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Introduction

Setting

I Multi-class online learning

I Bandit feedback (partial feedback)

I Agnostic Setting

Goal
The goal is to achieve an expected regret bound by Õ(

√
dTK ),

where d is some sort of dimension (e.g. VC-dimension,
Littlestone-dimension).



Inspiration

Theorem 3.6 from [Shalev-Shwartz et al., 2012] uses an algorithm
that achieves O(

√
Ldim(H) ln(T )T ) expected regret in agnostic

binary online learning setting.

Difficulties

I Littlestone-dimension and VC-dimension are in binary cases.

I We have bandit feedback.



Method Summary

1. Generalize Littlestone-dimension to K -classes ⇒ BL-dim.

2. Generalize SOA algorithm from [Shalev-Shwartz et al., 2012]
to K -classes ⇒ BSOA.

3. Generalize Theorem 3.6 from [Shalev-Shwartz et al., 2012] to
multi-class bandit feedback.

I Initialize a set of experts S at the beginning of the algorithm.
I Initialize in such a way: for every behavior from H, there is at

least 1 expert has the same behavior.
⇒ Expert2, Modified Exp4

I Conceptualize the “fork” trick.
I Use Exp4 instead of regular Weighted Majority.



BL-dim [Daniely et al., 2011]

A tree T which is BL-shattered by H is a shattered tree that
generalizes to a K -ary tree in the multi-class setting where there
are K classes.

We introduce the bandit Littlestone dimension of H, denoted
BL-Dim(H), as the maximal depth of a complete K -ary tree that
is BL-Shattered by H.

For any hypothesis class H, the number of mistakes that BSOA
will make is at most BL-Dim(H).

Expert2 creates a set of experts U that at least one of them mimic
the behavior of a given hypothesis h ∈ H between round 1 and T
inclusively, such that |U| = (K − 1)L.
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Modified Exp4

Algorithm 1 Modified Exp4

1: Require: η > 0; a hypothesis class H
2: Initialize w1 = (w1,1,w1,2, · · · ,w1,N) = (1, 1, · · · , 1)
3: Initialize the set for experts S with the size of N where

N =
∑
(U,L)

(K − 1)L

4: for t=1,2,. . . do
5: Generate action and update version space for each expert as

in round t in Expert2
6: Receive experts’ actions: ∀i ∈ [N], bt,i ∈ [K ]
7: . . . (regular Exp4)
8: end for



Final Bound

Let D = BL-Dim(H),

N =
D∑

L=0

(
T

L

)
(K − 1)L ≤ (K − 1)D(

eT

D
)D .

By using Exp4’s theorem from lecture note:

E[RegretT ] =
√

2KT lnN = Õ(
√

2KTD).



Appendix: BSOA [Daniely et al., 2011]

Algorithm 2 Bandit Standard Optimal Algorithm(BSOA)

1: Require: a hypothesis class H
2: init: V0 = H
3: for t=1,2,. . . do
4: Receive xt
5: For y ∈ [k], let V

(y)
t =

{
f ∈ Vt−1 : f (xt) 6= y}

6: Predict at = argmin
y

BL-Dim(V y
t )

7: if ct = 1 then
8: Update Vt = V

(at)
t

9: else
10: Vt = Vt−1
11: end if
12: end for



Appendix: Expert2

Algorithm 3 Expert2

1: Require: A hypothesis class H; indices i1 < i2 < · · · < iL
2: init: V0 = H
3: for t=1,2,. . . ,T do
4: Receive xt
5: For y ∈ [k], let V

(y)
t =

{
f ∈ Vt−1 : f (xt) 6= y}

6: Define ŷt = argmin
y

BL-Dim(V y
t )

7: if t ∈ {i1, i2, . . . , iL} then
8: Replace this program with k−1 clones, each with distinct

prediction at ∈ [k] \ ŷt
9: Update Vt = V

(at)
t

10: else
11: Predict at = ŷt
12: end if
13: end for



Appendix: Modified Exp4

Algorithm 4 Modified Exp4

1: Require: η > 0; a hypothesis class H
2: Initialize w1 = (w1,1,w1,2, · · · ,w1,N) = (1, 1, · · · , 1)
3: Initialize the set for experts S with the size of N where

N =

BL-Dim(H)∑
L=0

(
T

L

)
(K − 1)L

4: for t=1,2,. . . do
5: Generate action and update version space for each expert as

in round t in Expert2
6: Receive experts’ actions: ∀i ∈ [N], bt,i ∈ [K ]
7: . . . (regular Exp4)
8: end for
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Through the Lens of Oracle: Efficient Algorithm for Finding
Selective Classifier
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Review of selective classi�er
Recall the definition of a selective classifier:
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Review of selective classi�er
Recall the definition of a selective classifier:

A selective classifier  is a tuple , where  lies in a hypothesis class , and  for all 
. For any ,  wp  and  wp .

