
Notes for COMS 6998-4 Fall 2017

Daniel Hsu

March 22, 2020

Contents

1 Experts and bandits 4
1.1 Expert advice . 4

1.1.1 The setting . 4
1.1.2 If one expert is perfect . 5
1.1.3 If one expert is nearly perfect . 6
1.1.4 Regret . 7
1.1.5 Randomization . 8

1.2 Linear loss game on the simplex . 9
1.2.1 The setting . 9
1.2.2 Hedge . 10
1.2.3 Entropy maximization . 12

1.3 Prediction with partial feedback . 13
1.3.1 The setting . 13
1.3.2 Inverse probability weighting . 14
1.3.3 Hedging over actions with bandit feedback 16
1.3.4 Hedging over experts with bandit feedback 18

1.4 Bibliographic references . 19

2 Concept learning 21
2.1 Online classification . 21

2.1.1 Learning concepts from examples . 21
2.1.2 Basic setting . 21
2.1.3 Linear threshold functions . 24
2.1.4 Multi-class classification . 27
2.1.5 Multi-class classification with bandit feedback 28

2.2 Statistical framework . 30
2.2.1 The setting . 30
2.2.2 Mistake bounds to error rate bounds 30
2.2.3 Consistent Hypothesis algorithm . 32
2.2.4 Empirical Risk Minimization . 33
2.2.5 Maximum deviation bounds for finite classes 34

1

CONTENTS 2

2.2.6 Maximum deviation bounds for infinite classes 37
2.2.7 Vapnik-Chervonenkis dimension . 41
2.2.8 Relative deviations . 43

2.3 Selective sampling . 45
2.3.1 The setting . 45
2.3.2 Threshold functions . 45
2.3.3 Selective Consistent Hypothesis algorithm 47
2.3.4 Selective Empirical Risk Minimization algorithm 50
2.3.5 Improved Selective Empirical Risk Minimization algorithm 54

2.4 Bibliographic references . 58

About these notes

These are lecture notes for the “Interactive Learning” seminar course taught in Fall 2017 at
Columbia University as COMS 6998-4. They are being written and revised throughout the
course. Borrowing a line from Sasha Rakhlin:

These lecture notes are constantly evolving, so if your version says x < y today,
it might say x > y tomorrow.

3

Chapter 1

Experts and bandits

1.1 Expert advice

1.1.1 The setting
Consider a scenario where an agent (the “learner”) must repeatedly make a decision on
some important matter, and each decision has some quantifiable consequence that ought
to be optimized.

Formally, suppose there are several rounds of this decision-making game. In each round,
the learner must choose between two actions, {±1}. The opponent (the “environment” or
“Nature”) picks one of the actions for that round to be correct, and the other action is a
mistake. The goal is to minimize the number of mistakes made over the rounds of the
game.

So far, this setting is impossibly abstract. Whatever actions the learner chooses, they
could all be correct, or they could all be mistakes, . . .

Let’s make things more tractable. Suppose that before choosing the action in each
round, the learner receives a recommended action from each of N experts. Why should this
help? The hope is that some (maybe just one!) of the experts make good recommendations
over the rounds of the game—we will formalize this shortly. If this is the case, the learner
can then try to just do (almost) as well as the best of these experts. The protocol is given in
Algorithm 1.

Algorithm 1 Protocol for online decision-making using expert advice (binary actions)
1: for t � 1, 2, . . . do
2: Receive experts’ actions: bt ,i ∈ {±1} for i ∈ [N].
3: Learner chooses action: at ∈ {±1}.
4: Learner receives correct action: yt ∈ {±1}.
5: end for

We use the notation [n] :� {1, . . . , n} to denote the first n positive integers.

4

CHAPTER 1. EXPERTS AND BANDITS 5

1.1.2 If one expert is perfect . . .
Suppose we are promised that one of the experts will always recommend the correct action
in all rounds. We would like to design an algorithm for the learner that minimizes the
number of mistakes.

The following algorithm keeps track of which experts are perfect-so-far, and chooses at

to agree with any such expert. This is called the Consistent Expert algorithm.

Algorithm 2 Consistent Expert algorithm
1: Let V0 :� [N].
2: for t � 1, 2, . . . do
3: Receive experts’ actions: bt ,i ∈ {±1} for i ∈ [N].
4: Choose action: pick any i ∈ Vt−1, and set at :� bt ,i .
5: Receive correct action: yt ∈ {±1}.
6: Update: Vt :� {i ∈ Vt−1 : bt ,i � yt}.
7: end for

Observe that by round t, each “surviving” expert in Vt−1 has predicted the correct
action perfectly in the first t − 1 rounds.

Theorem 1.1 (Consistent Expert). If one of the N experts makes no mistakes, then a learner using
Algorithm 2 (Consistent Expert) makes at most N − 1 mistakes.

Canwe do better? Here is one way: choose at to agree with the majority of perfect-so-far
experts. This is called the Halving algorithm.

Algorithm 3 Halving algorithm
1: Let V0 :� [N].
2: for t � 1, 2, . . . do
3: Receive experts’ actions: bt ,i ∈ {±1} for i ∈ [N].
4: Choose action: at :� sign

(∑
i∈Vt−1 bt ,i

)
.

5: Receive correct action: yt ∈ {±1}.
6: Update: Vt :� {i ∈ Vt−1 : bt ,i � yt}.
7: end for

In Algorithm 3, we use the notation sign(z) :� +1 if z > 0, and sign(z) :� −1 if z ≤ 0.
Whenever the learner makes a mistake, the number of perfect-so-far experts decreases

by at least a factor of two. This can happen at most log2(N) times before the number of
perfect-so-far experts is one. Thus we have proven the following.

Theorem1.2 (Halving). If one of the N experts makes nomistakes, then a learner usingAlgorithm 3
(Halving) makes at most log2(N) mistakes.

This is exponentially better than the Consistent Expert algorithm!

CHAPTER 1. EXPERTS AND BANDITS 6

1.1.3 If one expert is nearly perfect . . .
We now generalize to the case where we only assume that there is an expert that makes
at most K mistakes, for some non-negative integer K. Neither of the previous algorithms
make sense anymore, because it is possible that there are no perfect-so-far experts even
after the first round. So we shouldn’t throw out experts that make just a single mistake.

A simple idea is to use a weighted majority over all the experts (instead of a simple
majority over the perfect-so-far experts). Instead of throwing out an expert who makes a
mistake, we simply cut its weight in half. Therefore, the weight of an expert is small if it
makes many mistakes. This is theWeighted Majority algorithm.

Algorithm 4Weighted Majority algorithm
1: Let w1,i :� 1 for i ∈ [N].
2: for t � 1, 2, . . . do
3: Receive experts’ actions: bt ,i ∈ {±1} for i ∈ [N].
4: Choose action: at :� sign

(∑
i∈[N] wt ,i · bt ,i

)
.

5: Receive correct action: yt ∈ {±1}.
6: Update: for each i ∈ [N], wt+1,i :� wt ,i/2 if bt ,i , yt , and wt+1,i :� wt ,i otherwise.
7: end for

Theorem 1.3 (Weighted Majority). If one of the N experts makes at most K mistakes, then a
learner Algorithm 4 (Weighted Majority) makes at most (K + log2(N))/log2(4/3) mistakes.

Proof. Let Zt :�
∑N

i�1 wt ,i denote the total weight of all experts at the start of round t (so,
e.g., Z1 � N). Suppose the learner makes a mistake on round t. Let αt ≥ 1/2 denote the
fraction of the total weight corresponding to experts i that choose bt ,i � at . Half of that
weight will be cut by the learner by the end of round t. So the remaining weight Zt+1 in
such a round satisfies

Zt+1 � (1 − αt)Zt +
1
2
· αtZt ≤

3
4

Zt .

So if a total of M mistakes have been made through round t, then

Zt+1 ≤
(
3
4

)M

Z1 �

(
3
4

)M

N.

On the other hand, if there is an expert i who makes at most K mistakes after t rounds,
then its weight satisfies wt+1,i ≥ 2−K. The total weight after t rounds must be at least the
weight of this expert:

Zt+1 ≥ 2−K .

Therefore

2−K ≤
(
3
4

)M

N.

CHAPTER 1. EXPERTS AND BANDITS 7

Taking logarithm of both sides and rearranging gives

M ≤
K + log2(N)

log2(4/3)
,

which finishes the proof. �

1.1.4 Regret
As the number of rounds T grows to infinity, it may be unreasonable to assume that there
is an expert that makes at most a constant number of mistakes (independent of T). Perhaps
a more realistic assumption is that there is an expert with a low rate of making mistakes, in
the sense that the number of mistakes after T rounds is at most ρT, for some fraction ρ.

Under this relaxed assumption, theWeightedMajority algorithm guarantees the learner
makes at most

ρT + log2(N)
log2(4/3)

≤ 2.41(ρT + log2(N))

mistakes after T rounds. Note that this bound is not interesting if ρ ≥ log2(4/3)/2 ≈ 0.21,
because in that case, the bound is larger than T/2 (which is what one gets, in expectation,
by guessing uniformly at random . . .).

We would instead like an algorithm that performs almost as well as the best expert,
with a mistake bound of the form

MT − min
i∈[N]

MT,i ≤ o(T),

where MT is the number of mistakes of the learner after T rounds, MT,i is the number of
mistakes of expert i after T rounds. We call the left-hand side quantity the regret of the
learner to the best expert after T rounds.

If such a sublinear regret bound is possible, and the best expert makes at most ρT
mistakes after T rounds, then the learner makes at most (ρ+ o(1))T mistakes after T rounds.
This would mean that the learner’s performance approaches that of the best expert as T
increases to infinity.

Unfortunately, a sublinear regret bound is impossible in general.

Theorem 1.4 (Impossibility of sublinear regret). Let bt ,1 � −1 and bt ,2 � +1 for all rounds
t. For any learning algorithm, there is a sequence y1, . . . , yT ∈ {±1} such that the regret of the
learner is at least T/2.

Proof. For any y1, . . . , yT ∈ {±1}, the better of the two experts makes at most T/2 mistakes.
Therefore there is some sequence for which the learner makes T mistakes while the best
expert makes only T/2 mistakes. �

CHAPTER 1. EXPERTS AND BANDITS 8

Exercise 1.1. Show how to modify Algorithm 4 so that its mistake bound is

2K + O
(√

K log(N) + log(N)
)

whenever there is an expert that makes at most K mistakes.

1.1.5 Randomization
It turns out we can get around this lower bound by allowing randomization and only
considering the number of mistakes made by the learner in expectation. Here, we are
limiting the power of the opponent and assuming that their decisions are made before
learner’s random coins are tossed. In fact, we shall simply think of the sequence of correct
and incorrect actions as being set once and for all before the start of the game.

We modify the Weighted Majority algorithm to use randomness in a natural way. This
is the Randomized Weighted Majority algorithm.

Algorithm 5 Randomized Weighted Majority algorithm
1: Parameter: η > 0.
2: w1,i :� 1 for i ∈ [N].
3: for t � 1, 2, . . . do
4: Receive experts’ actions: bt ,i ∈ {±1} for i ∈ [N].
5: Choose action: randomly draw it ∼ (wt ,1, . . . ,wt ,N)/Zt , and set at :� bt ,it .
6: Receive correct action: yt ∈ {±1}.
7: Update: for each i ∈ [N], wt+1,i :� e−ηwt ,i if bt ,i , yt , and wt+1,i :� wt ,i otherwise.
8: end for

There are two differences in Randomized Weighted Majority relative to Weighted
Majority. First, we have replaced the value of 1/2 in the update step with an arbitrary
fraction e−η. This is simply because there is nothing special about the factor of 1/2, so we
may as well pick the η that gives the best guarantee—think of it as a “tuning parameter”.1

Second, we now choose the action by randomly picking an expert with probability
proportional to the weight of the expert, and then following the action of the chosen expert;
we then only count the expected number of mistakes. The randomization and averaging
are crucial: without them, the learner would be subject to the previous impossibility result.
Essentially, they provide a way to transform a difficult discrete problem into an easier
continuous problem. Let pt :� (wt ,1, . . . ,wt ,N)/Zt denote the normalized vector of weights
on experts in round t (where Zt :� wt ,1+ · · ·+wt ,N). Then the probability that Randomized

1Tuning parameters can usually be set to optimize some criterion (such as a regret bound), but often
these settings are overly conservative. Therefore, it is desirable to have algorithms that do not have tuning
parameters.

CHAPTER 1. EXPERTS AND BANDITS 9

Weighted Majority makes a mistake—i.e., the fraction of weight on mistaken experts—is a
linear function of wt :

Pr(bt ,it , yt) �
N∑

i�1
Pr(it � i) · 1{bt ,i,yt}

�

N∑
i�1

wt ,i

Zt
· 1{bt ,i,yt}

� 〈`t , pt〉,
where `t :� (1{bt ,1,yt} , . . . , 1{bt ,N,yt}) is the vector that indicates whether each expert makes
a mistake in round t.2 The expected number of mistakes over all T rounds is

E(MT) �
T∑

t�1
Pr(at , yt) �

T∑
t�1
〈`t , pt〉.

It turns out with a suitable setting of the parameter η, the expected regret of Randomized
Weighted Majority is sublinear in the number of rounds.

1.2 Linear loss game on the simplex

1.2.1 The setting
The RandomizedWeightedMajority algorithm turns out to be a special case of an algorithm
for a more general problem. In this problem, again there are N experts. In each round,
the learner chooses a probability distribution pt � (pt ,1, . . . , pt ,N) over the N experts;
after, each expert incurs a non-negative loss `t ,i , and the learner incurs the weighted loss∑n

i�1 pt ,i`t ,i � 〈`t , pt〉 where `t :� (`t ,1, . . . , `t ,N). We call this the linear loss game on the
(probability) simplex. The protocol is given in Algorithm 6.

Algorithm 6 Protocol for the linear loss game on the simplex
1: for t � 1, 2, . . . do
2: Learner chooses probability vector: pt � (pt ,1, . . . , pt ,N) ∈ ∆N−1.
3: Learner receives loss vector: `t � (`t ,1, . . . , `t ,N) ∈ RN

+ .
4: Learner incurs loss: 〈`t , pt〉.
5: end for

The following notations are used above:

RN
+

:�
{
(p1, . . . , pN) ∈ RN : pi ≥ 0∀i ∈ [N]

}
,

∆N−1 :�
{
(p1, . . . , pN) ∈ RN

+
: p1 + · · · + pN � 1

}
.

2We use the notation 〈u , v〉 :�
∑N

i�1 ui vi for the standard inner product between vectors u , v ∈ RN ; and
we use 1{P} for the indicator of a predicate P, which takes value 1 if P is true, and value 0 if P is false.

CHAPTER 1. EXPERTS AND BANDITS 10

The total loss of expert i after T rounds is

LT,i :�
T∑

t�1
`t ,i ,

and the total loss of the learner after T rounds is

LT :�
T∑

t�1
〈`t , pt〉.

The goal of the learner is to minimize the regret after T rounds:

LT − min
i∈[N]

LT,i .

Exercise 1.2. Let LT,q :�
∑T

i�1 qiLT,i be the total loss for a fixed probability distribution
q ∈ ∆N−1. Show that

min
i∈[N]

LT,i � min
q∈∆N−1

LT,q .

1.2.2 Hedge
The algorithm that generalizes the Randomized Weighted Majority algorithm is called the
Hedge algorithm.

Algorithm 7 Hedge algorithm
Require: η > 0.
1: Let w1 � (w1,1, . . . ,w1,N) :� (1, . . . , 1).
2: for t � 1, 2, . . . do
3: Choose probability vector: pt � wt/Zt ∈ ∆N−1, where Zt :�

∑N
i�1 wt ,i .

4: Receive loss vector: `t � (`t ,1, . . . , `t ,N) ∈ RN
+ .

5: Update: wt+1,i :� wt ,i exp(−η`t ,i) for all i ∈ [N].
6: end for

Theorem 1.5 (Hedge). For any sequence of loss vectors `1, . . . , `T ∈ RN
+ , the total loss LT incurred

by a learner using Algorithm 7 (Hedge) with parameter η > 0 after T rounds satisfies

LT − LT,i �

T∑
t�1
〈`t , pt〉 −

T∑
t�1

`t ,i ≤
ln(N)
η

+
η

2

T∑
t�1
〈`2

t , pt〉, i ∈ [N]

where `2
t :� (`2

t ,1, . . . , `
2
t ,N).

