COMS 6998-4 Fall 2017 Presenter: Xingyu Niu
November 13, 2017 Scribe: Jinyi Zhang

Conditional Sparse Linear Regression

1 Introduction

1.1 Background

Given a distribution D over R¢ x R and data samples (y, z) ~ D, linear regression models
the linear relationship between the independent vector y and the scalar dependent variable
z. Concretely, we can find a vector a € R? such that {(a,y) ~ z,V(y, z) ~ D if there exists
a linear relationship between y and z. Sometimes, we want to enforce the coefficients that
derived from linear regression to be sparse. A sparse model may provide a good fit, as well
as the interpretability of the model and utility of features for further analysis. Let’s define
the sparsity parameter s as the number of non-zero entries in a, which implies that s < d.

In general, there are two approaches for sparse linear regression. The first one is called
Best-Subset. It selects an s-size subset of d dimensions and finds a model that provides a
good fit in this dimension subset. The model learned in this way usually cannot provide a
good fit for all samples. The second one is called regularized regression. We add constraints
like ||allo < s or ||a||; < s to linear regression, which makes the models sparse. In this scribe,
we focus on the the methods of applying the first approach only on some segments of samples
that yield good fits.

1.2 Population Segments Identification Function

A sparse linear regression model that learned by selecting a subset of dimensions usually
cannot provide a good fit for all samples. However, we can certainly identify some population
segments in which the sparse model fits well. This leads to the idea of conditional linear
regression. We use a function ¢ : R" — {0, 1} to describe a population segment. In Juba’s
paper, the function ¢ is represented by a k-DNF since it describes disjoint segments well
and is efficient to calculate. The k-DNF takes binary variables as input. So we could create
some "artificial variables" in {0, 1} dependent on y. For example, we can have z1 = 1y, 5y,1,
Ty = L{y,ys<0}, and etc. Thus, the k-DNF ¢ describes segments using x = (1, 22, ..., Zy,)
as inputs and ¢(z) = 1 indicates that the corresponding sample (y, 2) is in the population
segments that can be fit by a linear model.

1.3 General Settings

Given a distribution D over {0,1}" x R x R and a ground-truth k-DNF ¢*, we may have
the following cases.

e ¢*(x) = 1: linear model; ¢*(x) = 0: outliers.
e ¢*(z) = 1: linear model; ¢*(z) = 0: another linear model.
e ¢*(z) = 1: linear model; ¢*(z) = 0: other complex model.

Conditional linear regression would be very suitable for these general cases as it identifies the
population segments that we can learn a linear model.

2 Conditional Sparse Linear Regression

Now let’s formalize the definition of conditional sparse linear regression. There is a distribution
D over {0,1}" x R x R and samples (z;,¥;,z;) ~ D,i € [m], we have a hypothesis class
(A, C) that A represents linear models and C' represents identification functions (k-DNF).
We aim to find a k-DNF ¢ and an s-sparse model a where (a,c) € (A, C) with the following
properties.

o If ¢(x;) =0, we won’t fit/predict this sample.
o If ¢(z;) =1, given € > 0

— If [{a,y;) — z;| <€, model a provides a good fit.

— If [{a,y;) — z;| > €, model a provides a bad fit.

2.1 Comparison with Agnostic Selective Classification

As we have learned from previous lectures, agnostic selective classification also has a identifi-
cation function ¢g. In some sense, conditional sparse linear regression is similar to agnostic
selective classification.

