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1 Motivation from empirical processes

Our motivation comes from the study of the supremum of an empirical process.
Let Z be an abstract space, and F be a family of real-valued functions on Z.
For any 21,...,2, € Z, we write

‘F(len) = {<f<zl)7 . >f(zn)) : f S F}
to be the behaviors of F on 21, 1= (21,...,2,) € Z™.

Theorem. Let P be a probability distribution on Z, and let P, be the
empirical distribution on Z1,..., 72, ~ijq P. Let F be a family of real-valued
functions on Z. Then

Esup|Pf — P.f| <2-ERad,(F(Z10))
feF

where for A C R",
Rad,(A) := Eysup |(o, a),|.
acA
Above, o = (01, ...,0,) is vector of iid Rademacher random variables, E, is
expectation conditional on everything except o, and (u,v), = %Z?ﬂ Uv; 18
the normalized inner product.

1.1 A variation

In some applications, we are primarily interested in a different empirical

process, namely

sup Pf —P,f.
feF

The same proof establishes

Esup Pf — B,f <2-ERad) (F(Z1.,))
fer



where for A C R",
Rad) (A) := E, sup(o, a),.

acA

(The notation Rad), is non-standard.) Relative to the theorem above, the
absolute values are omitted both in the empirical process and in Rad/. In
some texts, similar notation is used for Rad,, and Rad, although there are
some subtle differences between the two (notably in the Contraction Lemma,
below). Note that for any A C R", we have

Rad, (AU —A) = Rad,(A).

1.2 Use with VC classes

Recall that if F is a family of {£1}-valued functions on Z, then its VC
dimension is the size of the largest set in Z that is shattered by F, i.e.,
the largest n such that there exists z1,..., 2, € Z such that |F(z1.,)| = 2".
Sauer’s lemma states that for any z1,...,2, € Z,

Fanl< £ (1) = ()

where d is the VC dimension of F.
Therefore, if F has VC dimension d, then for any zq,...,z2, € Z,
{{o,a), :a € F(z1)}

is a collection of (fd) subgaussian random variables, each with variance proxy
1/n. By Massart’s finite lemma, we have

21n(2 . 2In(2("
E; sup [{o,a)ul :J 227Gl | 2,
(16]:(2’1;”) n n
Therefore,
2In(2()))
Esup |Pf — Pof| < 2-ERad,(F(Z1.0)) <2+ —— =2
feF n



2 Properties of Rad, and Rad),

There are several properties of Rad,, that are frequently used in learning
theory applications. Here are some relatively simple ones:

o If AC B, then Rad,(A) < Rad,(B).
« Rad,(A+ B) < Rad,(A4) + Rad,(B).
e Rad,(cA) = |c| Rad,(A).
« Rad,(absconv(A)) = Rad,(A), where
absconv(A) := conv(AU —A).

All but the third property are shared by Rad,, and the second property can
be refined:

« Rad, (A + B) = Rad),(A) + Rad,(B).
« Rad) (cA) < |c|Rad] (A).

A highly non-obvious property of Rad, and Rad/, is given by the Contraction
Lemma. Let ¢, ..., ¢, be L-Lipschitz R-valued functions on D C R, i.e.,

oi(t) — ¢i(t) < Lt —1'| vt t' € D.
For any a € D", define

¢(a) = (¢1(a1>a R an(an))

and for any A C D", define

$(A) = {¢(a) :a € A},

Contraction Lemma. For ¢4,..., ¢, and A as above, we have
Rad) (¢(A)) < LRad] (A).
Furthermore, if ¢;(0) = 0 for all 7, then

Rad,(¢(A)) < 2L Rad,(A).



2.1 Proof of the Contraction Lemma for Rad/,

We just have to show that Rad] (¢(A)) can be bounded above by the same
quantity except with ¢; replaced by the function ¢t — Lt. Then, repeatedly
doing the same replacement for all other ¢;, we will obtain

Rad’,(¢(A)) < Rad’,(LA) < L - Rad,,(A).

Let use write E,, to mean the expectation conditional on oy, ...,0,. Then

Ey, sup{o, a),
acA

S (SUP ¢1(ar) + i oipi(a;) + sup —¢1(ar) + Xn: Ui?bi(ag))

2n | aca i=2 a'cA i=2

S(az;n) S(aén)

1
= ? sup le(al) - qbl(all) + S(CLQ:H) + S(a’/Qn)>
N \a,a'cA
1
< —| sup Lla; — a}| + S(az,) + S(“é:n))
2n a,a’cA
(') ]. / /
< % sup L(ay —ay) + S(agy) + S(ay.,)

a,a' €A

1 n
= [E,, sup — (L01a1 + > Ui¢i(ai)> :
acA N

1=2

The first inequality uses the L-Lipschitz property of ¢1. To see why the step
marked (!) holds, we note that

sup L|Cl1 — CL/1| + S(aQ:n) + S(a’/Qn)

a,a'€A

=max{ sup L(a; —a}) + S(az,) + S(ay,), sup L(a) —a1) + S(aq,) + S(ab,,)

a,a’'cA a,a'€A
a1>a} @120
= sup L(a1 — Clll) + S(a2:n) + S(a;n)
a,a’'cA
a1Za/1
< sup L(a1 — Clll) + S<a2:n) + S(a’/Zn)
a,a’'cA

4



The second equality above holds because the two terms in the max are the
same after renaming. (In fact, we can go one step further and upper-bound
SUPg aea L(a1—a})+S(a2n)+S5(ay,,) by supg grea Llar—ai|+S(azn)+5(as,,),
which in turn shows that the step marked (!) must hold with equality.) 1

2.2 A note about the Contraction lemma for Rad,,

The Contraction Lemma for Rad,,, given as Theorem 4.12 in Probability in
Banach Spaces by Ledoux & Talagrand, is proved using a lot of case analysis,
so we omit the proof here. (It would be fantastic if it could be simplified!)

The condition ¢;(0) = 0 is not very onerous. For example, if we had wanted
to apply the Contraction Lemma with ¢; but ¢;(0) # 0, we just instead
apply it with ¢;(t) := ¢;(t) — ¢;(0), which does satisfy the conditions for the
Contraction Lemma. Then

M=

Rad,(¢(A)) = E, sup

acA

Uz¢z(az)

M=

< Eqsup

acA

= Radn(¢(A)) + Eo |—

S|~ 3|
[

Uz¢z(az) + ‘1 zn: 02952(0)‘

n ;=
1 - ‘

s
I
_

> 0:0:(0)].

n ;=1

The second term on the right-hand side is just the expected absolute value of
the sum of independent subgaussian random variables.
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