CHAPTER 1. EXPERTS AND BANDITS 11

The proof is very similar to the analysis of the Weighted Majority algorithm. The main
idea is to bound the total weight ZT+1 after T rounds from above and below. The total
weight shrinks from round to round as the different experts incur losses, and this amount
can be related to the loss incurred by the learner. On the other hand, the total weight ZT+1
can also be related to the total loss of any single expert after all T rounds.

Proof. Below, we use the following approximations of the exponential:

exp(z) ≤ 1 + z + z2/2, z ≤ 0; (1.1)
exp(z) ≥ 1 + z , z ∈ R. (1.2)

We consider the relative change in total weight after round t:

Zt+1
Zt

�

N∑
i�1

wt+1,i

Zt
�

N∑
i�1

pt ,i exp(−η`t ,i)

≤
N∑

i�1
pt ,i

(
1 − η`t ,i +

η2

2
`2

t ,i

)
� 1 − η〈`t , pt〉 +

η2

2
〈`2

t , pt〉

≤ exp

(
−η〈`t , pt〉 +

η2

2
〈`2

t , pt〉
)
.

Above, the first inequality uses Equation (1.1), and the second inequality uses Equation (1.2).
Therefore,

ln
(

Zt+1
Zt

)
≤ −η〈`t , pt〉 +

η2

2
〈`2

t , pt〉. (1.3)

Summing up Equation (1.3) over all t � 1, . . . , T,

ln(ZT+1) − ln(Z1) � ln(ZT+1) − ln(N)

≤ −η
T∑

t�1
〈`t , pt〉 +

η2

2

T∑
t�1
〈`2

t , pt〉.

On the other hand, for any i ∈ [N],

ln(ZT+1) ≥ ln(wT+1,i) � −η
T∑

t�1
`t ,i .

Therefore, for any i ∈ [N],

η
T∑

t�1
〈`t , pt〉 ≤ η

T∑
t�1

`t ,i + ln(N) +
η2

2

T∑
t�1
〈`2

t , pt〉,

which concludes the proof. �

CHAPTER 1. EXPERTS AND BANDITS 12

Exercise 1.3. Show that if `t ,i ∈ [0, 1] for each i and t, then there is some setting of η (in
terms of N and T) that guarantees the regret of the learner using Algorithm 7 after T
rounds satisfies

LT − min
i∈[N]

LT,i ≤
√

2T ln(N).

Exercise 1.4. Deduce a bound on the expected regret for a learner using Algorithm 5
(Randomized Weighted Majority) after T rounds for the setting from Section 1.1.1.

Exercise 1.5. Suppose it is promised that mini∈[N] LT,i ≤ L∗. Show that if `t ,i ∈ [0, 1] for
each i and t, then there is some setting of η (in terms of N and L∗) that guarantees the
regret of the learner using Algorithm 7 after T rounds satisfies

LT − min
i∈[N]

LT,i ≤ O
(√

L∗ log(N) + log(N)
)
.

1.2.3 Entropy maximization
The probability vector chosen by Hedge in round t turns out to be the solution to the
following optimization problem:

min
p∈∆N−1

t−1∑
s�1
〈`s , p〉 −

1
η

N∑
i�1

pi ln 1
pi
.

The objective balances between minimizing the total loss in previous rounds using p and
maximizing the entropy of p. This motivates the following alternative proof of Theorem 1.5.

Alternative proof of Theorem 1.5. The proof uses the fact that the excess total loss LT − LT,q

compared to any fixed q ∈ ∆N−1 can be related to the decreases in relative entropy RE(q , pt)−
RE(q , pt+1) to q from round to round, where

RE(q , p) :�
N∑

i�1
qi ln

qi

pi
.

Indeed,

RE(q , pt+1) − RE(q , pt) �
N∑

i�1
qi ln

pt ,i

pt+1,i

� η
N∑

i�1
qi`t ,i + ln ©­«

N∑
i�1

pt ,i exp(−η`t ,i)
ª®¬

≤ η
(
〈`t , q〉 − 〈`t , pt〉

)
+
η2

2
〈`2

t , pt〉.

CHAPTER 1. EXPERTS AND BANDITS 13

This shows that in each round, if the learner incurs a significantly greater loss than the
fixed distribution q, then the update of the learner’s distribution moves it “closer” to q in
the sense of relative entropy. Now, summing this up from for t � 1, . . . , T gives

RE(q , pT+1) − RE(q , p1) ≤ η
(
LT,q − LT

)
+
η2

2

T∑
t�1
〈`2

t , pt〉.

The claim follows because RE(q , p1) ≤ ln(N) and RE(q , pT+1) ≥ 0. �

1.3 Prediction with partial feedback

1.3.1 The setting
We return to the original online decision-making problem. The setting from Section 1.1.1
considers just two actions, but it is natural to generalize to the case where there are K ≥ 2
possible actions {1, . . . , K}. However, we also need to consider the nature of the feedback.
Is the learner told the “correct” action? What if there are multiple correct actions? What if
each action has a different “cost” associated with it in each round? The possibilities are
seemingly endless.

We focus on a specific but canonical case here: every action a ∈ [K] incurs some cost
ct(a) ≥ 0 in round t, but the learner only observes the value of the loss for the chosen
action at . For simplicity, we begin with the version of the problem where there are no
experts offering their advice. This is called the “multi-armed bandits” problem or online
decision-making with “bandit feedback” (for historical reasons). The protocol is given in
Algorithm 8.

Algorithm 8 Protocol for online decision-making with bandit feedback
1: for t � 1, 2, . . . do
2: Learner chooses action: at ∈ [K].
3: Learner receives cost for chosen action: ct(at) ≥ 0.
4: end for

The total loss of picking a single action a ∈ [K] in all T rounds is LT,a :�
∑T

t�1 ct(a), and
the total loss of the learner after T rounds is LT :�

∑T
t�1 ct(at). The regret of the learner

after T rounds is
LT − min

a∈[K]
LT,a .

We would like an algorithm that guarantees low regret in expectation.

CHAPTER 1. EXPERTS AND BANDITS 14

1.3.2 Inverse probability weighting
A simple approach to the multi-armed bandits problem is to try to reduce it back to the
“full-information” setting of the linear loss game on the simplex from Section 1.2.1, where
the entire loss vector is revealed after each round.

We first consider a simpler problem. Suppose we only want to know the average cost of
a particular action, say, action 1, over T rounds. How can we do this? Easy: pick at � 1 in
each round; we are then guaranteed to observe ct(1) in every round.

Now suppose we only want to know the average costs of two particular actions, say,
actions 1 and 2. You can’t just pick at � 1, since then we won’t see ct(2). However, if we
let a fair coin toss determine whether we pick either action 1 or action 2, then we have a
(50%, 50%) chance of seeing ct(1) and ct(2). The observed cost ct(at) is, in expectation,

E(ct(at)) �
ct(1) + ct(2)

2
.

Over T rounds, we have

E
©­« 1

T

T∑
t�1

ct(at)
ª®¬ �

1
T

T∑
t�1

ct(1) + ct(2)
2

,

and by the law of large numbers,
∑T

t�1 ct(at)/T will be close to this expected value with
high probability as T becomes large. This is interesting—it at least has some information
about both actions—but it is not quite what we wanted.3

Here is a simple trick for isolating the individual costs. Consider the following
estimators of ct(1) and ct(2):

ĉt(1) :�
1{at�1}

1/2 ct(at);

ĉt(2) :�
1{at�2}

1/2 ct(at).

Observe that one of these estimators is guaranteed to be zero (since we cannot have at � 1
and at � 2 both be true). If at � 1, then ĉt(1) is twice the observed cost while ĉt(2) � 0 (and
vice versa if at � 2). However, in expectation, both estimates are equal to the costs of the

3One option that sounds plausible is to use action 1 in the first T/2 rounds, and action 2 in the last T/2
rounds. But this is reasonable only if

2
T

T/2∑
t�1

ct(1) �
2
T

T∑
t�T/2+1

ct(1),

and an analogous statement holds for action 2. Such assumptions can be avoided using randomness.

CHAPTER 1. EXPERTS AND BANDITS 15

respective actions:

E(ĉt(1)) � Pr(at � 1) ·
1{1�1}
1/2 ct(1) + Pr(at � 2) ·

1{2�1}
1/2 ct(2) � ct(1);

E(ĉt(2)) � Pr(at � 1) ·
1{1�2}
1/2 ct(1) + Pr(at � 2) ·

1{2�2}
1/2 ct(2) � ct(2).

Again, over T rounds, we have

E
©­« 1

T

T∑
t�1

ĉt(1)
ª®¬ �

1
T

T∑
t�1

ct(1)

and by the law of large numbers,
∑T

t�1 ĉt(1)/T will be close to this expected value with
high probability as T becomes large; an analogous statement holds for action 2.

More generally, suppose we fix a probability distribution pt :� (pt(1), . . . , pt(K)) ∈ ∆K−1

over the K actions, and then randomly draw at ∼ pt . For each particular action a ∈ [K],
define the estimator

ĉt(a) :�
1{at�a}
pt(a)

ct(at). (1.4)

Again, in expectation, for all actions a ∈ [K],

E(ĉt(a)) �
K∑

a′�1
Pr(at � a′) ·

1{a′�a}
pt(a)

ct(a′)

� Pr(at � a) ·
1{a�a}
pt(a)

ct(a)

� ct(a).

Therefore, the vector of cost estimates ĉt is an unbiased estimator of the vector of (true) costs
ct . This technique is called inverse probability weighting.

We see that randomization provides a simple means to enable counterfactual inference:
for any a ∈ [K], we are able to estimate (in an unbiased manner) the loss that we would
have incurred if we had chosen action a.

Although unbiasedness is a useful property of an estimator, it is not the only property
that is relevant in applications. In particular, besides the mean of ĉt(a), we may also care
about, say, higher-order moments ĉt(a), or other properties of its distribution. For instance,

CHAPTER 1. EXPERTS AND BANDITS 16

the variance of ĉt(a) is

var(ĉt(a)) � E(ĉt(a)2) − E(ĉt(a))2

�

K∑
a′�1

Pr(at � a′) ·
12
{a′�a}

pt(a)2
ct(a′)2 − ct(a)2

� Pr(at � a) ·
1{a�a}
pt(a)2

ct(a)2 − ct(a)2

�

(
1

pt(a)
− 1

)
ct(a)2.

This can be large if pt(a) is small. This means that the estimates ĉt may only be reliable if
the probabilities pt are not too close to zero.

There is a trade-off involved in the choice of the probability distribution pt . The most
“balanced” choice pt is simply the uniform distribution: all actions are tried equally often,
and the losses in each round are estimatedwith reasonably small variance (var(ĉt(a)) ≤ K−1
for all a ∈ [K] if ct(a) ∈ [0, 1]). However, choosing actions in this way may yield poor
performance (i.e., high regret); it is instead preferred to put lower probability on actions
that seem to incur high loss, and higher probability on actions that seem to incur low loss.
This is called the “exploration vs. exploitation” dilemma.

1.3.3 Hedging over actions with bandit feedback
A natural reduction from the bandit feedback setting to the full-information setting is to
simply run an algorithm (like Hedge) designed for the full-information setting using the
cost estimates ĉt described above in Equation (1.4) as the loss vectors `t . This is exactly the
approach taken by the Exp3 algorithm (short for Exponential-weight algorithm for Exploration
and Exploitation).

Algorithm 9 Exp3 algorithm
Require: η > 0.
1: Let w1 � (w1,1, . . . ,w1,K) :� (1, . . . , 1).
2: for t � 1, 2, . . . do
3: Form vector pt :� wt/Zt ∈ ∆K−1, where Zt :�

∑K
a�1 wt ,a .

4: Choose action: randomly draw at ∼ pt .
5: Receive cost for chosen action: ct(at) ≥ 0.
6: Form cost estimates: ĉt(a) � 1{at�a} ct(at)/pt(a) for all a ∈ [K].
7: Update: wt+1,a :� wt ,a exp(−ηĉt(a)) for all a ∈ [K].
8: end for

CHAPTER 1. EXPERTS AND BANDITS 17

Theorem 1.6 (Exp3). For any sequence of cost vectors c1, . . . , cT ∈ RK
+ , the total loss LT :�∑T

t�1 ct(at) incurred by a learner using Algorithm 9 (Exp3) with parameter η > 0 after T rounds
satisfies

E(LT) ≤ LT,a +
ln(K)
η

+
η

2

T∑
t�1

K∑
a′�1

ct(a′)2, a ∈ [K].

Proof. Let Et denote the conditional expectation operator given all information through
the first t − 1 rounds. We use the following properties about the estimated costs from
Section 1.3.2:

E(ĉt(a)) � ct(a);

Et(ĉt(a)2) �
ct(a)2
pt(a)

.

Observe that the evolution of the weights wt in Exp3 is the same as that of Hedge using
loss vectors `t � ĉt . Therefore, we have from Theorem 1.5 that, for any a ∈ [K],

T∑
t�1
〈ĉt , pt〉 ≤

T∑
t�1

ĉt(a) +
ln(K)
η

+
η

2

T∑
t�1
〈ĉ2

t , pt〉. (1.5)

Now we take expectations of both sides of Equation (1.5). First, observe that each term
on the left-hand side of Equation (1.5) has conditional expectation

Et(〈ĉt , pt〉) �
K∑

a�1
pt(a)Et(ĉt(a)) �

K∑
a�1

pt(a)ct(a) � E(ct(at)).

This shows that the left-hand side of Equation (1.5) is the expected loss of the learner E(LT).
Next, the first summation on the right-hand side of Equation (1.5) has expectation

T∑
t�1

E(ĉt(a)) �
T∑

t�1
ct(a) � LT,a .

Finally, each term in the second summation on the right-hand side of Equation (1.5) has
expectation

E(〈ĉ2
t , pt〉) �

K∑
a′�1

E(pt(a′)ĉt(a′)2)

�

K∑
a′�1

E(pt(a′)Et(ĉt(a′)2))

�

K∑
a′�1

E

(
pt(a′)

ct(a′)2
pt(a′)

)
�

K∑
a′�1

ct(a′)2.

CHAPTER 1. EXPERTS AND BANDITS 18

So, the inequality relating the expectations of each side of Equation (1.5) finally becomes

E(LT) ≤ LT,a +
ln(K)
η

+
η

2

T∑
t�1

K∑
a′�1

ct(a′)2,

which completes the proof. �

Exercise 1.6. Show that if ct(a) ∈ [0, 1] for each a and t, then there is some setting of η (in
terms of K and T) that guarantees the expected regret of the learner using Algorithm 94
after T rounds satisfies

E(LT) − min
a∈[K]

LT,a ≤
√

2KT ln(K).

1.3.4 Hedging over experts with bandit feedback
Now we bring experts back into the picture. The protocol is given in Algorithm 10.

Algorithm 10 Protocol for online decision-making with bandit feedback and expert advice
1: for t � 1, 2, . . . do
2: Learner receives experts’ actions: bt ,i ∈ [K] for i ∈ [N].
3: Learner chooses action: at ∈ [K].
4: Learner receives cost for chosen action: ct(at) ≥ 0.
5: end for

The total loss of expert i ∈ [N] in all T rounds is LT,i :�
∑T

t�1 ct(bt ,i), and the total loss
of the learner after T rounds is LT :�

∑T
t�1 ct(at). Hence, the regret of the learner after T

rounds is
LT −min

i∈[K]
LT,i .

We would like an algorithm that guarantees low regret in expectation. Note that this is a
very different notion of regret than what was considered in Section 1.3.1 and Section 1.3.3.
This is because we are comparing the performance of the learner to that of the best
expert, rather than the best action. This is an important difference because there may
not be any single action that has low cost over all T rounds. However, there may be an
expert who is good at picking different actions in different rounds. This setting is often
called the contextual bandit setting, because the experts can be viewed as making use of
context information in each round to recommend actions, which is natural in real-world
applications.

The main idea of the following algorithm is similar to that of Exp3. We use a full-
information algorithm (Hedge) with estimated costs for the experts. In this case, we need

4It turns out the expected regret bound of Exp3 is suboptimal. There is a different algorithmwith expected
regret bound O(

√
KT), and this is optimal.