Agnostic Selective Classification Conditional Linear Regression
"Not sure" / No fit Pr~plg(z) = 0] Pre,y)~plc(z) = 0]
Correct / Good fit | Prplh(z) =y Ag(x) =1] | Praynll{a,) — 2] <eNclz) =1]
Error / Error Prgyplh(x) #y Ag(x) =1] | Pruyonll{a,y:) — 2| > e Ae(x) = 1]

Table 1: Comparison between conditional sparse linear model and agnostic selective classifi-
cation

2.2 Coverage & Confidence

We define the coverage and confidence of a conditional linear regression as the following two
probabilities respectively.

e Coverage:
Pr |c(x) =1].
wr plet@) =1]
e Confidence:

Pr a,y) — z| < ele(x) = 1.
Pt [l g) = 2| < ele(w) = 1)

2.3 Problem Formulation
Given a distribution D over {0,1}" x R? x R , there exists target ¢* and a* such that
Confidence(c*, a*) = 1 & Coverage(c™) > p.

in realizable setting. Give the parameters €, y, d, v, and m samples, we aim to construct an
algorithm that returns the target estimates ¢, a’ such that

k
Confidence(c’,a’) > 1 — v & Coverage(c') > Q <(<1 _J)M> >
n

with probability at least 1 — §. Moreover, we want the algorithm runs polynomial time in
terms of n,d, +, 1,1, %.

poely
2.4 Algorithm

In this section, we introduce an algorithm called Find-and-eliminate that can solve the
conditional sparse linear regression problem in polynomial time. Before diving into the details,
let’s first define some notations.

e Given s coordinates dy,ds, ..., d, from [d],], . is a subset-dimension projection that
maps from R? to R*. For example, 7/ = [14,. 4. Y Ui = Ya,, Vi € [s] means that y is the
subset-dimension projection of .

e For a set S, (Z) denote the subsets of S of size exactly k.

With the notations defined as above, the Find-and-eliminate algorithm is the following.

Algorithm 1 Find-and-eliminate algorithm

input: Examples (z(V), yM, W) (20 ym) 2m) target fit e, and fraction (1 — /2)u
output: A k-DNF over zq,...,x, and linear predictor y, ..., yq, or INFEASIBLE if none
exists.
1: for all the (dy,...,ds) € (%), (04, ...,0511) € {£1}**1, and (j1, .., jor1) € (7)) do
2: Initialize ¢ to be the (trivial) &-DNF over all (%) terms of size k.
3: Let (a,€) be a solution of the following linear system:

<a’ H y(]l)> — Z(jl) — O'ZEI fOI' l = 172, oy S + 1
di,...,ds

4: if € > € then

5: Continue to the next iteration.
6: end if

7. forj=1,2, .., mdo

8: if [{a, 14, . 4 y) — 20| > ¢ then
9: for all the T' € c do

10: if T(29)) =1 then

11: Remove T from c.

12: end if

13: end for

14: end if

15: end for
16: if #{j:c(x) =1} > (1 —v/2)pm then

17: return « and c.
18: end if
19: end for

20: return INFEASIBLE.

We can separate the algorithm into two parts. The first part is to find an estimate of
a* and the second part is to find an estimate of ¢*. The algorithm is actually a brute-force
search over all possible estimates of a*. The linear system in the algorithm is derived from
an optimization problem. After solving the linear system, the algorithm ensures that the
regression error less than or equal to e. Concretely, we have the real risk of conditional
linear regression as Pr(g, .)~p[|[(a,y) — 2| > € Ac(x) = 1]. Given the samples M, we have the
empirical risk as Pry[|(a,y) — 2| > € A ¢(x) = 1]. If the algorithm returns (a’, ¢’), then for
(i, Yi, 2i) € M we have |{a,y;) — z;| > € A d(z;) = 0. Thus, the empirical risk of (a,) is
0. The algorithm is essentially to return the empirical risk minimizer of conditional linear
regression.

Theorem 1. Suppose that D is a joint probability distribution over x € 0,1", y € R, and

2 € R such that there is a k-DNF ¢ for which for some s-sparse a € R?