C (h, ( ,⋯ , ))γ1 γm h  0 ≤ ≤ 1γi
i = 1,⋯ , m ∈ Uxn+j C( ) = h( )xn+j xn+j γj 0 1− γj
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Review of selective classi�er
Below is the algorithm (optimization problem) for finding selective classifier:

How many constraints do we have?

As many as !|V|
6 / 26



Motivation of our project
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Motivation of our project
Can we solve the optimization problem more efficiently by accessing the hypothesis class not directly through
(large amount of) constraints, but through some ERM oracle?
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Motivation of our project
Can we solve the optimization problem more efficiently by accessing the hypothesis class not directly through
(large amount of) constraints, but through some ERM oracle?

Yes!

Definition of ERM oracle we use: For a set of hypothesis , the  is an algorithm, which
for any sequence , returns 

 Weighted ERM Oracle
( , , ), ( , , ), . . . ( , , ) ∈ Z ⊆  × Y ×x1 y1 w1 x2 y2 w2 xt yt wt ℝ≥0

  �{h(x) ≠ y} ⋅ wargminh∈ ∑
(x,y,w)∈Z
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Main Algorithm
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Analysis of algorithm
Question: After how many rounds will the algorithm halt?
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Analysis of algorithm
Question: After how many rounds will the algorithm halt?

High level idea:
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Find step size
Transform from primal to dual by introducing Lagrange multipliers:

 = + (( )− ϵm)∑m

i=1
1
γi

∑N

j=1
λj ∑m

i=1
γi� ( )≠ ( )hj xn+i h0 xn+i
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Find step size
Transform from primal to dual by introducing Lagrange multipliers:

Find derivative and set to zero. Substitute  using the following:

 = + (( )− ϵm)∑m

i=1
1
γi

∑N

j=1
λj ∑m

i=1
γi� ( )≠ ( )hj xn+i h0 xn+i

γi

=γ2
i ( )∑N

j=1
λj� ( )≠ ( )hj xn+i h0 xn+i

−1
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Find step size
Transform from primal to dual by introducing Lagrange multipliers:

Find derivative and set to zero. Substitute  using the following:

Now dual looks like:

where

 = + (( )− ϵm)∑m

i=1
1
γi

∑N

j=1
λj ∑m

i=1
γi� ( )≠ ( )hj xn+i h0 xn+i

γi

=γ2
i ( )∑N

j=1
λj� ( )≠ ( )hj xn+i h0 xn+i

−1

D(λ) = − ϵm∑
m

i=1
2

(λ)Qi√
∑

N

j=1
λj

(λ) = =Qi ( )∑N

j=1
λj

i
hj

−1
γ2
i

=
i
hj

� ( )≠ ( )hj xn+i h0 xn+i
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Find step size (cont'd)
Denote

= {λ
′ + δ,λp

λ,

if   is the most violated constrainthp

otherwise
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Find step size (cont'd)
Denote

We examine the difference in dual since update:  (our potential function)

= {λ
′ + δ,λp

λ,

if   is the most violated constrainthp

otherwise

D( )−D(λ)λ
′
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Find step size (cont'd)
Denote

We examine the difference in dual since update:  (our potential function)
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′ + δ,λp

λ,

if   is the most violated constrainthp
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D( )−D(λ) ≥ Aλ
′

19 / 26



Find step size (cont'd)
Denote

We examine the difference in dual since update:  (our potential function)

Find  that maximizes  (lower bound of dual difference). Then find how much the lower bound will increase
with that  -- this is our step size!

= {λ
′ + δ,λp

λ,

if   is the most violated constrainthp

otherwise

D( )−D(λ)λ
′

D( )−D(λ) ≥ Aλ
′

δ A
δ
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Find initial and end point
We initialize each , so:

We know that  is a feasible solution, so:

= 1γi

D( ) = 2m− ϵm ≥ 2m− Nϵm.λstart ∑
N

j=1
λj

= = ⋯ = = ϵγ1 γ2 γm

D( ) ≤ 2 mN − N mλend ϵ√ ϵ2
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Final result and future work
The final bound we get looks like this:

=
D( )−D( )λend λstart

t

m(N(2 − +ϵ)−2)⋅ϵ√ ϵ2 ∑m
i=1

� ( )≠ ( )hp xn+i h0 xn+i

(∑N
j=1

λj� ( )≠ ( )hj xn+i h0 xn+i
)1.5

−ϵm

⎛

⎝

⎜
⎜∑

m
i=1

� ( )≠ ( )hp xn+i h0 xn+i

∑N
j=1

λj� ( )≠ ( )hj xn+i h0 xn+i√

⎞

⎠

⎟
⎟

2
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Final result and future work
The final bound we get looks like this:

Note that it contains .

