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1 Motivation from empirical processes
Our motivation comes from the study of the supremum of an empirical process.
Let Z be an abstract space, and F be a family of real-valued functions on Z.
For any z1, . . . , zn ∈ Z, we write

F(z1:n) := {(f(z1), . . . , f(zn)) : f ∈ F}

to be the behaviors of F on z1:n := (z1, . . . , zn) ∈ Zn.

Theorem. Let P be a probability distribution on Z, and let Pn be the
empirical distribution on Z1, . . . , Zn ∼iid P . Let F be a family of real-valued
functions on Z. Then

E sup
f∈F

|Pf − Pnf | ≤ 2 · ERadn(F(Z1:n))

where for A ⊆ Rn,
Radn(A) := Eσ sup

a∈A
|⟨σ, a⟩n|.

Above, σ = (σ1, . . . , σn) is vector of iid Rademacher random variables, Eσ is
expectation conditional on everything except σ, and ⟨u, v⟩n = 1

n

∑n
i=1 uivi is

the normalized inner product.

1.1 A variation
In some applications, we are primarily interested in a different empirical
process, namely

sup
f∈F

Pf − Pnf.

The same proof establishes

E sup
f∈F

Pf − Pnf ≤ 2 · ERad′
n(F(Z1:n))
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where for A ⊆ Rn,
Rad′

n(A) := Eσ sup
a∈A

⟨σ, a⟩n.

(The notation Rad′
n is non-standard.) Relative to the theorem above, the

absolute values are omitted both in the empirical process and in Rad′
n. In

some texts, similar notation is used for Radn and Rad′
n, although there are

some subtle differences between the two (notably in the Contraction Lemma,
below). Note that for any A ⊆ Rn, we have

Rad′
n(A ∪ −A) = Radn(A).

1.2 Use with VC classes
Recall that if F is a family of {±1}-valued functions on Z, then its VC
dimension is the size of the largest set in Z that is shattered by F , i.e.,
the largest n such that there exists z1, . . . , zn ∈ Z such that |F(z1:n)| = 2n.
Sauer’s lemma states that for any z1, . . . , zn ∈ Z,

|F(z1:n)| ≤
d∑

k=0

n

k

 =:
 n

≤ d

,

where d is the VC dimension of F .

Therefore, if F has VC dimension d, then for any z1, . . . , zn ∈ Z,

{⟨σ, a⟩n : a ∈ F(z1:n)}

is a collection of
(

n
≤d

)
subgaussian random variables, each with variance proxy

1/n. By Massart’s finite lemma, we have

Eσ sup
a∈F(z1:n)

|⟨σ, a⟩n| =
√√√√2 ln(2|F(z1:n)|)

n
≤

√√√√√2 ln(2
(

n
≤d

)
)

n
.

Therefore,

E sup
f∈F

|Pf − Pnf | ≤ 2 · ERadn(F(Z1:n)) ≤ 2 ·

√√√√√2 ln(2
(

n
≤d

)
)

n
.
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2 Properties of Radn and Rad′
n

There are several properties of Radn that are frequently used in learning
theory applications. Here are some relatively simple ones:

• If A ⊆ B, then Radn(A) ≤ Radn(B).
• Radn(A + B) ≤ Radn(A) + Radn(B).
• Radn(cA) = |c| Radn(A).
• Radn(absconv(A)) = Radn(A), where

absconv(A) := conv(A ∪ −A).

All but the third property are shared by Rad′
n, and the second property can

be refined:

• Rad′
n(A + B) = Rad′

n(A) + Rad′
n(B).

• Rad′
n(cA) ≤ |c| Rad′

n(A).

A highly non-obvious property of Radn and Rad′
n is given by the Contraction

Lemma. Let ϕ1, . . . , ϕn be L-Lipschitz R-valued functions on D ⊆ R, i.e.,

ϕi(t) − ϕi(t′) ≤ L|t − t′| ∀t, t′ ∈ D.

For any a ∈ Dn, define

ϕ(a) := (ϕ1(a1), . . . , ϕn(an))

and for any A ⊆ Dn, define

ϕ(A) := {ϕ(a) : a ∈ A}.

Contraction Lemma. For ϕ1, . . . , ϕn and A as above, we have

Rad′
n(ϕ(A)) ≤ L Rad′

n(A).

