M mistakes in the online learning
problem. Can we use it to construct an algorithm A that makes less than M queries in active
learning.

1. A makes m copies of the current state of B and feeds them with x1, . . . , xm and observes
the output B(x1), . . . ,B(xm)

2. A makes an equivalence query with ĥ such that ĥ(xi) = B(xi) and receives the counter
example (x′, y′)

3. A chooses the copy of B that is fed with x′ and reveals y′ to it.

4. Loop until A gets the answer “yes”.

3

Here, the active learning algorithm runs m copies of the online learning algorithm. It
feeds 1 distinct data point to each of these m copies, and then makes an equivalence query
with ĥ, such that ĥ(xi) = B(xi). If there’s an example that B gets wrong, it is allowed to see
the label of the point that it made a mistake on. Since B only makes M mistakes, A can
only make M mistakes.

6 Lower bound in the case where hypotheses given to
equivalent queries must be a member of H

In earlier section we saw how majority vote may be used to achieve a log n mistake rate when
we are allowed to run an equivalence query on any function h we like and observe counter
examples. We now consider the case where ĥ must be in H.

We switch from the language of hypotheses to the language of sets for the following lemma.
There are sets L1, L2, . . . which are subsets of some universal space, and we are trying to
identify L∗.

Lemma 1. Suppose the hypothesis space contains a class of distinct sets L1, . . . , Ln and there
exists a set L∩ which is not a hypothesis such that for any pair of distinct indices i and j

Li ∩ Lj = L∩. (4)

Then any algorithm that exactly identifies each of the hypotheses Li using equivalence and
Membership queries must make at least n− 1 queries in the worst case.

Proof. This can be done with an adversarial labeling. Start with a set S containing all
hypotheses. For a restricted equivalence query the answer is “no”, and since we are only allowed
to query hypotheses the corresponding hypothesis is removed from S. For a membership
query is xi ∈ L∩ the answer is “yes”. Otherwise the answer is “no” and the Li that contains
xi is removed if it is in S.

We will consider the example of the k-CNF and k-DNF formulas and show they can be
efficiently identified using equivalence queries .

6.1 k-CNF and k-DNF

A k-CNF formula is a formula in conjunctive normal form over n variables x1, . . . , xn with at
most k literals per clause. For example,

(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x4) (5)

is a 3-CNF in 4 variables. k-CNF formulas provide a natural hypothesis space over {0, 1}n.

4

6.1.1 1-CNF

Consider the class of 1-CNF formulas of the form P1 ∧ P2 ∧ · · · ∧ Pn where each Pi is either
xi or ¬xi. There are 2n such formulas, so our hypothesis class contains 2n elements. Each
1-CNF formula is satisfied by exactly one assignment and no two formulas are satisfied by
the same assignment. According to the previous lemma, any algorithm that exactly identifies
these 1-CNF formulas using equivalence and Membership queries must make 2n − 1 queries
in the worst case.

6.1.2 Identification of k-CNF

Proposition 1. There is an algorithm that achieves exact identification of k-CNF formulas
using unrestricted equivalence queries and the number of equivalence queries is polynomial in
nk.

We show that this is true by constructing an adversarial labeling. Initially, let φ be the
conjunction of all clauses C over n variables with at most k literals per clause. There are no
more than (2n + 1)k of these. Test φ for equivalence with φ∗. If not equivalent, change φ
according to the counter example. Since a clause is removed each time a counterexample is
seen, the number of equivalence queries is bounded by (2n+ 1)k.

We will now consider an example Consider a 2-CNF in 3 variables

φ∗ = (x1 ∨ x2) ∧ (x1 ∨ x3) (6)

Query with Return
(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (¬x2 ∨ x3) ∧ (x2 ∨ x3) (1,0,0)

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (¬x2 ∨ x3) (0,1,1)
(x1 ∨ x2) ∧ (x1 ∨ x3) yes

7 Extending equivalence query to the stochastic setting

Looking back at active learning, we see that we are using Membership queries in the stochastic
setting. However, in the case where some class examples are rare, we could need lots of
Membership queries to even find 1 example of a data point which belongs to the rare class.
Equivalence queries in the stochastic setting may return counter examples that are not
interesting and do not help us narrow down our hypotheses. We define a new oracle called
search which returns counter examples to version spaces.

Assume again that there is some distribution D over X × Y. We are learning with a
sequence of nested hypothesis classes H0 ⊂ H1 ⊂ · · · ⊂ Hk · · · . Let H = ∪∞i=0Hk.

SEARCH

input: Set of hypotheses V ⊂ H

5

output: labeled examples (x, h∗(x)) s.t. h(x) 6= h ∗ (x) ∀ h ∈ V

or ∅ if there is no such example

Thus SEARCH returns a counter example such that all hypotheses in V disagree, that is,
it returns a counterexample that is a systematic mistake for the hypotheses in V .

Proposition 2. For any call x ∈ X such that LABEL(x) = h∗(x), we can construct a call
to SEARCH that achieves a no lesser reduction in the region of disagreement.