=
D( )−D( )λend λstart

t

m(N(2 − +ϵ)−2)⋅ϵ√ ϵ2 ∑m
i=1

� ( )≠ ( )hp xn+i h0 xn+i

(∑N
j=1

λj� ( )≠ ( )hj xn+i h0 xn+i
)1.5

−ϵm

⎛

⎝

⎜
⎜∑

m
i=1

� ( )≠ ( )hp xn+i h0 xn+i

∑N
j=1

λj� ( )≠ ( )hj xn+i h0 xn+i√

⎞

⎠

⎟
⎟

2

� ( )≠ ( )hp xn+i h0 xn+i
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Final result and future work
The final bound we get looks like this:

Note that it contains .

We tried to get rid of this, but so far no luck. Maybe the future work will be to finish up the bound by
elinimating this term.

=
D( )−D( )λend λstart

t

m(N(2 − +ϵ)−2)⋅ϵ√ ϵ2 ∑m
i=1

� ( )≠ ( )hp xn+i h0 xn+i

(∑N
j=1

λj� ( )≠ ( )hj xn+i h0 xn+i
)1.5

−ϵm

⎛

⎝

⎜
⎜∑

m
i=1

� ( )≠ ( )hp xn+i h0 xn+i

∑N
j=1

λj� ( )≠ ( )hj xn+i h0 xn+i√

⎞

⎠

⎟
⎟

2

� ( )≠ ( )hp xn+i h0 xn+i
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Thanks!
Any questions?
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Active learning on graphs

I G = (V,E) is our graph

I There is a labeling function, f: V → {+1,−1}
I we wish to query as few vertices as possible



Comparison with clustering
I S2 determines the precise decision boundaries given high

enough labeling budget



The algorithm [Dasarathy et al]

I sample random pts until you find two with different labels



Sample run



Conditions which make problem solvable

I balancedness min |Vi |
k

I κ-clustering



Maximal Planar graphs

I Saying a graph is a maximal planar graph and plane
triangulation is the same thing

I κ = 1 here.



Conclusions

I Difference between active learning on graph and clustering

I κ as a measure of how difficult problem is to solve
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Problem Statement

Main Results
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Finite Possible Hypothesis Classes

“Active Teaching” with Compact Hypothesis Representation
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Problem Statement



Problem Statement

As defined in Goldman and Kearns’ On the Complexity of
Teaching, the Teaching Dimension of a Concept Class C is
defined as

TD(C) := max
c∈C

(
min
τ∈T(c)

|τ |
)

(1)

where T(c) is the set of all teaching sequence τ that uniquely
specify concept c in Concept Class C.

3



Problem Statement

Teaching Dimension as defined as, for any concept c ∈ C, the
minimum necessary samples to teach the learner in order to
let learner to uniquely identify c among his/her/its Hypothesis
Set. Therefore, it is useful only when Teacher knows Learner’s
Hypothesis Class.
Question: What if Teacher does not know exactly what the
learner’s hypothesis class is?

4



Main Results



Notations

Setting

• Sample Space X × Y ∼ D, where X is the set of the
observations, Y is the set of the corresponding labels, and
D is the sample distribution.

5



Unconstrained Learner
Setting

• Learner
• Learner using a unknown but realizable Hypothesis Set HL

to learn.
• Consistent Learner.

• Teacher
• Aims on teaching Concept Class C ∈ HL to the Learner.
• TEACH: teach learner with sample (x, y) ∈ X × Y
• ASK: ask learner to give a prediction ŷ on a selected
sample point x ∈ X .

6



Unconstrained Setting
Result

• Main Result: If there is no other constrain on the Learner,
we claim that it is not likely to achieve a better result than
the trivial teaching dimension bound |X |.

• Proved by showing that TEACH is more informative than
ASK in this setting.

7



Finite Hypothesis Classes
Setting

• Learner
• Learner uses Hypothesis Set HL from n possible
Hypothesis Sets {H1, . . . ,Hn}.

• Consistent Learner.
• Leaner can inform Teacher when there is not hypothesis
consistent with the current samples.