Furthermore, if ϕi(0) = 0 for all i, then

Radn(ϕ(A)) ≤ 2L Radn(A).
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2.1 Proof of the Contraction Lemma for Rad′
n

We just have to show that Rad′
n(ϕ(A)) can be bounded above by the same

quantity except with ϕ1 replaced by the function t 7→ Lt. Then, repeatedly
doing the same replacement for all other ϕi, we will obtain

Rad′
n(ϕ(A)) ≤ Rad′

n(LA) ≤ L · Rad′
n(A).

Let use write Eσ1 to mean the expectation conditional on σ2, . . . , σn. Then

Eσ1 sup
a∈A

⟨σ, a⟩n

= 1
2n

sup
a∈A

ϕ1(a1) +
n∑

i=2
σiϕi(ai)︸ ︷︷ ︸
S(a2:n)

+ sup
a′∈A

−ϕ1(a1) +
n∑

i=2
σiϕi(a′

i)︸ ︷︷ ︸
S(a′

2:n)



= 1
2n

 sup
a,a′∈A

ϕ1(a1) − ϕ1(a′
1) + S(a2:n) + S(a′

2:n)


≤ 1
2n

 sup
a,a′∈A

L|a1 − a′
1| + S(a2:n) + S(a′

2:n)


(!)
≤ 1

2n

 sup
a,a′∈A

L(a1 − a′
1) + S(a2:n) + S(a′

2:n)


= Eσ1 sup
a∈A

1
n

Lσ1a1 +
n∑

i=2
σiϕi(ai)

.

The first inequality uses the L-Lipschitz property of ϕ1. To see why the step
marked (!) holds, we note that

sup
a,a′∈A

L|a1 − a′
1| + S(a2:n) + S(a′

2:n)

= max

 sup
a,a′∈A
a1≥a′

1

L(a1 − a′
1) + S(a2:n) + S(a′

2:n), sup
a,a′∈A
a′

1≥a1

L(a′
1 − a1) + S(a2:n) + S(a′

2:n)


= sup

a,a′∈A
a1≥a′

1

L(a1 − a′
1) + S(a2:n) + S(a′

2:n)

≤ sup
a,a′∈A

L(a1 − a′
1) + S(a2:n) + S(a′

2:n).
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The second equality above holds because the two terms in the max are the
same after renaming. (In fact, we can go one step further and upper-bound
supa,a′∈A L(a1−a′

1)+S(a2:n)+S(a′
2:n) by supa,a′∈A L|a1−a′

1|+S(a2:n)+S(a′
2:n),

which in turn shows that the step marked (!) must hold with equality.)

2.2 A note about the Contraction lemma for Radn

The Contraction Lemma for Radn, given as Theorem 4.12 in Probability in
Banach Spaces by Ledoux & Talagrand, is proved using a lot of case analysis,
so we omit the proof here. (It would be fantastic if it could be simplified!)

The condition ϕi(0) = 0 is not very onerous. For example, if we had wanted
to apply the Contraction Lemma with ϕ̃i but ϕ̃i(0) ̸= 0, we just instead
apply it with ϕi(t) := ϕ̃i(t) − ϕ̃i(0), which does satisfy the conditions for the
Contraction Lemma. Then

Radn(ϕ̃(A)) = Eσ sup
a∈A

∣∣∣∣∣∣ 1n
n∑

i=1
σiϕ̃i(ai)

∣∣∣∣∣∣
≤ Eσ sup

a∈A

∣∣∣∣∣∣ 1n
n∑

i=1
σiϕi(ai)

∣∣∣∣∣∣ +
∣∣∣∣∣∣ 1n

n∑
i=1

σiϕ̃i(0)
∣∣∣∣∣∣

= Radn(ϕ(A)) + Eσ

∣∣∣∣∣∣ 1n
n∑

i=1
σiϕ̃i(0)

∣∣∣∣∣∣ .
The second term on the right-hand side is just the expected absolute value of
the sum of independent subgaussian random variables.

5


	Motivation from empirical processes
	A variation
	Use with VC classes

	Properties of \Rad_n and \Rad_n'
	Proof of the Contraction Lemma for \Rad_n'
	A note about the Contraction lemma for \Rad_n