CHAPTER 1. EXPERTS AND BANDITS 19

to estimate the cost incurred by an expert i in round t: since expert i recommends action
bt ,i ∈ [K] in round t, we use is

ĉt(bt ,i) �
1{at�bt ,i}

pt(a)
ct(at)

just as in Equation (1.4). The vector of cost estimates for experts can then be used to define
weights over experts, which in turn are used to define a probability distribution over
actions. The resulting algorithm is called Exp4 (short for Exponential-weight algorithm for
Exploration and Exploitation using Expert advice).

Algorithm 11 Exp4 algorithm
Require: η > 0.
1: Let w1 � (w1,1, . . . ,w1,N) :� (1, . . . , 1).
2: for t � 1, 2, . . . do
3: Receive experts’ actions: bt ,i ∈ [K] for i ∈ [N].
4: Form vector pt ∈ ∆K−1 given by pt(a) :�

∑N
i�1 wt ,i 1{bt ,i�a}/Zt and Zt :�

∑N
i�1 wt ,i .

5: Choose action: randomly draw at ∼ pt .
6: Receive cost for chosen action: ct(at) ≥ 0.
7: Form cost estimates: ĉt(a) � 1{at�a} ct(at)/pt(a) for all a ∈ [K].
8: Update: wt+1,i :� wt ,i exp(−ηĉt(bt ,i)) for all i ∈ [N].
9: end for

Theorem 1.7 (Exp4). For any sequence of cost vectors c1, . . . , cT ∈ RK
+ , the total loss LT :�∑T

t�1 ct(at) incurred by a learner using Algorithm 11 (Exp4) with parameter η > 0 after T rounds
satisfies

E(LT) ≤ LT,i +
ln(N)
η

+
η

2

T∑
t�1

K∑
a�1

ct(a)2, i ∈ [N].

The proof of Theorem 1.7 is very similar to that of Theorem 1.6.

Exercise 1.7. Prove Theorem 1.7.

Exercise 1.8. Show that if ct(a) ∈ [0, 1] for each a and t, then there is some setting of η (in
terms of K, N, and T) that guarantees the expected regret of the learner Algorithm 11
satisfies

E(LT) − min
i∈[N]

LT,i ≤
√

2KT ln(N).

1.4 Bibliographic references
The Weighted Majority and Randomized Weighted Majority algorithms are due to Little-
stone and Warmuth (1994). The impossibility of sublinear regret is due to Cover (1965).

CHAPTER 1. EXPERTS AND BANDITS 20

The Hedge algorithm is due to Freund and Schapire (1997), and the analysis based on
relative entropy is from Freund and Schapire (1999). The importance weighting trick is
attributed to Horvitz and Thompson (1952). The Exp3 and Exp4 algorithms are due to
Auer et al. (2002).

Chapter 2

Concept learning

2.1 Online classification

2.1.1 Learning concepts from examples
A basic problem in learning is that of classification (or concept learning). Abstractly, a
concept c is a subset of the objects from some domainX. For example, ifX is all present-day
animals on Earth, then a possible concept c is the set of mammals currently living in Africa,
{giraffe, lion, . . . }. Or, if X is all 28 × 28 arrays of binary pixels, then a possible concept c
is the arrays that depict the Arabic numeral “4”. We shall overload notation and also let
c : X → {0, 1} denote the characteristic function for the concept it represents: c(x) � 1 if and
only if x ∈ c.

Suppose a learner would like to learn some target concept c. How could they go about
this task? One way to do this is to have a teacher provide some positive and negative
examples of the concept. More precisely, the teacher provides pairs of the form (x , c(x))
where x ∈ X. How can the teacher assess if the learner has actually learned (something
non-trivial about) the target concept? One way to is to test the learner’s ability to predict
the label (i.e., c(x)) of the objects x ∈ X provided to the learner (before providing the
correct answer c(x), of course). This resembles the online decision-making setting from
Section 1.1.1. Another way is to have the learner commit to a hypothesis h : X → {0, 1}
after having seen some number of labeled examples, upon which h is evaluated by the
teacher (or some other party) in terms of its distance to c (under some suitable metric).

2.1.2 Basic setting
We start with the basic online classification setting, in which the teacher repeatedly quizzes
the learner about a target concept, and the goal of the learner is to make as few mistakes as
possible. The protocol is given in Algorithm 12.

Suppose the learner has inmind a hypothesis class H, i.e., a set of functions h : X → {0, 1}.
The learner uses H as candidates for the unknown target concept c. For simplicity, we only

21

CHAPTER 2. CONCEPT LEARNING 22

Algorithm 12 Protocol for online classification
1: for n � 1, 2, . . . do
2: Teacher reveals object: xn ∈ X.
3: Learner makes prediction: an ∈ {0, 1}.
4: Teacher reveals correct answer (label): yn ∈ {0, 1}.
5: end for

consider the realizable setting, where we assume that c ∈ H. Two natural algorithms to use
in this case are the analogues of the Consistent Expert and Halving algorithms.

Algorithm 13 Consistent Hypothesis algorithm for online classification
1: Let V0 :� H.
2: for n � 1, 2, . . . do
3: Receive object: xn ∈ X.
4: Make prediction: pick any h ∈ Vn−1, and set an :� h(xn).
5: Receive correct answer (label): yn ∈ {0, 1}.
6: Update: Vn :� {h ∈ Vn−1 : h(xn) � yn}.
7: end for

Algorithm 14 Halving algorithm for online classification
1: Let V0 :� H.
2: for n � 1, 2, . . . do
3: Receive object: xn ∈ X.
4: Make prediction: an :� arg maxy∈{0,1} |{h ∈ Vn−1 : h(x) � y}|.
5: Receive correct answer (label): yn ∈ {0, 1}.
6: Update: Vn :� {h ∈ Vn−1 : h(xn) � yn}.
7: end for

Theorem 2.1 (Consistent Hypothesis for online classification). In the realizable setting, the
learner using Algorithm 13 (Consistent Hypothesis) makes at most |H | − 1 mistakes.

Observe that the Consistent Hypothesis algorithm need not explicitly maintain the
set Vn−1, as long as there is a procedure for finding some h ∈ H that is consistent with a
sequence of labeled examples.

Theorem 2.2 (Halving for online classification). In the realizable setting, the learner using
Algorithm 14 (Halving) makes at most log2 |H | mistakes.

Is this the best we can do? The answer depends on the hypothesis class H. Specifically,
the optimalmistake bound depends on a complexitymeasure called the Littlestone dimension
of H.

CHAPTER 2. CONCEPT LEARNING 23

v1

v2 v3

v4 v5 v6 v7

Figure 2.1: A perfect binary tree labeled by v1, . . . , v7, shading the path corresponding to
(y1, y2) � (1, 0).

The definition of the Littlestone dimension uses the concept of shattering a perfect binary
tree labeled by points in X. Recall that in a perfect binary tree, every non-leaf vertex has
exactly two children, and every leaf is at the same depth. We label the vertices of such a
depth d tree with points v1, . . . , v2d−1 from X in breadth-first order (see Figure 2.1 for an
example). Every (y1, . . . , yd−1) ∈ {0, 1}d−1 specifies a root-to-leaf path (i1, . . . , id) ∈ [2d−1]d ,
where i1 � 1 and, for n � 1, . . . , d − 1,

in+1 �

2in if yn � 0 (left child of in),
2in + 1 if yn � 1 (right child of in).

We say H shatters such a perfect binary tree labeled by v1, . . . , v2d−1 if, for every
(y1, . . . , yd) ∈ {0, 1}d , there exists h ∈ H such that h(vin) � yn for all n ∈ [d], where
(i1, . . . , id) is the root-to-leaf path specified by (y1, . . . , yd−1).

For example, if the tree depicted in Figure 2.1 is shattered by H, then for the {0, 1}
sequence (y1, y2, y3) � (1, 0, 0), then is a hypothesis h ∈ H such that h(v1) � 1, h(v3) � 0,
and h(v6) � 0.

The Littlestone dimension of H, denoted Ldim(H), is defined to be the largest integer d
such that there is a labeled perfect binary tree of depth d shattered by H.

One can show that Ldim(H) ≤ log2 |H |, but sometimes Ldim(H) is much smaller. For
example, consider the hypothesis class H :� {hv : v ∈ X}, where hv(x) :� 1{x�v}. Then
Ldim(H) � 1, which may be arbitrarily smaller than log2 |H | � log2 |X|.

Theorem 2.3 (Lower bound for online classification). For every d ≤ Ldim(H) and every
learning algorithmA, there exists h ∈ H and a sequence x1, . . . , xd ∈ X such that a learner using
A predicts an , h(xn) for all n ∈ [d].

Proof. Let d :� Ldim(H), and fix a depth d perfect binary tree labeled by v1, . . . , v2d−1 ∈ X
shattered by H. We run algorithmA starting with x1 � v1 and i1 � 1. In round n, we set
the correct label yn to be the opposite of the learner’s prediction an , then choose xn+1 to be
the label vin+1 where in+1 is the left child (respectively, right child) of in in the tree if yn � 0
(respectively, if yn � 1). We are guaranteed that there exists h ∈ H such that h(xn) � yn for
all n ∈ [d]. �

CHAPTER 2. CONCEPT LEARNING 24

A variant of the Halving algorithm, called the Standard Optimal Algorithm, makes
no more than Ldim(H) mistakes in the realizable setting. Like Halving, the algorithm
tracks the set of hypotheses Vn−1 consistent with all examples seen before round n.
However, instead of predicting with the majority of hypotheses in Vn−1, it predicts with
the hypotheses that comprise a set of higher Ldim. This way, if a mistake is made in round
n, Ldim(Vn) ≤ Ldim(Vn−1) − 1.

Algorithm 15 Standard Optimal Algorithm for online classification
1: Let V0 :� H.
2: for n � 1, 2, . . . do
3: Receive object: xn ∈ X.
4: Let V y

n−1 :� {h ∈ Vn−1 : h(xn) � y}.
5: Make prediction: an :� arg maxy∈{0,1} Ldim(V y

n−1).
6: Receive correct answer (label): yn ∈ {0, 1}.
7: Update: Vn :� {i ∈ Vn−1 : h(xn) � yn}.
8: end for

Theorem 2.4 (Mistake bound for online classification). In the realizable setting, a learner using
Algorithm 15 (Standard Optimal Algorithm) makes at most Ldim(H) mistakes.

Proof. We just show that if the learner using the standard optimal algorithm makes a
mistake in round n, then Ldim(Vn) ≤ Ldim(Vn−1) − 1. Assume for sake of contradiction
that Ldim(Vn) � Ldim(Vn−1). Then each of Ldim(V0

n−1) and Ldim(V1
n−1) is equal to

d :� Ldim(Vn−1). We construct a labeled perfect binary tree of depth d + 1 as follows: take
depth d trees shattered V0

n−1 and V1
n−1, and let their roots be the left and right children,

respectively, of a new root node labeled by xn . This new tree is shattered by Vn−1, a
contradiction of the fact that Ldim(Vn−1) � d. �

The standard optimal algorithm needs to compute the Littlestone dimension various
subsets of H. There is an algorithm for deciding if Ldim(H) ≤ d in time O(|H |(2|X|)d).
Exercise 2.1. Prove that Algorithm 16 correctly decides if Ldim(H) ≤ d in time O(|H |(2|X|)d).

2.1.3 Linear threshold functions
A commonly used hypothesis class over the domain X � Rd is the class of linear threshold
functions. A linear threshold function hw ,b : Rd → {±1} is specified by a weight vector
w ∈ Rd and a threshold b ∈ R; on input x ∈ Rd , it returns the value hw ,b(x) � sign(〈w , x〉 − b).
(Here, it is more convenient to use the output value −1 in place of 0.)

It is possible to efficiently implement theConsistentHypothesis algorithm (Algorithm13)
in this case, even though the hypothesis class is infinite. Observe that the set Vn−1 is
implicitly defined by the set of labeled examples (x1, y1), . . . , (xn , yn). So, in the case of

CHAPTER 2. CONCEPT LEARNING 25

Algorithm 16 Algorithm for computing Littlestone dimension
Require: Hypothesis class H and dimension d.
Ensure: Answer to “Is Ldim(H) ≤ d?”.
1: if d � 0 then
2: if |H | ≤ 1 then
3: return “Yes”.
4: else
5: return “No”.
6: end if
7: end if
8: for each x ∈ X do
9: Let Hx ,0 :� {h ∈ H : h(x) � 0} and Hx ,1 :� {h ∈ H : h(x) � 1}.
10: Recursively run this algorithm on inputs Hx ,0 and d − 1.
11: Recursively run this algorithm on inputs Hx ,1 and d − 1.
12: end for
13: if there is some x ∈ X such that Ldim(Hx ,0) � d − 1 and Ldim(Hx ,1) � d − 1 then
14: return “No”.
15: else
16: return “Yes”.
17: end if

linear threshold functions, choosing some h ∈ Vn−1 is the same as finding a solution
(w , b) ∈ Rd × R to the following system of linear inequalities:〈w , xi〉 − b > 0, for all i ∈ [n]with yi � 1,

〈w , xi〉 − b ≤ 0, for all i ∈ [n]with yi � −1.

This can be done using algorithms for linear programming. Note, however, that the
mistake bound for Algorithm 13 is trivial here, because |H | � ∞. Indeed, without further
restrictions, no algorithm can guarantee a finite mistake bound in this case.

We now describe a different algorithm that uses linear threshold functions, the Online
Perceptron algorithm. To simplify notation, we describe the algorithm for special case of
homogeneous linear threshold functions, i.e., H :� {hw : w ∈ Rd}, where hw � hw ,0. We
analyze the algorithm in the following special case of the realizable setting. We assume the
target concept is a homogeneous linear threshold function c � hw∗ for some weight vector
w∗ ∈ Rd , and moreover, for some r > 0:

‖xn ‖2 ≤ r, |〈w∗, xn〉| ≥ 1, n � 1, 2, (2.1)

Above, ‖z‖2 :� 〈z , z〉1/2 denotes the Euclidean norm of the vector z ∈ Rd . The second
condition in Equation (2.1) implies that hw∗ not only provides the correct answers for
every object xn , but also that its real-valued margin |〈w∗, xn〉| is large (i.e., at least one) for

CHAPTER 2. CONCEPT LEARNING 26

every object xn . Also, observe that since yn � hw∗(xn) for all n, the second condition in
Equation (2.1) implies

yn 〈w∗, xn〉 ≥ 1, n � 1, 2,

Algorithm 17 Online Perceptron algorithm
1: Let w1 :� 0 ∈ Rd .
2: for n � 1, 2, . . . do
3: Receive object: xn ∈ Rd .
4: Choose prediction: an :� hwn (xn).
5: Receive correct answer (label): yn ∈ {±1}.
6: Update: if an , yn , then wn+1 :� wn + yn xn ; else wn+1 :� wn .
7: end for

Theorem 2.5 (Online Perceptron mistake bound). In the realizable setting where the target
concept is c � hw∗ for w∗ ∈ Rd and the conditions in Equation (2.1) hold, a learner using
Algorithm 17 (Online Perceptron) makes at most

‖w∗‖22 r2

mistakes.

Proof. The analysis is based on monitoring the angle between w∗ and the learner’s weight
vector, which measures how similar the learner’s weight vector is to w∗. The cosine of the
angle between w∗ and wn is

〈w∗, wn〉
‖w∗‖2 ‖wn ‖2

(2.2)

as long as neither vector is zero. We want to show that the angle is close to zero
(or equivalently, the cosine of the angle is close to one) when the learner has made
many mistakes. To do this, we separately monitor the numerator and denominator of
Equation (2.2).

Suppose the learner makes a mistake on round n and updates the weight vector. First,
we lower-bound the inner product 〈w∗, wn+1〉. We use the fact that yn 〈w∗, xn〉 ≥ 1:

〈w∗, wn+1〉 � 〈w∗, wn〉 + yn 〈w∗, xn〉 ≥ 〈w∗, wn〉 + 1.

Therefore, by induction starting with w1 � 0, if the learner makes M mistakes through n
rounds,

〈w∗, wn+1〉 ≥ M. (2.3)

Now, we upper-bound the (squared) length of wn+1:

‖wn+1‖22 � ‖wn ‖22 + 2yn 〈wn , xn〉 + ‖xn ‖22 ≤ ‖wn ‖22 + r2,

CHAPTER 2. CONCEPT LEARNING 27

where the inequality uses the first condition in Equation (2.1) and the fact that hwn makes a
mistake on xn (which implies yn 〈wn , xn〉 ≤ 0). By induction, starting with w1 � 0, if the
learner makes M mistakes through n rounds,

‖wn+1‖22 ≤ r2M. (2.4)

So, after M mistakes, the cosine of the angle between w∗ and the learner’s weight vector is
at least

M

‖w∗‖2 r
√

M
�

√
M

‖w∗‖22 r2
.