• Teacher
• Teacher has access to an Oracle Q(H) to get the teaching
dimension of any hypothesis class and also the optimal
teaching sequence for any hypothesis h ∈ H.

• Teacher has knowledge of {H1, . . . ,Hn}, but does not know
which one is HL.

• Teacher can inform Leaner that a teaching session is
ended to have a fresh restart.

8



Finite Hypothesis Classes
A Trivial Approach

• Observation: T D(∪ni=1Hi) can be very large even each
T D(Hi) is bounded.

• Trivial Approach: Eliminate Hi one by one, by teach the
optimal teaching sequence and check if the learner
successfully learned the target concept (let the learner tell
if it’s version space contains only one).

• Trivial Bound: Worst case
n∑
i=1

T D(Hi)

samples to teach.
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Finite Hypothesis Classes
Improvement

• Observation: Notice in some case
T D(H1 ∪H2) < T D(H1) + T D(H2).

• Example: hk,m = {n|n ≡ k mod m}.
• Improvement: Find all possible pairs and merge them
iteratively, with at most O(n3) call to Q.

10



Compact Hypothesis Representation
Setting

• Learner
• Learner using a unknown but realizable Hypothesis Set HL

to learn.
• Consistent Learner.

• Teacher
• Aims on teaching Concept Class C ∈ HL to the Learner. Not
aims on unique identification, but rather an probably
approximately correct estimation.

• TEACH: teach learner with sample (x, y) ∈ X × Y
• ASK2: ask learner to give return a hypothesis h(t) in the
current Version Space in a compact representation, so that
it does not require large amount of information to be
transferred.

11



Compact Hypothesis Representation
Inspiration From Active Learning

• Recall in CAL active learning algorithm, learner query
labels when it is “confused”. Only queried sample make
progress to learning (reduce the version space).

• Can we only teach those sample make actual progress?
• We claim that teacher also only need to teach

O(θ(h∗,H,D)d log2(n))

samples to let the learner learns an ϵ-approximation of
the true concept with at least 1− δ probability, where
n = 1

ϵ(d log
1
ϵ + log 1

δ ) is the sample complexity of the
classic PAC learning.

12



Compact Hypothesis Representation
Active Teaching

13



Summary



Summary

• We propose three different setting for teaching with
partial knowledge by introducing interaction.

• In general it’s not possible to do anything without proper
constraint on the problem structure.

• Some relationship between active learning and teaching?

• Discussion
• Proof of “Active Teaching” is not completed.
• What kind of interaction is actually allowed to make sense
in practice.
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Introduction

As for the problem of online decision-making problem in
full-feedback setting, we can reach the regret bound of
O
(√

L∗logN + logN
)

where N denotes the number of experts,
and L∗ is the minimum total loss of the experts throughout T
rounds. We can see this result from the point of probabilistic.
Since the variance of the loss of an expert will be bound by its
total loss, the square root here can represent the upper bound
for the variance.
The problem is how to do this with partial feedback (i.e.,
bandit setting). There are some algorithms known for the case
where there are no experts (or equivalently, there are exactly K
constant experts, one per possible action). So that might be a
good starting point to consider.
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Introduction

The problem is how to do this with partial feedback (i.e.,
bandit setting). There are some algorithms known for the case
where there are no experts (or equivalently, there are exactly K
constant experts, one per possible action). So that might be a
good starting point to consider.
In the Allenberg et al., 2006, they brought up an idea of the
Green clipping trick. By ignoring low-probability action, they
somehow managed to reduce the regret bound to

O(L
2/3
∗ poly(K , ln(N/δ))) with probability of 1− δ.
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Setting

Assume we also have |K| = K actions and N =
(K
k

)
experts.

Here K > k > 0 is the number of actions that each expert will
choose in a uniform distribution. And every expert has a
unique combination of actions choose. For convenience, we
assume that each action has a fixed loss, and
l1 < l2 < · · · < lK−1 < lK .
Thinking of K = 3 and k = 2, then there will be

(3
2

)
= 3

experts. And expert 1 will always give the advice vector like

ξ1 =

(
1

2
,

1

2
, 0

)
Similarly, expert 2 and 3 will have

ξ2 =

(
1

2
, 0,

1

2

)
, ξ3 =

(
0,

1

2
,

1

2

)
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Definitions

Expert Similarity

ES(i , j) =
1

T

T∑
t=1

‖ξit − ξ
j
t‖1.

Minimum Loss differnece

dlmin = min
i 6=j
|li − lj |.