Proof. Let Vx = H+1(x) = {h ∈ H s.t. h(x) = +1}. and let HSEARCH(V) be the hypothesis
in H consistent with the output of SEARCHH(V). If h∗(x) = +1. then SEARCHH(Vx)

returns ∅. In this case, the reduction in the region of disagreement is the same regardless
of whether we use SEARCH or LABEL. If h∗(x) = −1 then SEARCH(Vx) returns a valid
counter example and eliminates all of H+1(x). Thus HSEARCH(Vx) ⊂ HLABEL(x)

7.1 LARCH algorithm

Let Hk(S) = {h ∈ Hk : ∀(x, y) ∈ S, h(x) = y} . The pseudocode for the LARCH algorithm
is included. LARCH combines LABEL and SEARCH. LARCH first calls SEARCH in Step
3. If SEARCH returns ∅ SEARCH checks to see if the last call to CAL resulted in a small
enough error, halting if so in Step 6, and decreasing the allowed error rate if not in Step 8.
If SEARCH returns a counter example the complexity of the hypothesis class is increased.
One interesting property of LARCH is that Hk(S) ⊂ Hk may have a version space that is
more easily active learned than Hk itself, since it may have a markedly smaller disagreement
coefficient. We give a quick definition of the disagreement coefficient here:

The region of disagreement for V is defined to be

DIS(V) = {x ∈ X : ∃h1, h2 ∈ V s.t.h1(x) 6= h2(x)}, (7)

and let
B(h, r) = {h′ ∈ C : P [h(X) 6= h′(X) ≤ r]}. (8)

Then the disagreement coefficient of h with respect to r is

θh = sup
r>0

P [DIS(B(h, r))]

r
. (9)

6

Algorithm 2 LARCH algorithm
input Nested hypothesis classes H0 ⊂ H1 ⊂ · · · , oracles LABEL and SEARCH ; learning

parameters ε, δ ∈ (0, 1)

1: initialize S ← ∅ k = 0, l = 0

2: for i = 1, 2, . . . do
3: e← SEARCHHk

(Hk(S))

4: if e = ⊥ then
5: if 2−l ≤ ε then
6: return any h ∈ Hk(S)

7: else
8: l← l + 1

9: end if
10: else
11: S = S ∪ e

k ← min{k′ : Hk′(S) 6= ∅}
12: end if
13: S ← S ∪ CAL(Hk(S), LABEL, 2

−l, δ/(i2 + i))

14: end for

7.2 Union intervals example

Let S[k′] be the set of labeled examples S in LARCH at the first time that k ≥ k′. let θk′(·)
be the disagreement coefficient of Hk′(S[k′]). Let X = [0, 1]. The hypothesis h∗ is the union
of intervals in X assuming that DX is uniform. For k ≥ 0 let Hk be the hypothesis class of
the union of up to k intervals in [0, 1] (H0 containing only the always negative hypothesis).
H = ∪∞i=0Hi. Thus h∗ is the union of k∗ intervals.

Now, we know that the disagreement coefficient of H1 is ω(1/ε). This is true because
we can choose the target function as the empty interval and thepick 1/ε′ disjoint closed
intervals on the real line with probability mass ≥ ε and let the hi be the hypothesis which
take value 1 on these intervals. Hence LABEL-only active learning algorithms like CAL are
not very effective. The first query by LARCH provides a counterexample to H0 denoted by
(x1,+1) (note it must have a positive label since H0 was the null hypothesis). Hence H1(S[1])

is the class of intervals that contain x1 with disagreement coefficient θ1 ≤ 4. The 4 comes
from the fact that for any h[a, b] the hypotheses in B(h, r) must have their starts and ends
within r of a and b respectively. What do we know about θk?. Before LARCH advances its
index to value k, S must already contain at least k positive examples and k − 1 negative
examples separating them. The disagreement coefficient of Hk is O(k) so Theorem 1 implies
that with high probability LARCH makes at most k∗ + log(1/ε) queries to SEARCH and
Õ((k∗)3 log(1/ε) + (k∗)2 log3(1/ε)) queries to LABEL.

Theorem 1. Assume that err(h∗) = 0. For each k′ ≥ 0 let θk′(·) be the disagreement

7

coefficient of Hk′(S[k′]) where S[k′] is the set of labeled examples in S in LARCH at the first
time that k ≥ k′. Fix any ε, δ ∈ (0, 1). If LARCH runs with inputs hypothesis classes {Hk}∞k=0,
oracles LABEL and SEARCH then w.p. at least 1−δ LARCH halts after at most k∗+log2(1/ε)

for-loop iterations and returns a classifier with error rate at most ε. Furthermore, it draw
at most Õ(k∗dk∗/ε) unlabeled examples from DX , makes at most k∗ + log2(1/ε) queries to
SEARCH and at most Õ(k∗ + log(1/ε)) · (maxk′≤k∗ θk′(ε))dk∗ · log2(1/ε) queries to LABEL

Proof. By union bound, there is an event with probability at least 1− δ such that each call
to CAL made by LARCH satisfies the high probability guarantee. When the algorithm halts,
it returns a hypothesis h ∈ Hk(S). Then

P(x,y)∼D[h(x) 6= y ∧ x ∈ Dis(Hk(S))] ≤ ε. (10)

For the number of for loop iterations, note that in each loop either ki or l is incremented.
ki ≤ k∗, I ≤ log2(1/ε). For the number of queries to search and label note that SEARCH ≤
k∗ + log2(1/ε). In each loop, CAL makes label queries Õ(θki(ε) · dki · I2i · polylog(i)). Taking
the sum over all iterations we get the result.

References

[1] Dana Angluin. Concept learning, queries, supervised learning Machine Learning, 2(4):319–
342, 1988.

[2] Alina Beygelzimer , Daniel J. Hsu , John Langford and Chicheng Zhang Search Improves
Label for Active Learning NIPS 29:3342-3350, 2016.

8

	Introduction
	Extending the active learning framework to the deterministic setting
	Unrestricted Equivalence queries and any function from X to {0,1}
	The naive approach
	Majority Vote

	Recall online learning
	Equivalence of online and active learning
	From active learning to online learning
	From online learning to active learning

	Lower bound in the case where hypotheses given to equivalent queries must be a member of H
	k-CNF and k-DNF
	1-CNF
	Identification of k-CNF

	Extending equivalence query to the stochastic setting
	LARCH algorithm
	Union intervals example