Since the cosine of the angle is at most one, we obtain the inequality

M ≤ ‖w∗‖22 r2,

thus proving the claim. �

Exercise 2.2. Design an online classification algorithm such that, in the realizable setting
where the target concept is c � hw∗ for w∗ ∈ Rd and the conditions in Equation (2.1) hold, a
learner using the algorithm makes at most log2

⌈
(1 + ‖w∗‖2 r)d

⌉
mistakes.

D: Other top-
ics: hinge-loss
bound, Win-
now.

2.1.4 Multi-class classification
We generalize the online classification problem from Section 2.1.2 that of simultaneously
learning K disjoint concepts that partition X. This is sometimes called the K-class, K-way,
or simply multi-class classification problem. (The K � 2 case is usually called binary
classification.) The protocol is given in Algorithm 18.

Algorithm 18 Protocol for online K-class classification
1: for n � 1, 2, . . . do
2: Teacher reveals object: xn ∈ X.
3: Learner makes prediction: an ∈ [K].
4: Teacher reveals correct answer (label): yn ∈ [K].
5: end for

In this problem, we suppose that the learner has in mind a hypothesis class H of
functions h : X → {1, . . . , K}. The realizable setting here means that if c1, . . . , cK are the K
target concepts that partition X, then there exists h ∈ H such that h(x) � i if and only if
x ∈ ci , for each i ∈ [K].

In this setting, we can again use the Consistent Hypothesis and Halving algorithms,
replacing the “label set” {0, 1} with {1, . . . , K} � [K]. A learner using these algorithms
make at most |H | − 1 and log2 |H | mistakes, respectively. But, just like in the K � 2 case,
both may be far from optimal.

CHAPTER 2. CONCEPT LEARNING 28

Exercise 2.3. Define a generalization of the Littlestone dimension for K-class classification
that precisely characterizes the optimal mistake bound achievable by a learning algorithm
in the realizable setting.

2.1.5 Multi-class classification with bandit feedback
In Algorithm 18, the teacher provides the correct answer to the learner as feedback.
However, it is also natural to consider a setting where the feedback is simply whether or
not the learner’s prediction was correct. We call this “bandit feedback”—the protocol is
given in Algorithm 19—on account of similarities to the multi-armed bandits problem,
and refer to the feedback in the setting in Algorithm 18 as “full-information feedback”.

Algorithm 19 Protocol for online K-class classification with bandit feedback
1: for n � 1, 2, . . . do
2: Teacher reveals object: xn ∈ X.
3: Learner makes prediction: an ∈ [K].
4: Teacher reveals correctness of prediction: 1{an�yn} ∈ {0, 1}.
5: end for

We design an algorithm for this problem using as a subroutine an algorithm that
expects full-information feedback in each round. Of course, in the present setting, one
cannot run such a full-information algorithm directly, because the requisite feedback is
not provided. However, we can create an algorithm that provides “fictitious” feedback to
multiple executions of the full-information algorithm, ensuring that at least one execution
of the algorithm receives valid feedback. Although we do not know which execution
receives valid feedback, we can use an “experts”-type algorithm to predict nearly as well
as the one that does.

InAlgorithm20, ifA is an execution of an algorithmA for the onlineK-class classification
problem, we denote by A(x) for x ∈ X the prediction of A if presented x in the next round
(but without actually updating the internal state of A). We only change the internal state
of A if we update it with a labeled example (x , y) ∈ X × [K].

Theorem 2.6 (Mistake bound for online multi-class classification with bandit feedback).
Suppose that in online K-class classification with full-information feedback, a learner using algorithm
A is guaranteed to make at most M0 mistakes. Then, in online K-class classification with bandit
feedback, a learner using Algorithm 20 with parametersA and η > ln(K − 1) makes at most

Kη
1 − (K − 1)e−η ·M0

mistakes.

Proof. Let Zn denote the total weight
∑

A∈L wA of all executions ofA at the start of round
n, so Z1 � 1. Suppose the learner makes a mistake in round n. Let αn ≥ 1/K denote the

CHAPTER 2. CONCEPT LEARNING 29

Algorithm 20 Algorithm for online K-class classification with bandit feedback
Require: A, algorithm for online K-class classification with full-information feedback;

η > 0.
1: Let A be a new execution ofA, and create list L :� (A).
2: Let wA :� 1.
3: for n � 1, 2, . . . do
4: Receive object: xn ∈ X.
5: Make prediction: an :� arg maxy∈[K]

∑
A∈L:A(xn)�y wA

6: Receive correctness of prediction: 1{an�yn} ∈ {0, 1}.
7: if an , yn then
8: for each A ∈ L such that A(xn) � an do
9: Remove A from L.
10: for each y ∈ [K] r {an} do
11: Append a clone Ay of A to L.
12: Update Ay with (xn , y).
13: Assign weight wAy :� e−η · wA.
14: end for
15: end for
16: end if
17: end for

fraction of the total weight corresponding to A ∈ L that predict A(xn) � an . Every A ∈ L
accounted for in this fraction is cloned K − 1 times and is given weight e−ηwA. So

Zn+1 � (1 − αn)Zn + (K − 1)e−η · αnZn

� (1 − αn(1 − (K − 1)e−η))Zn

≤
(
1 − 1 − (K − 1)e−η

K

)
Zn .

So if a total of M mistakes have been made through round n, then

Zn+1 ≤
(
1 − 1 − (K − 1)e−η

K

)M

≤ exp
(
−1 − (K − 1)e−η

K
·M

)
.

On the other hand, at least one of the executions of A in L has received the feedback
required in the full-information case, and hence makes at most M0 mistakes by assumption.
This means its weight is at least e−ηM0 , so the total weight satisfies

Zn+1 ≥ e−ηM0 .

Combining the upper- and lower-bounds on Zn+1 and rearranging proves the claimed
bound on M. �

CHAPTER 2. CONCEPT LEARNING 30

The blow-up factor in the bound, i.e.,

Kη
1 − (K − 1)e−η ,

is minimized by setting η :� −W−1(−1/(e(K − 1))) − 1, where W−1 denotes the lower branch
of the Lambert-W function1. This yields the factor

K ·
(
−W−1

(
− 1

e(K − 1)

))
.

As K →∞, we have

K ·
(
−W−1

(
− 1

e(K − 1)

))
� K ·

(
ln(K − 1) + ln(1 + ln(K − 1)) + 1 + o(1)

)
.

This shows that, in some sense, the setting with bandit feedback is not more than K log K
times as hard as the setting with full-information feedback.

2.2 Statistical framework

2.2.1 The setting
So far, we have been concerned with worst-case sequences of examples that the teacher
could provide. An alternative way the teacher could provide examples is to choose them
randomly according a probability distribution. A common assumption is that x1, x2, . . .
are independent and identically distributed (iid). In this case, we write x1, x2, . . . ∼iid P, where
P is the marginal distribution of x1 (unknown to the learner). In this iid setting, the learner
may be “quizzed” on the classification of an independent draw xn ∼ P in each round n.
Alternatively, the learner may be asked to return a hypothesis h such that, for some given
ε ∈ (0, 1), the probability

errP(h) :� Pr
x∼P
(h(x) , c(x))

is at most ε, where c is the target concept. The probability errP(h) is called the error rate of
h (with respect to P). We are interested in performance guarantees of the learner that hold
either in expectation, or with probability at least 1 − δ for some given δ ∈ (0, 1), over the
random choice of the sequence x1, x2, . . . and any internal randomness used by the learner.

2.2.2 Mistake bounds to error rate bounds
One may intuit that the worst-case setting from Section 2.1 is more difficult than the iid
setting. We can formalize this intuition by showing how to use an algorithmwith a mistake

1http://en.wikipedia.org/wiki/Lambert_W_function

CHAPTER 2. CONCEPT LEARNING 31

bound (such as the algorithms from Section 2.1, at least in the realizable setting) to return a
hypothesis with low error rate. This scheme is called an online-to-batch conversion.

Let A be an algorithm for online classification with mistake bound M. At the start
of round n, the algorithm A prescribes a hypothesis that the learner uses in the round
to classify the object xn ∈ X revealed by the teacher. This hypothesis may come from a
particular hypothesis class, or it may simply be regarded as the internal memory state of
the learner at the start of the round.2 We may also assume without loss of generality that if
the learner does not make a mistake in a given round, then it uses the same hypothesis in
the next round. Such a learner is called a conservative learner. We can achieve this by saving
the internal state of the learner at the start of each round, and restoring this state if the
learner does not make a mistake in the round.

Let ε, δ ∈ (0, 1) be given. We execute the algorithmA in the iid setting of online classi-
fication, which yields a sequence of hypotheses h(0), h(1), . . . where h(i) is the hypothesis
produced after the learner commits its i-th mistake. For each i, we check if h(i) predicts
correctly on the next

ni :�
⌈
1
ε

ln
(i + 1)(i + 2)

δ

⌉
rounds. We return the first such h(i) that passes this test. If A is guaranteed to make at
most M mistakes, then the algorithm will halt after at most

M∑
i�0

ni � O
(

M
ε

log M
δ

)
rounds. Let Ei be the event that at least i mistakes are made and the hypothesis h(i) has
error rate more than ε. What is the probability that for some i ∈ {0, . . . ,M}, Ei holds and
h(i) passes the test, i.e.,

∃i ∈ {0, . . . ,M} � Ei ∧ h(i) passes the test.

By a union bound, this is at most

M∑
i�0

Pr
(
Ei ∧ h(i) passes the test

)
.

The i-th term in the summation can be bounded as

Pr
(
Ei ∧ h(i) passes the test

)
� Pr

(
h(i) passes the test | Ei

)
· Pr (Ei) ≤ (1 − ε)ni · 1,

because conditional on the event that at least i mistakes are made and h(i) has error rate
more than ε, the chance that h(i) passes the test is at most the probability that a coin with

2If the learner uses randomness to make its prediction in a given round, then the hypothesis for that
round may be a randomized hypothesis. In this case, we extend the definition of error rate to also consider the
internal randomness of the randomized hypothesis.

CHAPTER 2. CONCEPT LEARNING 32

heads bias more than ε comes up tails in ni independent tosses. Now using the fact that
1 + z ≤ ez for any real number z, we have

(1 − ε)ni ≤ exp(−εni) ≤ exp
(
− ln
(i + 1)(i + 2)

δ

)
�

δ

(i + 1)(i + 2) .

So, the probability that for some i, Ei holds and h(i) passes the test is at most

M∑
i�0

δ

(i + 1)(i + 2) � δ
M∑

i�0

1
i + 1

− 1
i + 2

≤ δ.

Theorem 2.7 (Mistake bound to error rate bound). Suppose A is an algorithm for online
classification such that a learner using A on any sequence (xn)n≥1 makes at most M mistakes.
Then there is an algorithm for a learner in the iid setting using A as a black-box that, given any
ε, δ ∈ (0, 1), with probability at least 1 − δ produces a hypothesis with error rate at most ε after
seeing most O((M/ε) log(M/δ)) random examples.

In fact, with a slightly different procedure, we can get awaywith just O((M+log(1/δ))/ε)
random examples.

2.2.3 Consistent Hypothesis algorithm
We now consider the Consistent Hypothesis algorithm (Algorithm 13) in the iid setting.
Recall that in the worst-case setting, its mistake bound could be exponentially worse than
that of the Halving algorithm (|H | − 1 versus log2 |H |). However, in the iid setting, the
Consistent Hypothesis algorithm may fare much better.

Theorem 2.8 (Consistent Hypothesis error rate bound). In the iid setting, if a learner uses
Algorithm 13 (Consistent Hypothesis), then for any n and δ ∈ (0, 1), with probability at least 1− δ,
every hypothesis h ∈ Vn has error rate

errP(h) ≤
ln(|H |/δ)

n
.

Proof. Let B :� {h ∈ H : errP(h) > ln(|H |/δ)/n}. We’ll show that it is unlikely for any
hypotheses in B remain inVn . The probability that a particular h ∈ B is inVn is (1−errP(h))n .
Therefore, by a union bound, the probability that some h ∈ B remains in Vn is at most∑

h∈B

(1 − errP(h))n ≤
∑
h∈B

exp(− errP(h)n)

≤
∑
h∈B

exp(− ln(|H |/δ))

≤ δ,

which proves the claim. �

CHAPTER 2. CONCEPT LEARNING 33

Therefore, for a given ε ∈ (0, 1), the learner requires

ln(|H |/δ)
ε

random examples to guarantee that, with probability at least 1− δ, every hypothesis that is
correct on these random examples has error rate at most ε.
Exercise 2.4. Determine a bound on the expected number of mistakes made by a learner
using the Consistent Hypothesis algorithm (Algorithm 13) after n rounds in the realizable
iid setting.

2.2.4 Empirical Risk Minimization
Thus far, we have considered only the realizable setting, where it is assumed that the
target concept c is in the hypothesis class H used by the learner. If we do not make this
assumption, we instead just want to find a hypothesis h ∈ H whose error rate is not much
worse than that of the best hypothesis in H.

In fact, we will consider the following generalization of the iid setting. Let P be an
arbitrary probability distribution over X × Y (where Y � {0, 1} or Y � {±1} for binary
classification, andY � [K] for multi-class classification). We let (x1, y1), (x2, y2), . . . ∼iid P,
and the learner is asked to return a hypothesis h such that, for some given ε ∈ (0, 1), the
difference between the error rate of h,

errP(h) :� Pr
(x ,y)∼P

(h(x) , y),

and the smallest error rate among hypotheses in H, is at most ε. This difference

RegP(h ,H) :� errP(h) −min
h′∈H

errP(h′)

is called the excess risk or regret of h (analogous to the concept of regret from Section 1.1.4).
We call this setting the agnostic iid setting.

The Consistent Hypothesis algorithmmay not work in the agnostic setting because there
may be no hypothesis in H that is correct on every example. However, there is a natural
generalization called the Empirical Risk Minimization (ERM) algorithm (Algorithm 21).3

Let Pn denote the empirical distribution on (x1, y1), . . . , (xn , yn)—i.e., Pn is the random
probability distribution on X ×Y that assigns 1/n mass to each (xi , yi). The empirical risk
of a hypothesis h on data (x1, y1), . . . , (xn , yn) is the error rate of h under Pn :

errPn (h) �
1
n

n∑
i�1

1{h(xi),yi} .

3ERM usually refers to the non-sequential version of Algorithm 21, which returns a hypothesis h ∈ H that
minimizes the number of mistakes on a given sequence of labeled examples. Here, we shall also use ERM to
refer to the sequential procedure in Algorithm 21.

CHAPTER 2. CONCEPT LEARNING 34

Algorithm 21 Empirical Risk Minimization
1: Pick h0 ∈ H.
2: for n � 1, 2, . . . do
3: Receive object: xn ∈ X.
4: Make prediction: an :� hn−1(xn).
5: Receive correct answer (label): yn ∈ {0, 1}.
6: Update: pick hn ∈ arg minh∈H

1
n
∑n

i�1 1{h(xi),yi}.
7: end for

(The error rate errP(h) under P is sometimes called the risk of h.) Given (x1, y1), . . . , (xn , yn),
the ERM algorithm picks a minimizer of the empirical risk:

hn ∈ arg min
h∈H

errPn (h).

(There could be multiple minimizers.) The hope is that if Pn is close to P in a suitable sense,
then the ERM algorithm is almost the same as choosing a hypothesis in arg minh∈H errP(h).

To motivate how Pn should be close to P, consider that for any fixed h ∈ H, the random
variable t · errPn (h) has a binomial distribution (with n trials and success probability
errP(h)). Therefore, using properties of the binomial distribution, it is possible to bound
| errPn (h)−errP(h)| (both in expectation andwith high probability). This approach, however,
does not directly apply to hn , since hn itself it chosen based on (x1, y1), . . . , (xn , yn).