Yiyang Li
yl3789

Introduction

Problem

Former work

Algorithm

Settings

Algorithm

Conclusion

Exp4.L Algorithm



Yiyang Li
yl3789

Introduction

Problem

Former work

Algorithm

Settings

Algorithm

Conclusion

Conclusion

Exp4 Regret Bound

LExp4 − Lmin ≤
lnN

η
+
ηNT

4k2
≤
√
TN lnN

k
.

Exp4.L Regret Bound

LExp4.L − Lmin ≤
lnK −

√
lnK 2 − 2dl2min(lnT + ln 1

δ + lnK )

dl2min

·
(ln 1

δ + d lnK )

ε2
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Goal of Presentation

▶ Diameter ≤ Disagreement

▶ Diameter ?≡ Disagreement
▶ Combining disagreement and diameter: searlit
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Setting

Figure 1: The hypothesis class H is being split by some x ∈ X .
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Disagreement

Definition
Let S ⊂ H be a (countable) collection of hypotheses. Their
region of disagreement is the set of points

DIS(S) := {x ∈ X : h(x) ̸= h′(x)}.

Definition
Let the disagreement of S be the size:

dis(S) := P
[
DIS(S)

]
.
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Diameter

Definition
The standard distance on H is:

d(h, h′) : = P
[
h(x) ̸= h′(x)

]
=

∫
X
|h − h′| dµ.

Definition
The diameter of S is:

diam(S) := sup
h,h′∈S

d(h, h′).
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Diameter ≤ Disagreement

diam(S) = sup
h,h′∈S

∫
X
|h − h′| dµ

= sup
h,h′∈S

∫
DIS(S)

|h − h′| dµ ≤
∫

DIS(S)
dµ = dis(S).
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Relative Power

“Corollary”
Any disagreement-reducing algorithm is also a
diameter-reducing algorithm.

7 / 24



No Reverse Implication

Example
For interval classifiers on [0, 1], the disagreement region of
the ball B(0, ϵ) is X .

Proof. Just consider the collection of classifiers

h = 1[α,α+ϵ/2].

8 / 24



Equivalence of Norms

We say that two norms || · ||1 and || · ||2 are equivalent if
there exists c,C > 0 such that

c || · ||1 ≤ || · ||2 ≤ C || · ||2.
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Equivalence of Diameter and Disagreement

In the spirit of the equivalence of norms, when is:

diam(S) ≤ dis(S) ≤ C · diam(S).
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Bounded Ratio

Diameter and disagreement are equivalent when

sup
S⊂H

dis(S)
diam(S) < ∞.
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Disagreement Coefficient

Definition
The disagreement coefficient of H is

θH := sup
h∈H

sup
r>0

dis(B(h, r))
r .

Note: a finite disagreement coefficient is equivalent to a
bounded disagreement-diameter ratio.
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Relative Power II

“Corollary”
If θH < ∞, then any diameter-reducing algorithm can be
made into a disagreement-reducing algorithm.

13 / 24



Relative Power III

Does not imply that diameter-based methods are weaker.

▶ In particular, consider the splitting index.
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Splitting Index

Definition
We say that H is (ρ, ϵ, τ )-splittable if for all finite edge sets
Q ⊂

(H
2

)
of length greater than ϵ,

P [x ρ-splits Qϵ] ≥ τ.

15 / 24



Splitting Index Intuition

Fix ρ and h ∈ H.
▶ Consider the ϵ-sphere S(h, ϵ).

▶ Union {h} with any finite collection of hi’s in S(h, ϵ),

S := {h} ∪ {h1, . . . , hn}.

▶ Heuristically, the ρ-agreement of S is at least τ :

agrρ(S) = P
[
h(x) agree for on ρ-fraction of S

]
≥ τ.
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Analogy to Equivalence?

If “apartness” of S from h is ϵ and ρ > 0, then:

agrρ(S) ≤ aparth(S).

We might consider the analogy:

agrρ(S) ≤ aparth(S) ≤ C · agrρ(S).
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Open Question

Does the ‘ρ-agreement-h-apartness’ equivalence imply
lower bounds on agreement region?

▶ Implies disagreement method from splitting index.
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Combining Methods

For now, it seems that combined method is stronger.

19 / 24



Recall larch

Input: H1 ⊂ H2 ⊂ · · · , where h∗ ∈ Hk∗ .
1. Use cal to bound diameter of version space

2. Use disagreement coefficient to bound disagreement
3. Use search oracle to efficiently traverse Hi’s
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searlit (or, splearch)

Input: H1 ⊂ H2 ⊂ · · · , where h∗ ∈ Hk∗ .
1. Use split to bound diameter of version space

2. Use disagreement coefficient to bound disagreement
3. Use search oracle to efficiently traverse Hi’s
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Label Complexity

▶ larch:

O
((

k∗ + log 1

ϵ

)
· dk∗ · sup

k≤k∗
θk · log2 1

ϵ

)
.