Pr a,y;) — zi| <€lc(x)=1=1and Pr |c(z)=1|>
(WZ)ND[I(yi) — 2| < ele(z) =1] (%yvz)ND[() | > u

Then given €, i, and 6 in (0,1) and v € (0,1/2] and

1 1
m=0|— (slogs—i—slogd—i—nk—{—log—)
oy 0

examples from D, for any constants s and k, Algorithm 1 runs in polynomial time in n,d,
and m and finds an s-sparse a' and k-DNF ¢ such that

Pr [[(d,yi) —zl <eld(z) =1 >1-vand Pr [d(z)=1]>(1-7)u
(z,y,z)~D (z,y,2)~D

with probability 1 — 9.

2.4.1 Preliminaries

Before we prove Theorem 1, let’s recall two key results from previous lectures.

1. Multiplicative Chernoff Tail Bound. Let random variable X = """ | X; and all binary
variables are independent. Let P, = Pr[X; = 1] and M = E[X] = Y., P,, we have

PriX < (1 —8)M] < e M9/
for0<d < 1.

2. Sample complexity theorem. Given hypothesis class H and its real risk minimizer of h*
with err (h*) = 0. Let h be the empirical risk minimizer of H given m examples and its

~

empirical risk err,, (h) = 0. For Ve, d > 0, if the sample complexity

. (VC(H)logg +1og§> |

J

then we have err (h) — err (h*) < € with probability at least 1 — §.

2.4.2 Proof of Theorem 1

Proof. First we show the time complexity of the algorithm. The outer loop runs in O(d*m*™!)
obviously. And the inner loop runs in O(mn*) since we have m samples and (*') different
k-DNF terms. In total, the algorithm runs in O(d*m**?n*).

Then we prove Theorem 1 by answering the following two questions.

1. Is the target hypothesis (a*, ¢*) in the solution set if the algorithm returns all feasible
solutions? (completeness)

2. Do all the solutions returned by the algorithm satisfy the confidence and coverage
requirement? (correctness)

Before look into these two questions, we first explain why the algorithm solves the linear
system. For the given m samples, we define S such that (z;,%;, 2;) € S and we have ¢*(z;) = 1
and |(a*,y;) — 2| < e. Of course S is unknown. Consider the following optimizing problem.

min €
a,e

s.t. —e€ S <a7yi> — Z; S €, (xiuyi7zi> S S

It can be reformulated as a linear system as the following.

min(a, €)7(0,1)

s.t. (a, e)T(yi, —1) < z, (a,e)T(—yi, —1) < —z,e>0,and (z;,y;,2;) € S

This system has s + 1 variables and can be solved by linear programming. Its objective
function is linear and convex. The optimal solution lies on one of the vertex of the polytone

defined by the constraints. Thus, we can brute force (5) equations and solve them, and a*

s+1)

would be one of the solutions. However, we do not know S. Thus we have to brute force all

(m) possible supports since (5) C (mn) This indicates that a* is a feasible solution to the

s+1 s+1 s+1
lir;rear system and it’s possible :;ro get erJrrlpirical risk zero by the algorithm. Now we are close
to answer the first question. Assume the algorithm returns a* exactly and its corresponding
identification function A*, which could be a much broader version of ¢*. What the algorithm
essentially does is that for all samples (z;,y;, z;) € M, if |(a*,y;) — zj| > €, it eliminates the
term T' € h* such that T(z;) = 1, which implies that (z;,y;,2;) ¢ S. Then for any term
T" € ¢*, we will not eliminate it in h*. So we have Terms(c*) C Terms(h*). For all samples
(74,9, 2) in S, we have c¢*(x;) = h*(x;) = 1. If the number of h*(x;) = 1 greater than or
equal to (1 — /2)um, then h* would be returned by the algorithm, which implies that ¢* is
a feasible solution of the algorithm.

