COMS 6998-4 Fall 2017 Presenter: Daniel Hsu
Oct 18, 2017 Scribe: Ji Xu

Adaptive Hierarchical Clustering Using Ordinal Queries

1 Motivation

We have seen equivalence query, split query and merge query. In this lecture, we want to talk
about ordinal query and hierarchical clustering in Zadeh and Kempe [I]. For a set of elements,
we can cluster the elements that are “similar to each other”. Moreover, for a same set of
elements, we can have different way of clustering based on smaller concept or broader concept.
For example, cat and dog are more similar to each other than zebra because cat and dog can
be pets but zebra can not. Yet, {cat, dog and zebra} are more similar to each other than
{tree and flowers} since the first group is animal and the second group is plant. Both group
falls into category of creature. Hence, we can cluster the set {cat, dog, zebra, tree, flower} as
{(cat,dog),(zebra),(tree,flower) } or {(cat,dog,zebra),(tree,flower)}. This forms a hierarchical
clustering tree:

(((cat, dog), zebra) , (tree, ﬂower)))

Hence, given a set of elements, we can ask users to provide information about which two
elements are closer to each other comparing to others, and use the information to build a
correct hierarchical clustering tree.

2 Model and Main result

2.1 Model

We have n data points X = {x1, 29,3+ ,2,}. We assume that there exists a hierarchical
clustering over X and this clustering tree is a fully rooted binary tree with the set of leaves
being X. The goal is to learn the hierarchical clustering tree through the minimal number of
ordinal queries defined as the following.

Definition 1. Query model:
o Input: 3 leaves (x;,x;, x)).
o Output: x; if and only if there exists a cluster contains x; and xj but not z;.

Remark 1. Note that the ordinal query is equivalent to output x; if and only if the root-to-x;
path does not contain the lowest common ancestor (LCA) of (x;,xy). Also, intuitively, if the
output is x;, it implies that (z;,) are more similar comparing to (z;, xx) or (z;, ;).

Remark 2. We can show that given X, two hierarchical clustering trees are equivalent if
and only if the results of ordinal queries for every triplet (z,x’,x") are the same for the two
clustering trees.

2.2 Main results

Theorem 1. We can learn the hierarchical clustering tree using at most [nlogyn| ordinal
queries.

Theorem 2. We have the following lower bound results:

e Any adaptive algorithm requires Q(nlogn) ordinal queries to learn the hierarchical
clustering over n elements.

e Any non-adaptive algorithm requires (%) = Q(n®) ordinal queries to learn the hierar-

chical clustering over n elements.

Remark 3. If the clustering tree is not subject to be a binary tree, i.e, it can have more than
two children for each nmode, the algorithm may need O(n?) number of ordinal queries to learn
the correct clustering tree.

3 Algorithm and Proof

The algorithm is basically the same algorithm in Pearl and Tarsi [3]. The main idea is
incrementally build the tree from its restrictions of subsets of points. Let the input data
points are in the order of (xy,--- ,x,). The algorithm is the following:

1. Let 75 be the unique (trivial) hierarchical clustering of elements x1, 5.
2. Fori=3,--- ,ndo
e Insert z; in 7, 1 to get T;
3. return 7,
Insertion: 7 is a binary tree with [leaves L and x; ¢ L is the new data point to insert.

e Case | = 2: let x;, x4, are in the leaves of current tree 7. Then we just need to query
(xj, zg, z;) and the corresponding new tree 7" is shown in Figure .

e Case [> 3: We first claim that

[21
JeT, st. - < |leaves(v)| < 3 (1)

Suppose holds and let v be the node that has the property. Let x;,z; € L such
that LCA(z;, x) = v. Let 7, be the subtree rooted at v and let 7, 7§ be the left and
right subtree of 7,. We assume z; € 7 and x;, € T3 (See Figure . Now, we query

(xj7 Ly xz)

w

— If the output of the query is x;, then we insert x; into T \7,.

2

— If the output of the query is z;, then we insert x; into 7.

— If the output of the query is zj, then we insert z; into 7,".
Since each time we call the query, we insert x; into a smaller subtree which total number
of leaves is reduced by at least a factor of 1/3. Hence, since there are at most i leaves at

iteration ¢, we know the total number of queries called in iteration ¢ is at most log; , ¢. Hence,
the total number of queries called after all n iterations is at most nlogs , n.

Output z; = A

X Tk ZT;

Output z; = A
Output x; = A

Figure 1: The corresponding 3-leaves-clustering tree based on ordinal query (z;, z;, xy).