▶ searlit (or, splabearch):

O
(

k∗
ρ

· dk∗ · log supk<k∗ θk
ϵ

)

22 / 24



Sample Complexity

▶ larch:
O
(

k∗ · dk∗

ϵ

)
.

▶ splearch (or, searplitel):

O
(

k∗ · dk∗

ρτ
· log supk<k∗ θk

ϵ
· log dk∗

ρδ

)
.
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The Problem
Interactive Clustering

Interactive clustering organizes data points into clusters with the
help of a (human?) oracle

I We focus on split-merge oracles [Balcan & Blum ’08]
I split: the cluster is impure
I merge: merge two pure clusters

I Clusters parametrized by concept classes (rectangles, logical
formula, etc.)

I Give guarantees in terms of query complexity
I general algorithm presented by [Balcan & Blum ’08] gets
O(k3 log |C|)

I k : # of clusters in a clustering
I C: concept class

I Also care about computational complexity
I Algorithm by [Balcan & Blum ’08] is intractable



Original Algorithm
due to [Balcan & Blum ’08]

Key idea: Remove significant chunk of the clustering version space
with each query

Definition
A cluster c is α-consistent if an α-fraction of the clusterings in the
version space contain a cluster which contains c .
Progress guarantee (regardless of split/merge-response)

I cluster is at least α-consistent
I cluster is at most (1− α)-consistent

Feedback response
I split(ci ): remove clusterings inconsistent with ci from version

space
I merge(ci , cj): remove clusterings inconsistent with ci ∪ cj from

version space



New Algorithm
estimating α-consistency

Key idea: Replace version space operations with a cluster sampler

Lemma
α-consistency over clusters =⇒ α-consistency over k-clusterings.

Proof.
1− (1− α)k ≥ α

Lemma
O
( 1
ε2
log(1

δ )
)

samples are required to approximate frequency of a
Bernoulli r.v. with error ≤ ε with probability ≥ 1− δ.

Proof.
Let Y = 1

n

∑n
i=1 1[cluster i consistent with c] for a cluster c . By

Hoeffding, P
{
|Y − Ŷ | > ε

}
≤ 2e−2nε2 .



New Algorithm
cluster sampling distribution

How to sample with respect to constraints:

P {c |Efeedback,X} =
P {Efeedback|c,X}P {c |X}

Z
(1)

where X is the data, Efeedback is merge-split feedback, Z normalizes.
To-do:
1. Determine whether calculating P {Efeedback|c ,X} and the

normalization constant is tractable
2. How to efficiently update?
3. How to sample?



New Algorithm
efficiency conditions

Two assumptions for efficient computation:
1. C is optimizable: Can efficiently find

⋂
c:Q⊆c,c∈C c for query

cluster Q ⊆ X .
2. C is intersectable: Can efficiently calculate ci ∩ cj for ci , cj ∈ C.

Definition
Define a validity function V given query Q and concept c . Let ĉQ
be the result of optimization to find smallest c ∈ C containing Q.
Let αQ be the response of a merge-split query with respect to Q.
Then, VαQ

(ĉQ , c) tells us if c is a valid cluster to sample from
given query Q and its feedback.

I Calculate using µv (ĉQ , c) :=
|ĉQ∩c|
|ĉQ |

I Generalizes to multiple queries:
V(c) :=

⌊
1
N

∑N
i=1 VαQi

(ĉQi
, c)
⌋

I Requires remembering {(ĉQi
, αQi

)}Ni=1



New Algorithm
sampling algorithm

We can sample from this distribution using [Kim, Sabharwal,
Ermon ’16].

I Difficulty in sampling due to calculation of normalization Z .
I Sampling = Optimization: Use the Gumbel-max noise trick to

turn sampling into an optimization problem.
I Integer linear program relaxation
I Can use optimized-heuristic solvers to solve in practice.



Implications
rectangular concept classes

This algorithm yields an efficient algorithm for C = d-dimensional
rectangles.