We instead analyze the maximum deviation maxh∈H | errPn (h) − errP(h)|, which uni-
formly bounds the deviation of errPn (h) from errP(h) for every h ∈ H. Since the hypothesis
hn chosen by ERM is chosen from H, the maximum deviation provides an upper-bound
for | errPn (hn) − errP(hn)|.

We shall use the maximum deviation as follows. Fix a particular minimizer h∗ ∈
arg minh∈H errP(h). Then

Reg(hn ,H) � errP(hn) − errP(h∗)
� (errP(hn) − errPn (hn)) + (errPn (h∗) − errP(h∗)) + (errPn (hn) − errPn (h∗))
≤ (errP(hn) − errPn (hn)) + (errPn (h∗) − errP(h∗))
≤ max

h∈H
(errP(h) − errPn (h)) + (errPn (h∗) − errP(h∗)).

The first inequality uses the fact that errPn (hn) ≤ errPn (h∗) by definition of hn , and the
second uses the fact that hn ∈ H. In particular, we have

EReg(hn ,H) ≤ Emax
h∈H
(errP(h) − errPn (h)).

2.2.5 Maximum deviation bounds for finite classes
In this section, we let P denote a probability distribution over a space Z. Let Pn denote
the empirical distribution on z1, . . . , zn ∼iid P, and let F denote a set of [−1,+1]-valued

CHAPTER 2. CONCEPT LEARNING 35

functions on Z. We are interested in the maximum deviation

max
f ∈F

EP f − EPn f ,

where

EP f :� Ez∼P f (z), EPn f :� 1
n

n∑
i�1

f (zi).

We can straightforwardly map the setting from Section 2.2.4 onto this one, by considering
a class of functions FH of the form fh(x , y) � 2 · 1{h(x),y} −1 for h ∈ H, in which case

errP(h) − errPn (h) �
1
2

(
EP fh − EPn fh

)
.

The class of functions FH is called the (zero-one) loss class for the hypothesis class H.
For any f ∈ F, the random variable n ·EPn f can be written as the sum of n independent

random variables, each with range [−1,+1]. The following lemma provides a bound on
the moment generating function of such a random variable.

Lemma 2.1 (Hoeffding’s inequality). Let X1, . . . ,Xn be independent [−1,+1]-valued random D: Prove this.

variables; let S :� X1 + · · · + Xn . Then

E exp(λ(S − E(S))) ≤ exp
(

nλ2

2

)
, λ ∈ R.

Theorem 2.9. Let P be any probability distribution, and let Pn be the empirical distribution for an
iid sample from P of size n. For any set F of [−1,+1]-valued functions,

E

(
max

f ∈F
EP f − EPn f

)
≤

√
2 ln |F |

n
.

Proof. Fix λ > 0, whose value will be determined later. We bound the expected maximum
deviation as follows. Begin by writing the following identity for the expected maximum
deviation:

E

(
max

f ∈F
EP f − EPn f

)
�

1
λ

ln exp
E

(
λmax

f ∈F
EP f − EPn f

) .
The right-hand side now involves the exponential of an expectation; changing the order of
their application can only lead to a larger value, by Jensen’s inequality:

exp
E

(
λmax

f ∈F
EP f − EPn f

) ≤ E
exp

(
λmax

f ∈F
EP f − EPn f

) .

CHAPTER 2. CONCEPT LEARNING 36

(The inequality doesn’t lose much if λ is small.) Now inside the expectation is the
exponential of the maximum deviation. By monotonicity, this is the same as the maximum
exponential deviation, and hence at most the sum of the exponential deviations:

exp

(
λmax

f ∈F
EP f − EPn f

)
� max

f ∈F
exp

(
λ EP f − EPn f

)
≤

∑
f ∈F

exp
(
λ EP f − EPn f

)
.

(The inequality doesn’t lose much if λ is large.) The expectation of each side allows the
expectation on the right-hand side to pass through the summation by linearity, leading to
the summation of moment generating functions that can be bounded using Lemma 2.1:

E exp

(
λmax

f ∈F
EP f − EPn f

)
≤

∑
f ∈F

E exp
(
λ EP f − EPn f

)
≤ |F | exp

(
λ2

2n

)
.

So, overall we have established

E

(
max

f ∈F
EP f − EPn f

)
≤ 1
λ

ln

(
|F | exp

(
λ2

2n

))
�

ln |F |
λ

+
λ
2n
.

Since this holds for arbitrary λ > 0, we choose the value of λ to minimize the bound, which
yields the claimed bound. �

Applying Theorem 2.9 to ERM gives

ERegP(hn ,H) ≤ E
(
max
h∈H

errP(h) − errPn (h)
)
≤ O

(√
ln |H |

n

)
. (2.5)

Thus, it suffices for the learner to use

O
(
ln |H |
ε2

)
labeled examples to guarantee regret at most ε in expectation.

Exercise 2.5. Prove a bound on RegP(hn ,H) that holds with high probability: for any
δ ∈ (0, 1), with probability at least 1 − δ,

RegP(hn ,H) ≤ O

(√
ln(|H |/δ)

n

)
.

Exercise 2.6. Determine a bound on the expected number of mistakes made by a learner
using the ERM algorithm (Algorithm 21) after n rounds in the agnostic iid setting. Compare
the result to that from Exercise 2.4.

CHAPTER 2. CONCEPT LEARNING 37

2.2.6 Maximum deviation bounds for infinite classes
We now consider the maximum deviation over a function class F with possibly infinite
cardinality. For such a function class F, Theorem 2.9 may be very loose or even vacuous, so
a more refined analysis capturing the “richness” of F is needed.

We give a bound on the maximum deviation in terms of the Rademacher complexity of F,
which we now define. Define the inner product 〈·, ·〉n over Rn by

〈a , b〉n :� 1
n

n∑
i�1

aibi

for vectors a � (a1, . . . , an) and b � (b1, . . . , bn) in Rn . Let σ � (σ1, . . . , σn) be a random
vector where σ1, . . . , σn are iid Rademacher random variables: Pr(σ1 � 1) � Pr(σ1 � −1) � 1/2.
Define the Rademacher average of a set of vectors S ⊆ Rn by

Rad(S) :� Eσ sup
v∈S
〈v , σ〉n ,

where the expectation Eσ is taken over σ (conditional on any other random variables). For
z1:n � (z1, . . . , zn) ∈ Zn , define

F|z1:n :� {(f (z1), . . . , f (zn)) : f ∈ F}

to be the set of “behaviors” on z1, . . . , zn realized by functions in F. Finally, define the
Rademacher complexity of F to be the expectation of the Rademacher average of F|z1:n for an
iid sample z1, . . . , zn ∼iid P:

Radn(F; P) � Radn(F) :� E
[
Rad(F|z1:n)

]
.

We drop the notational dependence on P when the probability distribution is clear from
context.

The Rademacher complexity Radn(F) is a measure the “richness” of F with respect to
data from P.4 Some example values of Radn(F) are as follows. If F contains just a single
[−1,+1]-valued function f0, then

Radn(F) � 0.

4Suppose F is a class of {±1}-valued functions, and r denotes a uniformly random {±1}-valued function.
Then, Rad(F |z1:n) (i.e., Radn(F) conditional on z1 , . . . , zn) measures the how close the random function r is to
functions in F on average, where we treat functions as members of the function space L2(Pn):

〈 f , 1〉L2(Pn) �
1
n

n∑
i�1

f (zi)1(zi),

 f − 1

2
L2(Pn) � 〈 f − 1 , f − 1〉L2(Pn) �

1
n

n∑
i�1
(f (zi) − 1(zi))2.

Indeed, we have

Rad(F |z1:n) � Er sup
f ∈F
〈 f , r〉L2(Pn) � Er sup

f ∈F

[
1 − 1

2

 f − r

2
L2(Pn)

]
� 1 − 1

2
Er inf

f ∈F

 f − r

2

L2(Pn) ,

where Er is the expectation with respect to the choice of the random function r.

CHAPTER 2. CONCEPT LEARNING 38

If F � { f0,− f0}, then

Radn(F) ≤

√
EP f 2

0
n

.

At the other extreme, if z1, . . . , zn are distinct almost surely and F contains all {±1}-valued
functions, then

Radn(F) � 1.

An intermediate case is where the cardinality of F|z1:n is always bounded by a polynomial
in n, say O(nd) for some d ≥ 0. In this case, we have

Radn(F) ≤ O

(√
d log n

n

)
.

For example, suppose F :� { fb : b ∈ R} is the set of {±1}-valued functions on Z � R where
fb(z) � 2 · 1{z>b} −1. The cardinality of F is infinite, but for any given z1, . . . , zn ∈ Z, the
set F|z1:n has cardinality at most n + 1. Other examples are considered in Section 2.2.7.

Theorem 2.10. Let P be any probability distribution, and let Pn be the empirical distribution for
an iid sample from P of size n. For any set F of [−1,+1]-valued functions,

E

(
sup
f ∈F
| EP f − EPn f |

)
≤ 2 Radn(F).

Proof. We use two “symmetrization” tricks to change the stochastic process into one that is
easier to analyze. First, we use “symmetrization by a ghost sample”. Let z′1, . . . , z

′
n ∼iid P

(the ghost sample) be independent of z1, . . . , zn , and let P′n be the empirical distribution on
z′1, . . . , z

′
n . We have

E sup
f ∈F
| EP f − EPn f | � E sup

f ∈F
EP f − EPn f

� E sup
f ∈F

E[EP′n f − EPn f | z1, . . . , zn]

≤ E sup
f ∈F

EP′n f − EPn f ,

where the inequality follows from Jensen’s inequality. Now we use “symmetrization by
random signs”. Observe that

sup
f ∈F

EP′n f − EPn f � sup
f ∈F

1
n

n∑
i�1
(f (z′i) − f (zi))

has the same distribution as

sup
f ∈F

1
n

n∑
i�1

si(f (z′i) − f (zi))

CHAPTER 2. CONCEPT LEARNING 39

for any s1, . . . , sn ∈ {±1}. Therefore

E sup
f ∈F

EP′n f − EPn f � Eσ E sup
f ∈F

1
n

n∑
i�1

σi(f (z′i) − f (zi))

≤ 2Eσ E sup
f ∈F

1
n

n∑
i�1

σi f (zi)

� 2 Radn(F),

where the inequality follows from the triangle inequality and sub-additivity of supremum.
�

Bounds on the expected maximum deviation may be used to obtain bounds that hold
with high probability. To do this, we use the following probability concentration inequality.

Theorem 2.11 (McDiarmid’s inequality). Let 1 : Rn → R be a function with the bounded D: Prove this
using Doob
martingale.differences property: for some c1, . . . , cn ≥ 0,

sup
z1 ,...,zn ,z′i

|1(z1, . . . , zi , . . . , zn) − 1(z1, . . . , z′i , . . . , zn)| ≤ ci , i ∈ [n].

Let z1, . . . , zn be independent random variables. Then for any ε > 0,

Pr
(
1(z1, . . . , zn) − E 1(z1, . . . , zn) > ε

)
≤ exp

(
− 2ε2∑n

i�1 c2
i

)
.

For a class F of [−1,+1]-valued functions, the function given by

1(z1, . . . , zn) :� sup
f ∈F

EP f − EPn f

has the bounded differences property with ci � 2/n for all i. Therefore, by Theorem 2.11,
for any ε > 0,

Pr ©­«sup
f ∈F

EP f − EPn f > E

(
sup
f ∈F

EP f − EPn f

)
+ ε

ª®¬ ≤ exp(−nε2/2).

Now plugging in the bound from Theorem 2.10, we have for any δ ∈ (0, 1) that

sup
f ∈F

EP f − EPn f ≤ 2 Radn(F) +
√

2 ln(1/δ)
n

(2.6)

holds with probability at least 1 − δ.

CHAPTER 2. CONCEPT LEARNING 40

Theorem 2.12 (ERM error rate bound in terms of Rademacher complexity). Let H be a
hypothesis class. In the agnostic iid setting, for any n and δ ∈ (0, 1), the following hold with
probability at least 1 − δ:

errP(h) − errPn (h) ≤ Radn(FH) +
√

ln(1/δ)
2n

, h ∈ H.

where FH is the class of {±1}-valued functions of the form fh(x , y) � 2 · 1{h(x),y} −1 for h ∈ H,
Also, with probability at least 1− δ, the hypothesis hn picked by a learner using the ERM algorithm
(Algorithm 21) in round n satisfies

RegP(hn ,H) ≤ Radn(FH) + O

(√
ln(1/δ)

n

)
.

It is worth noting that when Y � {±1} (i.e., binary classification), the Rademacher
complexity of the class FH from Theorem 2.12 depends only on the marginal distribution
PX of P over X. To see this, observe that

Rad((FH)|(xi ,yi)ni�1
) � Eσ sup

h∈H

1
n

n∑
i�1

σi

(
2 · 1{h(xi),yi} −1

)
� Eσ sup

h∈H

1
n

n∑
i�1
−σi yih(xi)

� Eσ sup
h∈H

1
n

n∑
i�1

σi h(xi)

� Rad(H |x1:n),

where the penultimate step uses the fact that (−σ1 y1, . . . ,−σn yn) has the same distribution
as (σ1, . . . , σn).

For any realization of the Rademacher random variables σ, observe that

sup
h∈H

1
n

n∑
i�1

σih(xi) � 1 − 2 inf
h∈H

errPn ,σ(h),

where Pn ,σ is the empirical distribution on (x1, σ1), . . . , (xn , σn). This is a measure of how
well hypotheses in H can fit uniformly random labels, and thus can be computed using
ERM. Moreover, the function 1(z1, . . . , zn) :� suph∈H

1
n
∑n

i�1 σih(xi) (where zi � (xi , yi) for
each i) satisfies the bounded differences property from Theorem 2.11 with ci � 1/n for
each i. Therefore, for any δ ∈ (0, 1), with probability at least 1 − δ (over the choice of
x1, . . . , xn ∼iid PX and the Rademacher random variables σ),������Radn(H) − sup

h∈H

1
n

n∑
i�1

σih(xi)

������ ≤
√

2 ln(1/δ)
n

. (2.7)

CHAPTER 2. CONCEPT LEARNING 41

Combining this with the bound from Theorem 2.12 (with a union bound) gives an empirical
bound on the excess risk, meaning that the bound can be computed from the observed data
(and the random realization of the Rademacher random variables).

2.2.7 Vapnik-Chervonenkis dimension
We now give a purely combinatorial property of a function class that can be used to bound
its Rademacher complexity with respect to any distribution.

We say the set of points z1, . . . , zn ∈ Z is shattered by a class F of {±1}-valued functions
on Z if F realizes all 2n possible behaviors on z1:n , i.e.,

|F|z1:n | � |{(f (z1), . . . , f (zn)) : f ∈ F}| � 2n .

For any positive integer n, define ΠF(n) :� maxz1 ,...,zn∈Z |F|z1:n | to be the maximum number
of behaviors of F on n points. The Vapnik-Chervonenkis (VC) dimension of F is the size of the
largest set shattered by F, i.e., sup{d : ΠF(d) � 2d}. (The VC dimension is infinite if there
are arbitrarily large shattered sets.)

A first example of the VC dimension is for the hypothesis class of threshold functions
F � { fb : b ∈ R} on Z � R, where fb(z) � sign(z − b). It is possible to shatter any single
point with F, so the VC dimension of F is at least one. For any pair of distinct points
(z1, z2) ∈ R2 with z1 < z2, it is not possible to realize the behavior (+1,−1). So the VC
dimension of F is one.

A second example of the VC dimension is for the hypothesis class of interval functions
F � { fa ,b : a , b ∈ R} on Z � R, where fa ,b(z) � 1 if z ∈ [a , b] and f (z) � −1 otherwise. It is
easy to see that any pair of distinct points can be shattered by F. However, for any triple
of distinct points (z1, z2, z3) with z1 < z2 < z3, it is not possible to realize the behavior
(+1,−1,+1). So the VC dimension of F is two.

Finally, the class of linear threshold functions in Rd (defined in Section 2.1.3) has VC
dimension d + 1. This follows from a result in convex geometry called Radon’s theorem.

When the VC dimension of F is finite, then ΠF(n) is bounded by a polynomial in n.
This is the content of the Sauer-Shelah lemma.

Lemma 2.2 (Sauer-Shelah). If a function class F on domain Z has finite VC dimension d < ∞,
then

ΠF(n) ≤
d∑

i�0

(
n
i

)
≤ (n + 1)d .