The correctness of the algorithm is straightforward by induction. We just need to show
that the claim of is true. We first do the following procedure to find a path from the root
to a leaf:

e Start with the root vy of the tree T

e Fort=1,2,--- let v; is the child of v;_; with higher number of leaves. i.e.,

1
[leaves(vy)| > §|leaves(vt_1)|. (2)

Let

root : vg — vy — Uy -+ — vy - leaf
is the path selected by the above procedure. Since |leaves(v;)| is a decreasing sequence and
|leaves(vg)| = I and [leaves(vy)| = 1, we know there exists j such that |leaves(v;)| < 2. Let
j* is the smallest index satisfies the property, i.e,

2 2
< §l and |leaves(v;«_1)| > =l.

1 -
|leaves(v;«) 3

Figure 2: Structure used in case [> 3.

By , we have
1

1 -
|leaves(v;-) 3

Hence, let v = v;«, we have claim holds.

Remark 4. Claim can be improved as the following:

l l
v eT, st 5 < |leaves(v)] < = +1,

[\

which is a result proved in [2].

4 Lower Bounds

4.1 Adaptive Algorithm

1
> §|leaves(vj*_1)\ > -

Note that each ordinal query only reveals at most log,(3) bits of information and we need at

least log, #hierarchical clustering trees bits information to distinguish the correct clustering

tree. Hence, we need at least

Q(logg #hierarchical clustering trees)

number of queries. Now we need to show a lower bound on the number of balanced hierarchical

clustering trees (See Figure . On one hand, the number of permutations of the leaves is

n!. On the other hand, for each permutation of the leaves, if we switch left subtree and

4

right subtree at any vertex, we have exactly the same clustering tree. Hence, since the total
number of vertex is at most n, the number of different clustering trees is at least ;—71 By
Stirling’s approximation, we have

n_! _ 2Q(nlog2 n)

on
Hence, we need at least ©(nlog,n) number of bits to distinguish different clustering tree,
and therefore the number of queries required is at least Q(nlogsn).

Figure 3: Balanced binary tree: the depth of the two subtrees of every node never differ by
more than 1.

4.2 Non-adaptive Algorithm

Let K be the set of ordinal queries used in the non-adaptive algorithm with |K| = k. Since
the algorithm is non-adaptive, the £ ordinal queries should be able to determine the structure
of any hierarchical clustering tree. We uniformly at random pick a permutation of n data
points and let them be the leaves of a balanced hierarchical clustering tree 7' (See Figure [3)
in the corresponding order of the permutation.

Without loss of generality, we assume the leaves of the tree are in this order {z1, 9, -+ , 2, },
We first look at any quartet T; = (2, Ti11, Tiv2, Tits), i.€, a subtree only contains 4 leaves
(See Figure [4). We know that only the following 4 ordinal queries

Si = {(Iz, Tit1, $i+2)7 (Iz’, Tit1, $i+3); (%'7 T2, 13z'+3)7 (Ii+17 Tit2, l‘z‘+3)}

can provide information of the structure of 7; (the other two wrong structure of 7; will have
same output as T; for all other ordinal queries). Note that the number of such quartet T;
is %. Hence, we need at least % ordinal queries in JS; to determine the structure of each
quartet T;. On the other hand, since we pick the permutation uniformly at random, we have

First quartet Second quartet

Figure 4: First quartet and second quartet

probability of % for the event that any fixed ordinal query used by the algorithm is one
of the ordinal queries in S; for a fixed 7. (This is true because the target probability is just
the probability that one uniformly chosen triplet is equal to one specific triplet). Hence, the
expected number of queries in K ((IJS;) is

4
E; ; Indicator(the kth ordinal query in K is in S;) = k- % . @

Hence, we require

| =

k-

>TL
)=

otherwise, there will exist a tree T" such that the algorithm can not cover at least 7 ordinal
queries in | J.S;. Hence, we have

~3

w 3

|-

k>)
)

Remark 5. One simpler way to see the argument is we only focus on the first quartet. Then,
for any query q; € K, the probability of {q¢; € S1} is 4/(;). Hence, the expected number

w 3

of queries in K|JS) is 4k/(3). Since we need at least one query in Sy to determine the

structure, we require
n
Ak / > 1,
(3)2

which concludes the same result.

References

[1] E. E.-Zadeh and D. Kempe. Adaptive Hierarchical Clustering Using Ordinal Queries.
Arziv preprint.

[2] C. Jordan. Sur les assemblages de lignes. Journal fiir die reine und angewandte Mathematik,
70:185-190, 1869.

[3] J. Pearl and M. Tarsi. Structuring causal trees. ournal of Complexity, 2.1 (1986): 60-77.

	Motivation
	Model and Main result
	Model
	Main results

	Algorithm and Proof
	Lower Bounds
	Adaptive Algorithm
	Non-adaptive Algorithm