Let’s consider the probability of |S| > (1 — 7/2)um. First, we define

Y = 1{r()=1),and Y = ZYi-

=1

Let p := Pr[Y; = 1] > p, we have E[Y] = pm > pm. We set 0 = 2 and apply Chernoff bound,

so we have
2 2
Y < <1 — %) pm] < exp (_prgw) < exp (_WZV)

If we substitute m > ﬁ log% into the inequality, then

¥)
_ 1 < 2
Y<(1 2)pm] <3

Pr

Pr

Therefore, we have

Pr

Y2<1—1>um] Zl—é.
2 3

It implies that the algorithm returns a solution with probability at least 1 — g. This answers
the first question mentioned as above.

Now we show the correctness of the algorithm that is for every solution returned by the
algorithm, the solution satisfies confidence and coverage requirements. Suppose the empirical
risk minimizer (a', ¢’) with erry, (a/, ¢’) = 0 is returned by the algorithm and the target (a*, c*)
has zero real risk (realizable setting), we want to bound the real risk of (a/,¢’) under e.
Concretely,

err(a’,) —err(a*, c*) <e.

Since err(a*, ¢*) = 0, we have
err(a’,) <e.

By applying sample complexity theorem, we set

A log L
e:ﬂandm:O Vel 7C)+Og‘5
2 1y

to achieve the above error bound. Now we need to determine the VC-dimension of (A, C').
2n
k

Since C' is the k-DNFs over all (2,?) terms of size k, the number of possible k-DNFs is 2(%).

Therefore,
VC(C) =0 ((i‘)) = O(n").

Moreover, the VC-dimension of a linear threshold function in dimension s is s + 1. We have
(2) < d? supports in total. The union of them is A. Thus,

VC(A) = O(logd® + (s + 1) log(s + 1)).
Therefore,
VC(A,C) = O(slog s+ slogd + n").

Since € = &1, with m samples and probability 1 — ¢, we have the real risk

err(a’,d)= Pr [(d,y)—z>eNnd(x)=1]< it
(z,y,2)~D 2
Since the algorithm returns a solution if the number of samples in the population segment
is larger than or equal to (1 — «/2)um, we have the probability that a sample is in the
population segment as

Prd(z) = 1] > (1 - 1) 0.

M 2

By applying Bernstein’s inequality, we have the coverage as

Then, the confidence is

Pr[d(x) = 1]
Pr a,y) — z| < e€lc(z) =1] = = >1-—
WBE o) =2l < @) = 1= .
Therefore, both coverage and confidence satisfy the requirement. n

3 Conditional Distribution Search

In condition linear regression, we aim to learn a* and ¢* jointly. Sometimes, we may be only
interested in ¢*. Learning the estimate of ¢* is called conditional distribution search.
Concretely, we formally define the problem as the following. We denote the binary label
as b. Given a distribution D over {0,1}" x {0,1} , there exists a target ¢* such that
Pr b=1|c"(z)=1]=1and Pr [c"(z)=1]> pu.
P b= () = 1 P @) = 1) >
in realizable setting. Give the parameters p,d,y, and m samples, we aim to construct an
algorithm that returns the target estimate ¢’ such that

Pr [p=1Jc"(z) =1]=1-vand Pr [c*(x):1]>9<<<1_7),u>k>

(z,b)eD (z,b)eD

with probability at least 1 — §. Moreover, we want the algorithm runs polynomial time in

1

terms of n, £, 1 1
u>y’ s

Theorem 2. For any algorithm that provides feasible solutions for conditional linear regres-
sion, it also provides feasible solutions to conditional distribution search.

Bibliographic notes

Conditional sparse linear regression and all its analysis is due to Juba [1]. Conditional
distribution search and all its analysis is also due to Juba [I].

References

[1] Brendan Juba. Conditional Sparse Linear Regression. at arXiv, 2016.

	Introduction
	Background
	Population Segments Identification Function
	General Settings

	Conditional Sparse Linear Regression
	Comparison with Agnostic Selective Classification
	Coverage & Confidence
	Problem Formulation
	Algorithm
	Preliminaries
	Proof of Theorem 1

	Conditional Distribution Search