Proof. The proof is by induction on d + n. If d � 0 and n � 1, then a single point is not
shattered by F, and hence ΠF(1) � 1 �

(1
0
)
. If d � 1 and n � 1, then there is a single point

shattered by F, and hence ΠF(1) � 2 �
(1
0
)
+

(1
1
)
. Now fix n ≥ 2 and d ≥ 0, and assume

the claim holds for ΠF′(n′) where F′ has VC dimension d′, as long as d′ + n′ ≤ d + n − 1.
Consider any F with VC dimension d. Take z1, . . . , zn ∈ Z such that |F|z1:n | � ΠF(n). Define

F′ :� { f ∈ F : ∃ f ′ ∈ F � f (zi) � f ′(zi), 1 ≤ i ≤ n − 1, f (zn) , f ′(zn)}

CHAPTER 2. CONCEPT LEARNING 42

to be the set of functions f in F for which there exists another function f ′ that agrees with
f on the first n − 1 points but disagrees on the n-th point. Observe that

ΠF(n) � |F|z1:n | � |F|z1:n−1 | + |F′|z1:n−1
|.

Moreover, the VC dimension of F′ (regarded as a function class on domain z1:n) is at most
d − 1. Indeed, suppose for sake of contradiction that F′ has VC dimension d. Then there
is a set of d points, say, z∗1, . . . , z

∗
d among z1:n shattered by F′; now we can exhibit a set of

d + 1 points z∗1, . . . , z
∗
d , zn shattered by F. This contradicts the assumption that F has VC

dimension d. So, by the induction hypothesis,

|F|z1:n−1 | ≤ ΠF(n − 1) ≤
d∑

i�0

(
n − 1

i

)
and |F′|z1:n−1

| ≤ ΠF′(n − 1) ≤
d−1∑
i�0

(
n − 1

i

)
,

so

ΠF(n) ≤
d∑

i�0

(
n − 1

i

)
+

d−1∑
i�0

(
n − 1

i

)
�

(
n
0

)
+

d∑
i�1

(
n − 1

i

)
+

(
n − 1
i − 1

)
�

d∑
i�0

(
n
i

)
,

where we use the fact
(n

i

)
�

(n−1
i

)
+

(n−1
i−1

)
. �

Lemma 2.2 may be used with the following bound on the Rademacher complexity in
terms of ΠF(n).

Lemma 2.3. If F is a class of {±1}-valued functions on domain Z with VC dimension d, then

Rad(F |z1:n) ≤
√

2 ln(ΠF(n))
n

for any z1, . . . , zn ∈ Z.

Lemma 2.3 is a special case of a more general lemma.

Lemma 2.4. Let S ⊂ Rn be a finite set of vectors in Rn . Then

Rad(S) ≤
√

2 maxv∈S〈v , v〉n ln |S |
n

.

Proof. Let σ :� (σ1, . . . , σn) be a random vector where σ1, . . . , σn are iid Rademacher
random variables. Observe that by Lemma 2.1 and independence, we have

Eσ exp(〈v , σ〉n) ≤ exp(〈v , v〉n/(2n)), v ∈ Rn . (2.8)

Now, we follow the proof of Theorem 2.9. Fix λ > 0, and write

Rad(S) � Eσ max
v∈S
〈v , σ〉n �

1
λ

ln exp
(
Eσ max

v∈S
〈λv , σ〉n

)
.

CHAPTER 2. CONCEPT LEARNING 43

By Jensen’s inequality and monotonicity,

exp
(
Eσ max

v∈S
〈λv , σ〉n

)
≤ Eσ exp

(
max
v∈S
〈λv , σ〉n

)
≤ Eσ

∑
v∈S

exp
(
〈λv , σ〉n

)
.

Using linearity of expectation and Equation (2.8), we have

Eσ
∑
v∈S

exp
(
〈λv , σ〉n

)
≤ |S | exp(λ2 max

v∈S
〈v , v〉n/(2n)).

So, we have established

Rad(S) ≤ ln |S |
λ

+
λmaxv∈S〈v , v〉n

2n
.

for any λ > 0. Choosing λ to minimize the bound yields the claimed bound. �

Putting Lemmas 2.2 and 2.3 and Theorems 2.10 and 2.11 together gives the following
theorem.

Theorem 2.13. Let P be any probability distribution, and let Pn be the empirical distribution for
an iid sample from P of size n. For any set F of {±1}-valued functions with VC dimension d,

E

(
sup
f ∈F

EP f − EPn f

)
≤

√
8d ln(n + 1)

n
.

Also, for any δ ∈ (0, 1), with probability at least 1 − δ,

sup
f ∈F

EP f − EPn f ≤
√

8d ln(n + 1)
n

+

√
2 ln(1/δ)

n
.

In Theorem 2.13, the rate as a function of n is
√
(log n)/n, which is not tight. Using a

technique called “chaining”, it can be improved to
√

1/n.

2.2.8 Relative deviations
Using similar symmetrization arguments from Section 2.2.6, it is possible to prove relative
deviation bounds that hold simultaneously for all f ∈ F.

Theorem 2.14. Let F be a class of {0, 1}-valued functions with VC dimension d. For any δ ∈ (0, 1), D: Prove this.
Two ways: (i)
symmetriza-
tion (sharper),
(ii) Talagrand
concentration
(looser?).

with probability at least 1 − δ,

EP f − EPn f ≤ 2

√
EP f · d ln(2n + 1) + ln(4/δ)

n
, f ∈ F.

Also, with probability at least 1 − δ,

EPn f − EP f ≤ 2

√
EPn f · d ln(2n + 1) + ln(4/δ)

n
, f ∈ F.

CHAPTER 2. CONCEPT LEARNING 44

In Theorem 2.14, the EP f appearing under the square-root should be regarded as
an upper-bound on the variance of a Bernoulli random variable (since p(1 − p) ≤ p for
p ∈ [0, 1]). The smaller the variance is, the smaller the deviation is.

If non-negative numbers A, B, and C satisfy A ≤ B
√

A + C, then it follows that
A ≤ B2 + B

√
C + C. Using this fact, we have the following corollary.

Corollary 2.1. Let F be a class of {0, 1}-valued functions with VC dimension d. For any δ ∈ (0, 1),
define

εF,n ,δ :�
4 ln(ΠF(2n)) + 4 ln(4/δ)

n
≤ 4d ln(2n + 1) + 4 ln(4/δ)

n
.

With probability at least 1 − δ,

EP f − EPn f ≤ min
{√
EP f · εF,n ,δ ,

√
EPn f · εF,n ,δ + εF,n ,δ

}
, f ∈ F.

Also, with probability at least 1 − δ,

EPn f − EP f ≤ min
{√
EPn f · εF,n ,δ ,

√
EP f · εF,n ,δ + εF,n ,δ

}
, f ∈ F.

Now consider a hypothesis class H with finite VC dimension. (Here, we only consider
binary-valued hypotheses.) We apply Corollary 2.1 to the class LH :� {`h : h ∈ H}, where
`h(x , y) � 1{h(x),y}, which has the same VC dimension as H. One implication is the
following.

Theorem 2.15 (Consistent Hypothesis error rate bound in terms of VC dimension). Let H be
a hypothesis class with VC dimension d. In the iid setting, if a learner uses Algorithm 13 (Consistent
Hypothesis), then for any n and δ ∈ (0, 1), with probability at least 1 − δ, every hypothesis h ∈ Vn

has error rate
errP(h) ≤

4d ln(2n + 1) + 4 ln(4/δ)
n

.

This is comparable to Theorem 2.8, which only applies to finite hypothesis classes. The
rate, as a function of n, is slightly worse: (log n)/n rather than 1/n. In some cases, the
theorem is loose, and indeed a 1/n rate is correct.

Theorem 2.16 (ERM error rate bound in terms of VC dimension). Let H be a hypothesis class
with VC dimension d. In the agnostic iid setting, for any n and δ ∈ (0, 1), the following hold with
probability at least 1 − δ:

errP(h) − errPn (h) ≤ min
{√

errP(h) · εH,n ,δ ,
√

errPn (h) · εH,n ,δ + εH,n ,δ

}
, h ∈ H,

and

errPn (h) − errP(h) ≤ min
{√

errPn (h) · εH,n ,δ ,
√

errP(h) · εH,n ,δ + εH,n ,δ

}
, h ∈ H,

CHAPTER 2. CONCEPT LEARNING 45

where
εH,n ,δ :�

4 ln(ΠH(2n)) + 4 ln(8/δ)
n

≤ 4d ln(2n + 1) + 4 ln(8/δ)
n

.

Also, in the same event, the hypothesis hn picked by a learner using the ERMalgorithm (Algorithm 21)
in round n satisfies

RegP(hn ,H) ≤ C1 ·
√

inf
h∈H

errP(h) · εH,n ,δ + C2 · εH,n ,δ ,

where C1 and C2 are absolute constants (and it suffices to take C1 :� 1+
√

3/2 and C2 :� 2+
√

3/2).

Exercise 2.7. Prove the claim in Theorem 2.16 regarding RegP(hn ,H).

2.3 Selective sampling

2.3.1 The setting
In many practical scenarios where learning from examples takes place, the unlabeled parts
(x) are freely available, but the labels (y) are expensive. Motivated by this disparity in the
costs of data, we consider a modification of the online classification scenario where the
learner must decide in each round whether or not to obtain the label. This modification is
called selective sampling (or active learning).

Algorithm 22 Protocol for online classification under selective sampling
1: for n � 1, 2, . . . do
2: Teacher reveals object: xn ∈ X.
3: Learner makes prediction: an ∈ {0, 1}.
4: if Learner requests the correct answer (label) then
5: Teacher reveals correct answer (label): yn ∈ {0, 1}.
6: end if
7: end for

In addition to the usual goals in online classification, the learner also seeks to minimize
the number of labels requested.

2.3.2 Threshold functions
We first consider, as a toy example, selective sampling for the class of threshold functions
H � {hb : b ∈ R} on R, where hb(x) � 1{x>b}. We assume that the target concept is also a
threshold function hb∗ ∈ H for some b∗ ∈ R.

This hypothesis class H has VC dimension one, so in the realizable iid setting, for
any ε, δ ∈ (0, 1), a learner can find a hypothesis h ∈ H with error rate at most ε after

CHAPTER 2. CONCEPT LEARNING 46

Algorithm 23 Selective sampling algorithm for threshold functions
1: Let bl :� −∞, bu :� +∞.
2: for n � 1, 2, . . . do
3: Receive object: xn ∈ R.
4: Make prediction: choose any b ∈ [bl , bu) and set an :� hb(xn).
5: if xn ∈ (bl , bu] then
6: Request label: yn ∈ {0, 1}.
7: if yn � 0 then bl :� xn . else bu :� xn . end if
8: end if
9: end for

O((1/ε) log(1/(εδ))) rounds. This, however, assumes that a label is requested in every
round. How can a learner achieve the same error rate but using fewer labels?

A simple strategy is shown in Algorithm 23. It maintains lower- and upper-limits for
the target threshold. A simple induction argument proves the following.

Theorem 2.17. In the realizable setting, the quantities bl and bu maintained by a learner using
Algorithm 23 satisfy the following properties:

• b∗ ∈ [bl , bu];

• every threshold function hb with b ∈ [bl , bu] at the start of round n is consistent with all
examples (x1, hb∗(x1)), . . . , (xn−1, hb∗(xn−1)) from previous rounds, including rounds in
which a label is not requested.

Therefore, after n rounds, the learner may choose any threshold function hb with
b ∈ [bl , bu] and be assured that, with probability at least 1 − δ,

errP(hb) ≤
4 ln(2n + 1) + 4 ln(4/δ)

n
as per Theorem 2.15.

What remains is to understand how many labels a learner using Algorithm 23 ends up
requesting after several rounds. For simplicity, we assume the marginal of P over X � R

is a continuous density, so the probability mass assigned to an interval [a , b] ⊂ R is the
same whether or not we include either endpoint. Let Qn be the {0, 1}-valued random
variable with Qn � 1 if and only if the learner using Algorithm 23 requests the label in
round n. Observe that Qn � 1{xn∈(bl ,bu]} for the values of bl , bu at the start of round n. In
particular, if xn ∈ (bl , bu), then some hypothesis consistent with all previous examples
(x1, hb∗(x1)), . . . , (xn−1, hb∗(xn−1))makes a mistake on xn . Since H has VC dimension one,
Theorem 2.15 implies that in the realizable iid setting, for any δ ∈ (0, 1), with probability at
least 1 − δ (over the choices of the first n − 1 examples), every consistent hypothesis has
error rate at most

εn−1,δ :�
4 ln(2n − 1) + 4 ln(4/δ)

n − 1
.

CHAPTER 2. CONCEPT LEARNING 47

This implies that there is an event En of probability at least 1 − δ (over the choices of the
first n − 1 examples) such that Pr(xn ∈ (bl , bu) | En) ≤ εn−1,δ. Therefore, in this setting,

Pr(Qn � 1) ≤ min{1, εn−1,δ + δ}.

Since this holds for any δ ∈ (0, 1), we choose δ to minimize the bound. So the expected
number of labels requested after n rounds can be obtained by summing up the Pr(Qi � 1)
for i � 1, . . . , n.

Theorem 2.18. In the realizable iid setting, the expected number of labels requested by a learner
using Algorithm 23 after n rounds is

O
(
log2 n

)
.

This is a dramatic improvement over requesting all n labels after n rounds.

2.3.3 Selective Consistent Hypothesis algorithm
We now give a generalization of Algorithm 23 that works with an arbitrary hypothesis class
H. This algorithm is called the Selective Consistent Hypothesis algorithm (Algorithm 24).
For simplicity, we only consider hypothesis classes of {±1}-valued functions (i.e., binary
classification).

Algorithm 24 depends on an algorithmA that finds a hypothesis in H consistent with
a given set of labeled examples (much like the one for linear threshold functions described
in Section 2.1.3); it returns ⊥ if no such hypothesis in H exists.

Algorithm 24 maintains a set of labeled examples S and a current hypothesis h. In each
round n, the algorithm A is used to check if there is a hypothesis h′ that agrees with h
on all examples in S but disagrees with h on a new point xn . If no such h′ exists, then the
label of xn is not needed.

Theorem 2.19 (Selective Consistent Hypothesis). In the realizable setting (with h∗ ∈ H being
the target concept), the set of labeled examples S maintained by a learner using Algorithm 24
(Selective Consistent Hypothesis) satisfies the following properties:

1. h∗ is consistent with all labeled examples in S at all times;

2. every h ∈ H consistent with all labeled examples in S at the start of round t is consistent with
all examples (x1, h∗(x1)), . . . , (xn−1, h∗(xn−1)) from previous rounds, including rounds in
which a label is not requested.

Proof. The first property is true by definition (since we are considering the realizable
setting). For the second property, observe that a learner using Algorithm 24 only forgoes a
label yi if every hypothesis in H consistent with S (at the start of round i) agrees on the
label of xi ; since this includes h∗, it means that every such hypothesis is consistent with
(xi , h∗(xi)). �

CHAPTER 2. CONCEPT LEARNING 48

Algorithm 24 Selective Consistent Hypothesis algorithm
Require: A, algorithm for finding hypothesis in H consistent with a given set of labeled

examples.
1: Let S :� ∅, and let h :� A(S).
2: for n � 1, 2, . . . do
3: Receive object: xn ∈ X.
4: Make prediction: an :� h(xn).
5: Let h′ :� A(S ∪ {(xn ,−an)}).
6: if h′ , ⊥ then
7: Request label: yn ∈ Y.
8: Let S :� S ∪ {(xn , yn)}.
9: if yn , an then h :� h′. end if
10: end if
11: end for

Theorem 2.19 shows that the Selective Consistent Hypothesis algorithm (Algorithm 24)
behaves like the Consistent Hypothesis algorithm (Algorithm 13). Thus, in the realizable iid
setting, if H has VC dimension d, then for any ε, δ ∈ (0, 1), the learner using Algorithm 24
finds a hypothesis h ∈ H with error rate at most ε after

O
(

d log(1/ε) + log(1/δ)
ε

)
rounds.

To analyze howmany labels are requested by a learner using Algorithm 24, we consider
the metric structure over the hypothesis class H arising from the marginal distribution PX
of P over X. Specifically, define the pseudometric ρ over H by

ρ(h , h′) :� PX({x ∈ X : h(x) , h′(x)}), h , h′ ∈ H.

