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Agenda

▶ Today:
▶ About machine learning theory
▶ About the course
▶ Some examples of learning problems/settings

▶ Next time:
▶ Concentration of measure
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What is machine learning? (1)

Image credit: http://www.seefoodtechnologies.com/nothotdog/
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What is machine learning? (2)

Examples:

▶ Spam filtering (from email text)
▶ Ad click prediction (from user profile and context)
▶ Gene expression level prediction (from upstream DNA)
▶ Best-next-move prediction (from state of chess board)
▶ . . .
▶ Programming-by-demonstration

Note: This is not an introductory course in machine learning. Also,
we won’t be overly concerned with practical applications / methods.

Please see COMS 4771 for general non-theoretical introduction and
COMS 4995-11 for an applied introduction.
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What is learning theory?

▶ Design/analysis of machine learning algorithms/problems
▶ Computational resources: running time, memory, . . .
▶ Data resources: sample size, rounds of interaction, . . .

▶ Many different models for theoretical analysis
▶ Statistical learning
▶ Online learning
▶ Learning with queries
▶ Finding planted structures
▶ . . .
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Why study learning theory? (1)
Relevance to machine learning practice
▶ Breiman (1995) “Reflections After Refereeing Papers for NIPS”

Breiman’s “Post World War II” Examples (in 1995):
▶ Asymptotic analyses of decision trees, nearest neighbor,

universal approximation
▶ Nonparametric regression, sparsity in inverse problems
▶ Spectral analysis in time series, information theory, bootstrap
▶ Theory-inspired heuristics for function fitting
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Why study learning theory? (2)
Relevance to machine learning practice
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Why study learning theory? (3)
Insights into general phenomenon of learning
▶ Valiant (1984) “A Theory of the Learnable”

RESEARCH CONTRIBUTIONS 

Artificial 
Intelligence and 
Language Processing 

David Waltz 
Editor 

A Theory of the Learnable 

L, G. VALIANT 

ABSTRACT: Humans appear to be able to learn new 
concepts without needing to be programmed explicitly in 
any conventional sense. In this paper we regard learning as 
the phenomenon of knowledge acquisition in the absence of 
explicit programming. We give a precise methodology for 
studying this phenomenon from a computational viewpoint. 
It consists of choosing an appropriate information gathering 
mechanism, the learning protocol, and exploring the class of 
concepts that can be learned using it in a reasonable 
(polynomial) number of steps. Although inherent algorithmic 
complexity appears to set serious limits to the range of 
concepts that can be learned, we show that there are some 
important nontrivial classes of propositional concepts that 
can be learned in a realistic sense. 

1. INTRODUCTION 
Computability theory became possible once precise 
models became available for modeling the common- 
place phenomenon of mechanical calculation. The the- 
ory that evolved has been used to explain human expe- 
rience and to suggest how artificial computing devices 
should be built. It is also worth studying for its own 
sake. 

The commonplace phenomenon of learning surely 
merits similar attention. The problem is to discover 
good models that are interesting to study for their own 
sake and that promise to be relevant both to explaining 
human experience and to building devices that can 
learn. The models should also shed light on the limits 
of what can be learned, just as computability does on 
what can be computed. 

In this paper we shall say that a program for perform- 
ing a task has been acquired by learning if it has been 
acquired by any means other than explicit program- 
ming. Among human skills some clearly appear to have 
This research was supported in part by National Science Foundation 
grant MCS-83-02385. A preliminary version of this paper appeared in 
the proceedings of the 16th ACM Symposium on Theory of Computing, 
Washington, D.C., 1984, 436-445. 
©1984ACMO001-0782/84/1100-1134 75¢ 

a genetically preprogrammed element, whereas some 
others consist of executing an explicit sequence of in- 
structions that has been memorized. There remains a 
large area of skill acquisition where no such explicit 
programming is identifiable. It is this area that we de- 
scribe here as learning. The recognition of familiar ob- 
jects, such as tables, provides such examples. These 
skills often have the additional property that, although 
we have learned them, we find it difficult to articulate 
what algorithm we are really using. In these cases it 
would be especially significant if machines could be 
made to acquire them by learning. 