I Query complexity of our algorithm: O(k3d logm)

I Beats [Awasthi & Zadeh ’10]: They have query complexity
O((kd logm)d)

I k = # of clusters, m = # data points.
Why?
1. Can easily optimize over rectangles in time O(md).
2. Can easily calculate
µv (ĉQ , c) =

∏d
i=1

1[di>bi ,wi<bi ](bi−wi )+1[zi<bi ,ai<zi ](zi−ai )
bi−ai



Thank you for your attention!
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Model

Model:
I Training data are (x i ·, yi )i=1,···n ∈ Rd × R where (x i ·, yi ) are

i.i.d following distribution of D(x , y) with Ex = 0.
I Consider the following optimization problem

β̂ = arg min
β

p

n

n∑
i=1

l(x>i ·β, yi ) + λR(β), (1)

where p is a tuning parameter such that Ex2
ij = O(1/p).



Model

Model:
I Training data are (x i ·, yi )i=1,···n ∈ Rd × R where (x i ·, yi ) are

i.i.d following distribution of D(x , y) with Ex = 0.
I Consider the following optimization problem

β̂ = arg min
β

p

n

n∑
i=1

l(x>i ·β, yi ) + λR(β), (1)

where p is a tuning parameter such that Ex2
ij = O(1/p).

Reason for introducing p:
I it connects both low dimension regime d = o(n) and high

dimension regime d = Ω(n).
I it bounds the norm of the estimates with high probability.



Leave One Out Approximation:

Let β̃
\i

denotes the leave-ith-out estimate. In Koh & Liang’s work,
the approximation is

β̃
\i ≈ β̂ +

p

n
H−1∇βl(x>i · β̂, yi ), (2)

where H := p
n

∑n
j=1∇2

βl(x
>
i · β̂, yi ) + λ∇2R(β̂).
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denotes the leave-ith-out estimate. In Koh & Liang’s work,
the approximation is

β̃
\i ≈ β̂ +

p

n
H−1∇βl(x>i · β̂, yi ), (2)

where H := p
n

∑n
j=1∇2

βl(x
>
i · β̂, yi ) + λ∇2R(β̂).

However, (2) is only accurate for d = o(n). More accurate
approximation is

β̃
\i ≈ β̂ −

p
nH
−1∇βl(x>i · β̂, yi )

1− x>i ·H−1x i · · pn l ′′(x
>
i · β̂, yi )

. (3)



Main Assumptions

I Loss function l and regularizer R are smooth enough. e.g.
l ′(u, y) and l ′′(u, y) are pseudo-Lipchitz and R ′′ is Lipchitz.

I Assume x is either has independent components with
sub-Gaussian tail or x ∼ N(0,Σ) where maximal eigenvalue of
Σ is O(1/p). Assume maxi |yi | = O(nαy ).

I Suitable (λ, d , n) such that H−1 exists.
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Examples

I Ridge regression: the approximation is exact for any choice of
(d , n, p, λ) with λ > 0.

I Logistic regression with R = ‖ · ‖22:

Let p = 1 and λ = Ω

 √
d

n
5
6−ε
·max

(
1,
(
d
n

) 1
3

) ,∀ε > 0,

then

sup
i
‖∆i‖ ≤


Õ

(
d

λ3n2 +
d2

λ5n3.5

)
, d ≤ O(n)

Õ

(
d2

λ3n3 +
d3.5

λ5n5

)
, Ω(n) ≤ d ≤ O(n1.4−ε)

,

with probability at least 1− o(1).
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Examples

I Poisson regression regression with R = ‖ · ‖22:
Let p =

(
d
λ

)2
, d ≤ O(n0.5−αy ) and λ ≥ Ω( d

n0.5−αy ), then

sup
i
‖∆i‖ ≤ Õ

(
d2

λ4n2−3αy

)
,

with probability at least 1− o(1)− Õ
(

d2

λ2n

)
.
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Setting

 Target : to teacher a specific concept ℎ∗ to the learner.

 The version space of teacher  and learner, 𝑉𝑇 and 𝑉𝐿, are no longer 

identical. Instead, we have 𝑉𝑇 ⊃ 𝑉𝐿, where |𝑉𝑇| ≫ |𝑉𝐿|. 

 Consider the realizable case, ℎ∗ ∈ 𝑉𝐿.

 A consistent learner.