The pseudometric ρ is non-negative, symmetric, and satisfies the triangle inequality. (It
is technically not a metric because it is possible that ρ(h , h′) � 0 even though h , h′.) A
ρ-ball of radius r ≥ 0 around some h ∈ H is denoted by

B(h , r) :� {h′ ∈ H : ρ(h , h′) ≤ r}.

Define the disagreement region D(h ,V) for V ⊆ H around h ∈ H by

D(h ,V) :� {x ∈ X : ∃h′ ∈ V � h(x) , h′(x)}.

For shorthand, we write D(h , r) :� D(h , B(h , r)). Finally, we define Alexander’s capacity
function τ by

τ(h , r) :�
PX(D(h , r))

r
, h ∈ H, r > 0.

The supremum of τ(h∗, r) over r > 0 is called the disagreement coefficient.

CHAPTER 2. CONCEPT LEARNING 49

Exercise 2.8. Verify the non-negativity, symmetry, and triangle inequality for the pseudo-
metric ρ.

Exercise 2.9. Let PX be the uniform distribution on the interval [0, 1] ⊂ R, and let H be the
class of threshold functions (c.f. Section 2.2.7). Show that τ(h , r) ≤ 2 for all h ∈ H and
r > 0.

Exercise 2.10. Let PX be the uniform distribution on the interval [0, 1] ⊂ R, and let H be the
class of interval functions (c.f. Section 2.2.7). Define p(h) :� PX({x ∈ [0, 1] : h(x) � 1}) for
h ∈ H. Show that τ(h , r) ≤ max{4, 1/p(h)} for all h ∈ H and r > 0.

Proposition 2.1. Let PX be the uniform distribution on the unit sphere Sd−1 :� {x ∈ Rd : ‖x‖2 �

1} ⊂ Rd , and let H be the class of homogeneous linear threshold functions in Rd (c.f. Section 2.1.3).
There is an absolute constant C > 0 such that

τ(h , r) ≤ C ·
√

d , h ∈ H, r > 0.

Proof. Every homogeneous linear threshold functionmay be represented by a weight vector
in the unit sphere Sd−1. Indeed, we have

ρ(w , w′) � cos−1(〈w , w′〉)
π

, w , w′ ∈ Sd−1.

(We abuse notation and identify each hw ∈ H by its weight vector w ∈ Sd−1.) This implies

B(w , r) � {w′ ∈ Sd−1 : 〈w , w′〉 ≥ cos(πr)},
D(w , r) � {x ∈ Sd−1 : 〈w , x〉2 ≤ sin2(πr)}, w ∈ Sd−1, r ≥ 0.

Fixed w ∈ Sd−1, and consider a uniformly random unit vector x. It is well-known that
〈w , x〉2 has a Beta(1/2, (d − 1)/2) distribution. So τ(w , r) can be computed directly from
the Beta(1/2, (d − 1)/2) distribution function.

A coarse bound can also be obtained by using the fact that the distribution of 〈w , x〉2 is
the same as that of

z2
1

z2
1 + · · · + z2

d

,

where z1, . . . , zd are iid standard normal random variables. Therefore, assuming d > 1 and
r < 1/(π

√
d),

Pr

(
z2

1

z2
1 + · · · + z2

d

≤ sin2(πr)
)
≤ πr

√
d
(
1 +

1 − π2r2d
d − 1

) d−1
2

by a Chernoff-type bound. � D: Prove this.

CHAPTER 2. CONCEPT LEARNING 50

Define Vn−1 to be the subset of hypotheses consistent with S at the start of round n. We
know from Theorem 2.15 that for any δ ∈ (0, 1), with probability at least 1 − δ, we have

Vn−1 ⊆ B(h∗, εH,n−1,δ),

where

εH,n−1,δ :�
4 ln(ΠH(2(n − 1))) + 4 ln(8/δ)

n − 1
≤ 4d ln(2n − 1) + 4 ln(4/δ)

n − 1
.

Conditional on this event (which we call En), if a label is requested in round n (i.e., Step 7 is
executed in round n), then there exist h , h′ ∈ Vn−1 ⊆ B(h∗, εH,n−1,δ) such that h(xn) , h′(xn);
one of these two hypotheses disagrees with h∗, and thus

xn ∈ D(h∗, εH,n−1,δ).

Therefore, the probability of a label request in round n is at most

Pr(xn ∈ D(h∗, εH,n−1,δ) | En) + (1 − Pr(En)) ≤ τ(h∗, εH,n−1,δ) · εH,n−1,δ + δ.

To obtain a bound on the expected number of label requests, we bound τ(h∗, εH,n−1,δ) by
supr>0 τ(h∗, r), and sum (the bounds on) these probabilities. This is potentially loose, but
at least applicable in certain cases of interest (e.g., Proposition 2.1).

Theorem 2.20 (Selective Consistent Hypothesis label request bound). In the realizable iid
setting, the expected number of labels requested by a learner using Algorithm 24 (Selective Consistent
Hypothesis) after n rounds is at most

O

(
sup
r>0

τ(h∗, r) · d log2 n

)
,

where d is the VC dimension of the hypothesis class H, and h∗ ∈ H is the target concept.

2.3.4 Selective Empirical Risk Minimization algorithm
Algorithm 24 only makes sense in the realizable setting (like Algorithm 13), because there
may be no hypotheses in H consistent with (x1, y1), . . . , (xn , yn). To handle the agnostic
setting, we look to ERM. Again, we only consider {±1}-valued hypotheses.

A preliminary version of a Selective ERM algorithm (Algorithm 25) depends an ERM-like
algorithmA with two operating modes5:

1. Given labeled examples S, it returns an ERM hypothesis h ∈ arg minh′∈H errS(h′).

2. Given labeled examples S and a distinguished example (x′, y′), it returns a minimizer
of the empirical risk on S subject to the constraint h(x′) , y′. In other words, it returns
an ERM hypothesis for the constrained hypothesis class {h′ ∈ H : h′(x′) , y′}.

5In fact, only the second mode ofA is needed, as it can be used to implement the first mode.

CHAPTER 2. CONCEPT LEARNING 51

For a sequence of labeled examples S and hypothesis h, we use errS(h) to denote the
empirical risk of h on the examples in S. (If S is empty, then errS(h) � 0.)

In each round n, Algorithm 25 attempts to determine the label of xn assigned by a
risk minimizing hypothesis h∗ ∈ arg minh∈H errP(h). If it cannot determine this label, it
requests the label yn . Otherwise, it uses a predicted label an for xn .

Algorithm 25 Selective Empirical Risk Minimization algorithm, preliminary version
Require: A, an ERM-like algorithm as described at the beginning of Section 2.3.4; δ ∈ (0, 1).

1: Let S0 :� ∅, h0 :� A(S0), β0 :� ∞.
2: for n � 1, 2, . . . do
3: Receive object: xn ∈ X.
4: Make prediction: an :� hn−1(xn).
5: Let h′n−1 :� A(Sn−1; (xn , an)).
6: if errSn−1(h′n−1) − errSn−1(hn−1) ≤ 2βn−1 then
7: Request label: yn ∈ Y.
8: Let Sn :� Sn−1 ∪ {(xn , yn)}.
9: else
10: Let Sn :� Sn−1 ∪ {(xn , an)}.
11: end if
12: Let hn :� A(Sn), βn :� Radn(H ∪ −H) +

√
ln(n(n+1)/δ)

2n .
13: end for

The idea behind the rule in Step 7 of Algorithm 25 is as follows. Suppose hn−1 is the ERM
hypothesis based on Sn−1, and h′n−1 � A(Sn−1, (xn , hn−1(xn))), so the hypothesis h′n−1 is
forced to disagreewith hn−1 on xn . Note that the empirical risk of h′n−1 on Sn−1 is at least that
of hn−1 (by definition of hn−1). If, however, the empirical risk of h′n−1 ismuch higher than that
of hn−1, then one can conclude that h∗ cannot be in the set {h ∈ H : h(xn) , hn−1(xn)}—i.e.,
we can conclude h∗(xn) � hn−1(xn).

The quantities βn in Algorithm 25 are used to determine how large errSn−1(h′n−1) −
errSn−1(hn−1)must be to forgo the label yn . They are derived from the maximum deviation
bounds in Theorem 2.12, with δ replaced by δ/(n(n + 1)) so that the bounds hold for all n
with probability at least 1 − δ.6

The maximum deviation bounds from Theorem 2.12 are for iid samples; however, on
account of the predicted labels ai , which are used whenever the yi are not requested, the
labeled examples in Sn are generally not iid. Indeed, even for a fixed hypothesis h, errSn (h)
is not necessarily an unbiased estimator for errP(h) (unlike errPn (h), which is unbiased).

However, if every predicted label ai in Sn is equal to h∗(xi), then hypotheses that agree
with h∗ on examples with predicted labels can only appear better. This is formalized in the

6The dependence on H and δ is suppressed in βn . Also, in place Radn(H ∪ −H) in βn , one may instead
use the empirical bound based on Equation (2.7) (which hold with high probability).

CHAPTER 2. CONCEPT LEARNING 52

following lemma.

Lemma 2.5 (Favorable bias). If ai � h∗(xi) for every example in Sn where ai is used in place of
yi , then, for any hypothesis h : X → {±1}:

1. errSn (h) − errSn (h∗) ≥ errPn (h) − errPn (h∗);

2. errSn (h) ≤ errPn (h) + errPn (h∗);

3. errSn (h∗) ≤ errPn (h∗).

Proof. Recall that each of the empirical risk differences (errSn (h) − errSn (h∗) and errPn (h) −
errPn (h∗)) is an average of values from {−1, 0,+1}. Consider any i ∈ [n]where ai is used in
place of yi in Sn . Now consider any hypothesis h. If h(xi) � h∗(xi), then the i-th example
has no contribution to either empirical risk differences. If h(xi) , h∗(xi), then the i-th
example has a positive contribution to errSn (h) − errSn (h∗), which is at least the contribution
to errPn (h) − errPn (h∗). This proves the first inequality. The other inequalities are proved
similarly. �

This means that, when compared relative to h∗, hypotheses that disagree with h∗ on
examples with predicted labels appear worse under errSn than they do under errPn . Thus,
even though errSn (h) is biased (as an estimator for errP(h)), the bias is favorable in that it
steers ERM towards h∗, which is desirable.

For n ≥ 0, let En be the event that

| errP(h) − errPn (h)| ≤ βn , h ∈ H,

where βn is defined in Algorithm 25. The inequality is trivial for n � 0, and by Theorem 2.12
and a union bound, we have Pr(∩n≥0En) ≥ 1 − δ.

We now give a theorem that includes the risk bounds for Algorithm 25.

Theorem 2.21 (Selective ERM, preliminary version). In the agnostic iid setting (with any fixed
h∗ ∈ arg minh∈H errP(h)), for any n ≥ 1, the labeled examples and hypotheses maintained by a
learner using Algorithm 25 (Selective ERM, preliminary version) through round n satisfy the
following, assuming ∩n−1

m�0Em holds.

1. For all m ∈ {0, . . . , n − 1}, if errSm (h′m) − errSm (hm) > 2βm , then am+1 � h∗(xm+1).

2. For all m ∈ {0, . . . , n − 1}, Reg(hm ,H) ≤ 2βm .

Proof. We prove that the first claim holds for all n ≥ 1 by induction; the second claim is
established later. The base case (n � 1) is trivial because β0 � ∞. So fix n ≥ 1, and assume
as the inductive hypothesis that the first claim holds, as well as En . This implies that
am � h∗(xm) for every example in Sn where am is used in place of ym . Thus, by Lemma 2.5
and the assumption of event En , we have

errSn (h∗) − errSn (hn) ≤ errPn (h∗) − errPn (hn) ≤ errP(h∗) − errP(hn) + 2βn ≤ 2βn . (2.9)

CHAPTER 2. CONCEPT LEARNING 53

Now suppose an+1 , h∗(xn+1). Then h′n(xn+1) � h∗(xn+1), and by definition of h′n and
Lemma 2.5, and Equation (2.9)

errSn (h′n) − errSn (hn) ≤ errSn (h∗) − errSn (hn) ≤ 2βn .

This completes the inductive proof.
Now we prove the second claim. The first claim of the present theorem implies the

preconditions of Lemma 2.5. Thus, for any m ∈ {0, . . . , n − 1}, using Lemma 2.5 and the
properties of ERM on the event Em , we have

Reg(hm ,H) � errP(hm) − errP(h∗)
≤ errPm (hm) − errPm (h∗) + 2βm

≤ errSm (hm) − errSm (h∗) + 2βm

≤ 2βm . �

The second claim in Theorem 2.21 is the essentially same as the ERM guarantee from
Theorem 2.12, except for the replacing of δ by δ/(m(m + 1)) in βm so that the guarantee
holds for all m ∈ {0, . . . , n − 1}.

We now analyze the number of labels requested by a learner using Algorithm 25. The
analysis follows that of Algorithm 24.

Lemma 2.6. Fix any n ≥ 1, and assume ∩n−1
m�0Em holds. If errSn−1(h′n−1) − errSn−1(hn−1) ≤ 2βn−1,

then xn ∈ D(h∗, 2 errP(h∗) + 4βn−1).

Proof. Assume ∩n−1
m�0Em holds and errSn−1(h′n−1) − errSn−1(hn−1) ≤ 2βn−1. We first show that

there exists a hypothesis h ∈ H such that h(xn) , h∗(xn) and errP(h) ≤ errP(h∗) + 4βn−1.
There are two cases to consider: hn−1(xn) � h∗(xn) and hn−1(xn) , h∗(xn). Suppose first
that hn−1(xn) � h∗(xn). Then we have

errP(h′n−1) − errP(h∗) ≤ errPn−1(h′n−1) − errPn−1(h∗) + 2βn−1

≤ errSn−1(h′n−1) − errSn−1(h∗) + 2βn−1

≤ errSn−1(h′n−1) − errSn−1(hn−1) + 2βn−1

≤ 4βn−1.

Above, the first inequality uses the maximum deviation bounds that hold on En−1; the
second inequality uses Lemma 2.5 (which is applicable on account of the first claim of
Theorem 2.21); the third inequality uses the definition of hn−1; the fourth inequality holds
by assumption. Now instead suppose that hn−1(xn) , h∗(xn). Then by a similar argument
as before,

errP(hn−1) − errP(h∗) ≤ errPn−1(hn−1) − errPn−1(h∗) + 2βn−1

≤ errSn−1(hn−1) − errSn−1(h∗) + 2βn−1

≤ 2βn−1.

CHAPTER 2. CONCEPT LEARNING 54

So let h ∈ H be such that h(xn) , h∗(xn) and errP(h) ≤ errP(h∗) + 4βn−1. By the triangle
inequality,

ρ(h∗, h) ≤ errP(h∗) + errP(h) ≤ 2 errP(h∗) + 4βn−1.

Since h(xn) , h∗(xn), it follows that xn ∈ D(h∗, 2 errP(h∗) + 4βn−1). �

Lemma 2.6 implies that conditional on ∩n−1
m�0Em , the probability that a learner using

Algorithm 25 requests the label yn is at most τ(h∗, 2 errP(h∗) + 4βn−1) · (2 errP(h∗) + 4βn−1).
To obtain a bound on the expected number of label requests, we use the fact that Radm(H ∪
−H) � O(

√
(d log m)/m) when H has VC dimension d, and sum (the bounds on) these

probabilities.

Theorem 2.22 (Selective ERM, preliminary version, label request bound). In the agnostic iid
setting, the expected number of labels requested by a learner using Algorithm 25 (Selective ERM,
preliminary version) after n rounds is at most

sup
r>0

τ(h∗, r) ·
(
2 errP(h∗) · n + O

(√
dn log n

))
.

where d is the VC dimension of the hypothesis class H, and h∗ ∈ arg minh∈H errP(h) is a fixed risk
minimizer.

The bound on the expected number of label requests grows linearly with n when
errP(h∗) > 0. This turns out to be unavoidable without further assumptions on the
distribution P and hypothesis class H.

When errP(h∗) � 0, the bound from Theorem 2.22 is worse than the bound from
Theorem 2.20 (

√
n log n vs. log2 n). This deficiency of Algorithm 25 comes from the use

of the maximum deviation bound from Theorem 2.12. This can be rectified by replacing
the βn in Algorithm 25 with quantities based on relative deviation bounds, similar to
those from Theorem 2.16. This replacement is non-trivial because the bounds depend on
empirical risks, but errSn (h) , errPn (h) in general.

2.3.5 Improved Selective Empirical Risk Minimization algorithm
We now give an improved version of Algorithm 25 as suggested at the end of Section 2.3.4.
The improved Selective ERM algorithm is shown in Algorithm 26 (again, only for binary
classification).

Algorithm 26 is based on the following relative deviation bound, which is slightly
different from that in Theorem 2.16.

Theorem 2.23 (Error rate difference bounds). Let H be a hypothesis class. In the agnostic iid
setting, for any n and δ ∈ (0, 1), the following hold with probability at least 1 − δ:�� (errPn (h) − errPn (h∗)

)
−

(
errP(h) − errP(h∗)

) �� ≤ 2
√
ρ∧(h , h∗) · εH,n ,δ + εH,n ,δ , h ∈ H,

CHAPTER 2. CONCEPT LEARNING 55

Algorithm 26 Selective Empirical Risk Minimization algorithm, improved version
Require: A, an ERM-like algorithm as described at the beginning of Section 2.3.4; δ ∈ (0, 1).

1: Let S0 :� ∅, h0 :� A(S0), γ0(r) :� ∞ for r ≥ 0.
2: for n � 1, 2, . . . do
3: Receive object: xn ∈ X.
4: Make prediction: an :� hn−1(xn).
5: Let h′n−1 :� A(Sn−1; (xn , an)).
6: if errSn−1(h′n−1) − errSn−1(hn−1) ≤ γn−1(errSn−1(hn−1) + errSn−1(h′n−1)) then
7: Request label: yn ∈ Y.
8: Let Sn :� Sn−1 ∪ {(xn , yn)}.
9: else
10: Let Sn :� Sn−1 ∪ {(xn , an)}.
11: end if
12: Let hn :� A(Sn), γn(r) :� 2√r · εH,n ,δ/(n(n+1)) + εH,n ,δ/(n(n+1)) for r ≥ 0.
13: end for

where

εH,n ,δ :�
4 ln(ΠH(2n)) + 4 ln(8/δ)

n
, ρ∧(h , h′) :� min{ρ(h , h′), ρn(h , h′)},

ρ(h , h′) :� PX({x ∈ X : h(x) , h′(x)}), ρn(h , h′) :� 1
n

n∑
i�1

1{h(xi),h′(xi)} .

Exercise 2.11. Use Theorem 2.16 to prove Theorem 2.23.

We also use the following bound on ρn(h , h′) in terms of empirical risks on Sn :

ρn(h , h′) ≤ errSn (h) + errSn (h′), (2.10)
ρ(h , h′) ≤ errP(h) + errP(h′). (2.11)

For n ≥ 0, let En be the event that(
errPn (h) − errPn (h′)

)
−

(
errP(h) − errP(h′)

)
≤ γn(ρ∧(h , h′)), h , h′ ∈ H. (2.12)

The inequality is trivial for n � 0, and by Theorem 2.23 and a union bound, we have
Pr(∩n≥0En) ≥ 1 − δ.

The following theorem is an analogue of Theorem 2.21 for Algorithm 26.

Theorem 2.24 (Selective ERM, improved version). In the agnostic iid setting (with any fixed
h∗ ∈ arg minh∈H errP(h)), for any n ≥ 1, the labeled examples and hypotheses maintained by
a learner using Algorithm 25 (Selective ERM, improved version) through round n satisfy the
following, assuming ∩n−1

m�0Em holds.

CHAPTER 2. CONCEPT LEARNING 56

1. For all m ∈ {0, . . . , n − 1}, if errSm (h′m) − errSm (hm) > γm(errSm (hm) + errSm (h′m)), then
am+1 � h∗(xm+1).

2. For all m ∈ {0, . . . , n − 1}, Reg(hm ,H) ≤ γm(ρ∧(h∗, hm)).

Proof. We prove that the first claim holds for all n ≥ 1 by induction; the second claim is
established later. The base case (n � 1) is trivial because γ0 ≡ ∞. So fix n ≥ 2, and assume
as the inductive hypothesis that the first claim holds, as well as En . This implies that
am � h∗(xm) for every example in Sn where am is used in place of ym . Thus, by Lemma 2.5
and Equation (2.12), we have

errSn (h∗) − errSn (hn) ≤ errPn (h∗) − errPn (hn)
≤ errP(h∗) − errP(hn) + γn(ρ∧(h∗, hn))
≤ γn(ρ∧(h∗, hn)). (2.13)

Now suppose an+1 , h∗(xn+1). Then h′n(xn+1) � h∗(xn+1), and hence errSn (h′n) ≤ errSn (h∗).
If errSn (h′n) ≤ εH,n ,δ/(n(n+1)), then errSn (h′n) − errSn (h′n) ≤ γn(errSn (hn) + errSn (h′n)). So
assume instead that errSn (h′n) > εH,n ,δ/(n(n+1)). Define

F(x) :� x − errSn (hn) − γn(x + errSn (hn)), x ≥ 0,

and observe that by Equation (2.13) and Equation (2.10), we have F(errSn (h∗)) ≤ 0. It can
be checked that F is non-decreasing on x ≥ εH,n ,δ/(n(n+1)) − errSn (hn). Therefore,

F(errSn (h′n)) ≤ F(errSn (h∗)) ≤ 0,

which implies
errSn (h′n) − errSn (hn) ≤ γn(errSn (h′n) + errSn (hn)).

This completes the inductive proof.
Now we prove the second claim. The first claim of the present theorem implies the

preconditions of Lemma 2.5. Thus, for any m ∈ {0, . . . , n − 1}, using Lemma 2.5 and
Equation (2.12), we have

Reg(hm ,H) � errP(hm) − errP(h∗)
≤ errPm (hm) − errPm (h∗) + γm(ρ∧(h∗, hm))
≤ errSm (hm) − errSm (h∗) + γm(ρ∧(h∗, hm))
≤ γm(ρ∧(h∗, hm)). �

We now analyze the number of labels requested by a learner using Algorithm 26,
following the same basic argument that was carried out for Algorithm 25, with a few
adjustments due to the different deviation bound.

Lemma 2.7. Fix any n ≥ 1, and assume ∩n−1
m�0Em holds. If errSn−1(h′n−1) − errSn−1(hn−1) ≤

γn−1(errSn−1(h′n−1) + errSn−1(hn−1)), then xn ∈ D(h∗, 2 errP(h∗) + C
√

errP(h∗)εn−1 + Cεn−1) for
some absolute constant C > 0, where εn−1 :� εH,n−1,δ/((n−1)n).

CHAPTER 2. CONCEPT LEARNING 57

Proof. Assume ∩n−1
m�0Em holds and that

errSn−1(h′n−1) − errSn−1(hn−1) ≤ γn−1(errSn−1(h′n−1) + errSn−1(hn−1)).

By the first claim of Theorem 2.24, the preconditions of Lemma 2.5 hold. We first
show that there exists a hypothesis h ∈ H such that h(xn) , h∗(xn) and errP(h) ≤
errP(h∗) + C

√
errP(h∗)εn−1 + Cεn−1 for some absolute constant C > 0. There are two cases

to consider: hn−1(xn) � h∗(xn) and hn−1(xn) , h∗(xn). Suppose first that hn−1(xn) � h∗(xn).
Then

errPn−1(h′n−1) − errPn−1(h∗) ≤ errSn−1(h′n−1) − errSn−1(h∗)
≤ errSn−1(h′n−1) − errSn−1(hn−1)
≤ γn−1(errSn−1(h′n−1) + errSn−1(hn−1))
≤ γn−1(errSn−1(h′n−1) + errSn−1(h∗))
≤ γn−1(errPn−1(h′n−1) + 2 errPn−1(h∗)).

Above, the first and last inequalities use Lemma 2.5; the second and second-to-last
inequalities use the definition of hn−1; the third inequality holds by assumption. Solving
the inequality for errPn−1(h′n−1) gives

errPn−1(h′n−1) ≤ errPn−1(h∗) + C1
√

errPn−1(h∗)εn−1 + C1εn−1

for some absolute constant C1 > 0. Therefore, by Equation (2.12) and Equation (2.11),

errP(h′n−1) ≤ errP(h∗) + C1
√

errPn−1(h∗)εn−1 + C1εn−1 + γn−1(ρ∧(h′n−1, h
∗))

≤ errP(h∗) + C1
√

errPn−1(h∗)εn−1 + C1εn−1 + γn−1(errP(h′n−1) + errP(h∗)).

Solving the inequality for errP(h′n−1) gives

errP(h′n−1) ≤ errP(h∗) + C2
√

errP(h∗)εn−1 + C2εn−1

for some absolute constant C2 > 0.
Now instead suppose that hn−1(xn) , h∗(xn). Then

errP(hn−1) − errP(h∗) ≤ errPn−1(hn−1) − errPn−1(h∗) + γn−1(ρ∧(hn−1, h∗))
≤ errSn−1(hn−1) − errSn−1(h∗) + γn−1(ρ∧(hn−1, h∗))
≤ γn−1(ρ∧(hn−1, h∗))
≤ γn−1(errP(hn−1) + errP(h∗)).

Above, the first inequality uses Equation (2.12); the second inequality uses Lemma 2.5;
the third inequality uses the definition of hn−1; the fourth inequality uses Equation (2.11).
Solving the inequality for errP(hn−1) gives

errP(hn−1) ≤ errP(h∗) + C3
√

errP(h∗)εn−1 + C3εn−1

CHAPTER 2. CONCEPT LEARNING 58

for some absolute constant C3 > 0.
So let h ∈ H be such that h(xn) , h∗(xn) and errP(h) ≤ errP(h∗)+C

√
errP(h∗)εn−1+Cεn−1

for some absolute constant C > 0. By the triangle inequality,

ρ(h∗, h) ≤ errP(h∗) + errP(h) ≤ 2 errP(h∗) + C
√

errP(h∗)εn−1 + Cεn−1.

Since h(xn) , h∗(xn), it follows that xn ∈ D(h∗, 2 errP(h∗) + C
√

errP(h∗)εn−1 + Cεn−1). �

Theorem 2.25 (Selective ERM, improved version, label request bound). In the agnostic iid
setting, the expected number of labels requested by a learner using Algorithm 26 (Selective ERM,
improved version) after n rounds is at most

sup
r>0

τ(h∗, r) ·
(
2 errP(h∗) · n + O

(√
errP(h∗) · dn log n + d log2 n

))
.

where d is the VC dimension of the hypothesis class H, and h∗ ∈ arg minh∈H errP(h) is a fixed risk
minimizer.

2.4 Bibliographic references
The Halving mistake bound is due to Barzdin and Freivald (1972). The Standard Optimal
Algorithm and the optimal mistake bounds for online classification are due to Littlestone
(1988). The Perceptron algorithm is due to Rosenblatt (1958), and its mistake bound was
proved by Block (1962) and Novikoff (1962). The algorithm and analysis for multi-class
classification with bandit feedback is due to Long (2017).

The online-to-batch conversion is due to Angluin (1988), and the improvement men-
tioned is due to Littlestone (1989). The general iid setting of statistical learning and
empirical risk minimization date back to the work of Vapnik and Chervonenkis (1971),
while the realizable iid setting was defined by Valiant (1984) as the PAC model. The
maximum deviation bounds in terms of Rademacher complexity are due to Bartlett and
Mendelson (2002). Vapnik and Chervonenkis (1971) defined the Vapnik-Chervonenkis (VC)
dimension and also proved maximum deviation bounds (which are also called uniform
convergence bounds) and relative deviation bounds given in terms of VC dimension. The
Sauer-Shelah lemma was proved by Sauer (1972) and Shelah (1972).

The Selective Consistent Hypothesis algorithm is due to Cohn et al. (1994), and the
analysis is due to Hsu (2010). Alexander’s capacity function was studied by Alexander
(1987) and Giné and Koltchinskii (2006); its supremum was called the disagreement
coefficient and first used to analyze active learning algorithms by Hanneke (2007). The
Selective ERM algorithms and their analyses are simplifications of algorithms and analyses
due to Dasgupta et al. (2007) and Hsu (2010). In particular, the improved Selective ERM
algorithm is based on an analysis due to Hsu (2010) and Zhang (2015).

Bibliography

K. S. Alexander. Rates of growth and sample moduli for weighted empirical processes
indexed by sets. Probability Theory and Related Fields, 75(3):379–423, 1987.

D. Angluin. Queries and concept learning. Machine learning, 2(4):319–342, 1988.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed
bandit problem. SIAM J. Comput., 32(1):48–77, 2002.

P. L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

J. M. Barzdin and R. V. Freivald. On the prediction of general recursive functions. Soviet
Math. Doklady, 13:1224–1228, 1972.

H. D. Block. The perceptron: A model for brain functioning. Reviews of Modern Physics,
34:123–135, 1962.

D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active learning. Machine
learning, 15(2):201–221, 1994.

T. M. Cover. Behavior of sequential predictors of binary sequences. Transactions on Prague
Conference on Information Theory Statistical Decision Functions, Random Processes, pages
263–272, 1965.

S. Dasgupta, D. Hsu, and C. Monteleoni. A general agnostic active learning algorithm. In
Advances in neural information processing systems, 2007.

Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and
an application to boosting. J. Comput. Syst. Sci., 55(1):119–139, 1997.

Y. Freund and R. E. Schapire. Adaptive game playing using multiplicative weights. Games
and Economic Behavior, 29:79–103, 1999.

E. Giné and V. Koltchinskii. Concentration inequalities and asymptotic results for ratio
type empirical processes. The Annals of Probability, 34(3):1143–1216, 2006.

59

BIBLIOGRAPHY 60

S. Hanneke. A bound on the label complexity of agnostic active learning. In Proceedings of
the 24th international conference on Machine learning, pages 353–360. ACM, 2007.

D. G. Horvitz and D. J. Thompson. A generalization of sampling without replacement
from a finite universe. Journal of the American Statistical Association, 47:663–675, 1952.

D. Hsu. Algorithms for Active Learning. PhD thesis, University of California, San Diego,
2010.

N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Inf. Comput.,
108(2):212–261, 1994.

N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Machine Learning, 2:285–318, 1988.

N. Littlestone. From on-line to batch learning. In Proceedings of the second annual workshop
on Computational learning theory, pages 269–284, 1989.

P. M. Long. New bounds on the price of bandit feedback for mistake-bounded online
multiclass learning. In Proceedings of the 28th International Conference on Algorithmic
Learning Theory, 2017.

A. B. J. Novikoff. On convergence proofs on perceptrons. In Proceedings of the Symposium on
the Mathematical Theory of Automata, volume 12, pages 615–622, 1962.

F. Rosenblatt. The perceptron: A probabilistic model for information storage and organiza-
tion in the brain. Psychological Review, 65(6):386–408, 1958.

N. Sauer. On the density of families of sets. Journal of Combinatorial Theory, Series A,
13(1):145–147, 1972.

S. Shelah. A combinatorial problem; stability and order for models and theories in infinitary
languages. Pacific Journal of Mathematics, 41(1):247–261, 1972.

L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

V. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequencies of
events to their probabilities. Theory of Probability and its Applications, 16(2):264, 1971.

C. Zhang. Personal communication, 2015.

	Experts and bandits
	Expert advice
	The setting
	If one expert is perfect …
	If one expert is nearly perfect …
	Regret
	Randomization

	Linear loss game on the simplex
	The setting
	Hedge
	Entropy maximization

	Prediction with partial feedback
	The setting
	Inverse probability weighting
	Hedging over actions with bandit feedback
	Hedging over experts with bandit feedback

	Bibliographic references

	Concept learning
	Online classification
	Learning concepts from examples
	Basic setting
	Linear threshold functions
	Multi-class classification
	Multi-class classification with bandit feedback

	Statistical framework
	The setting
	Mistake bounds to error rate bounds
	Consistent Hypothesis algorithm
	Empirical Risk Minimization
	Maximum deviation bounds for finite classes
	Maximum deviation bounds for infinite classes
	Vapnik-Chervonenkis dimension
	Relative deviations

	Selective sampling
	The setting
	Threshold functions
	Selective Consistent Hypothesis algorithm
	Selective Empirical Risk Minimization algorithm
	Improved Selective Empirical Risk Minimization algorithm

	Bibliographic references