Key Points

 Explore 𝑉𝑇 to locate 𝑉𝐿

- Quiz

 Correct wrong predictions

- Tradeoffs

 Stop condition / learning status is not clear

- Guaranteed way: reduce 𝑉𝑇 to {ℎ∗}

- Interactive way: extended quiz



Inheritance Model

 Stop condition: completely sure that 𝑉𝐿 → {ℎ∗}

 Operations:

- extended quiz

 Selection function adaptive to 𝑉𝑇 and learning status



School Model

 Intuitions from school education

 Stop condition: 

- run out of budget / good enough

 Operations:

- normal quiz & black box test 

 Randomized behavior adaptive to 𝑉𝑇, learning status, and test

- 𝑅 𝐷 , 𝑅 𝑇 and ε

- 𝑘 =
𝑅 𝐷 +log(ε)𝑅 𝑇 +𝛾

1+log(ε) +𝛾
, 𝛼 = 1 − 𝑘𝜂1, 𝛽 = 𝑘𝜂2



School Model



Threshold Function

 𝑋 = 1, 2, … , 100

 𝐻𝑇 = {ℎ𝑛: 𝑛 = 1,2,… , 100; ℎ𝑛(𝑥) = 1 𝑖𝑓 𝑥 > 𝑛 𝑒𝑙𝑠𝑒 0}

 ℎ∗ = ℎ50

 𝑠(ℎ∗, 𝐻𝑇) = { 51, 1 , (50, 0)}

 𝐻𝐿 = {𝑛1, 𝑛2, 50, 𝑛4, 𝑛5}

 𝜂1 = 𝜂2 = 2, 𝜖 = 0.01

 Adversary pick: 74.3% probability to reduce 𝐻𝐿 to {ℎ∗}

 Random pick: 82.7% probability



School Model Results

Figure 1. At the first round, the teacher quizzes the example (51, 1). If the learner

makes an incorrect prediction, the teacher teaches the example; otherwise, the

teacher has a probability of 99% to teach the example. At the second round, teacher

quizzes the example (50, 0). If the learner makes a correct prediction, the teacher

has a probability of 97.2% to teach the example if she didn't teach the first example;

if she has taught the first example, the teacher has a probability of 75% to teach the

second example.



Monotone Monomial

 𝑛 variables, 𝑟 variables in ℎ∗

- Let 𝑛 = 100, r = 10

 𝑇𝐷 ℎ∗, 𝐻𝑇 = min 𝑟 + 1, 𝑛

- One positive example and 𝑟 negative examples generated by

flipping each relevant bit of the positive example one at a time

 Using Inheritance Model

- Use the positive example first.

- Same probability return each negative example



Q & A
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Problem Statement

We focus on splitting index bounds for decision trees under
uniform distribution on [0, 1]d with a given size s.

Decision trees

I We define the size of the tree to be the number of leaves.

I A tree of size s partitions the domain [0, 1]d into s axis
aligned rectangles.

Figure: Left: a decision tree with d = 2, s = 4. Right: an invalid
decision tree.



Recall: splitting index

Splitting index

I A point x is said to ρ-split the edge-set Q ⊂
(H
2

)
if it can

eliminate at least a fraction ρ of edges. That is:

max

{∣∣∣∣Q ∩ (
H+

x

2

)∣∣∣∣ , ∣∣∣∣Q ∩ (
H−x

2

)∣∣∣∣} ≤ (1− ρ)|Q|.

I A subset of hypotheses S ⊂ H is (ρ, ε, τ)-splittable if for any
finite edge-set Q ⊂

(S
2

)
, P{x : x ρ-splits Qε} ≥ τ.

I Splitting index gives bounds on sample and label complexity
in active learning.



Main Results

Decision stumps over [0, 1]d

The hypothesis space consists of decision trees of size s = 2 over
[0, 1]d has global splitting index with ρ = Ω(1/d) and τ = Ω(ε).

Decision trees of size s ≥ 3 over [0, 1]

When the version space is reduced to a reasonably small size, it
has splitting index with ρ = Ω(1/s) and τ = Ω(ε).



Decision Stumps over [0, 1]d

Claim
Given any dimension d , let H be decision trees of size s = 2 over
[0, 1]d . Then H is

(
1

16d , ε,
ε
8

)
-splittable.

Upper bounds

I Sample complexity: Õ
(
d
ε log d · log 1

ε

)
I Label complexity: Õ

(
d log d · log 1

ε

)



Decision trees of size s ≥ 3 over [0, 1]
Unions of intervals

Let H1
s denote the hypothesis space on [0, 1] of decision trees of

size s, and Ft denote the hypothesis space of union of at most t
intervals on [0, 1]. Then H1

s ⊂ F[ s
2
]+1 ⊂ H1

s+2. So it suffices to
determine the splitting index of Ft .

Claim
Let h be the union of t intervals [a1, a2], ..., [a2t−1, a2t ] on [0, 1].
Let p = mini=1,2,...,2n−1(ai+1 − ai ). For any ε > 0, if p > 4ε then
B(h, 4ε) is ( 1

16t , ε,
ε
2)-splittable.

Figure: Union of 2 intervals, or decision tree with s = 4
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