This paper is concerned with precise computational 
models of the learning phenomenon. We shall restrict 
ourselves to skills that consist of recognizing whether a 
concept (or predicate) is true or not for given data. We 
shall say that a concept Q has been learned if a pro- 
gram for recognizing it has been deduced (i.e., by some 
method other than the acquisition from the outside of 
the explicit program). 

The main contribution of this paper is that it shows 
that it is possible to design learning machines that have 
all three of the following properties: 

1. The machines can provably learn whole classes of 
concepts. Furthermore, these classes can be charac- 
terized. 

2. The classes of concepts are appropriate and nontri- 
vial for general-purpose knowledge. 

3. The computational process by which the machines 
deduce the desired programs requires a feasible 
(i.e., polynomial) number of steps. 

A learning machine consists of a learning protocol to- 
gether with a deduction procedure. The former specifies 
the manner in which information is obtained from the 
outside. The latter is the mechanism by which a correct 
recognition algorithm for the concept to be learned is 
deduced. At the broadest level, the suggested methodol- 
ogy for studying learning is the following: Define a plau- 
sible learning protocol, and investigate the class of con- 

1134 Communications of the ACM November 1984 Volume 27 Number 11 

My suggestions
▶ Study learning theory for its breadth of topics and the wide

applicability of its methods
▶ View theorems as demonstrations of careful understanding
▶ Find/develop your own personal motivation
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About this course

▶ COMS 4995-1
▶ Will be “COMS 4773” in the future; can count towards degree

program requirements as such.
▶ Website (with syllabus, schedule, etc):

http://www.cs.columbia.edu/~djhsu/LT/
▶ Topics:

▶ Statistical learning (e.g., generalization theory)
▶ Online learning (e.g., learning with experts, multi-arm bandits)
▶ Unsupervised learning (e.g., clustering models), if time permits

▶ Learning goals:
▶ Rigorously analyze ML problems/algorithms
▶ Read/understand research papers in ML theory
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Course requirements

Prerequisites
▶ Mathematical maturity; reading and writing proofs
▶ Probability, linear algebra, a bit of convex analysis
▶ Prior exposure to machine learning (maybe just for motivation)

Requirements
▶ Reading assignments – schedule on website

▶ Primarily from a few textbooks, available on the website
▶ Homework assignments – will be posted on website

▶ 75% of overall grade
▶ Project – instructions on website

▶ 25% of overall grade

[Do you want to do scribe notes (perhaps for extra credit)?]
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Example: Pattern recognition 1
What is the pattern (input/output relationship)?

Input Output

(3, 5) +1
(9, 1) −1
(2, 7) +1
(4, 2) −1
(8, 8) −1
(5, 2) −1
(3, 1) −1
(1, 3) +1
(2, 5) +1
(5, 3) −1
(4, 2) −1

Answer: “First number is less than the second number”
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Example: Pattern recognition 1 - all points

0 1 2 3 4 5 6 7 8 9

a

0

1

2

3

4

5
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7
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9

b

h(a, b) = sign(−a + b) 12



Example: Pattern recognition 2
What is the pattern (input/output relationship)?

Input Output

(3, 5) −1
(9, 1) −1
(2, 7) +1
(4, 2) +1
(8, 8) −1
(5, 2) +1
(3, 1) −1
(1, 3) +1
(2, 5) −1
(5, 3) +1
(4, 2) +1
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Example: Pattern recognition 2 - all points
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b
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Example: Pattern recognition 2 - subset of points
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a
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What if you only saw these examples? 15



Basic questions

Some basic questions when thinking about pattern recognition /
prediction problems
▶ What kinds of patterns are we considering? Hypothesis class

▶ E.g., neural networks
▶ What is the nature of our data? Data model

▶ E.g., iid sample from P
▶ When has “learning” been achieved? Success criterion

▶ E.g., P (h(X) ̸= Y ) is small
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Example: Online learning of linear classifiers
▶ Hypothesis class: linear classifiers in Rd

x 7→ sign(xTw)

▶ Data model: arbitrary bounded sequence of examples
((xt, yt))t≥1 from Rd × {±1}; promise that ∃w⋆ ∈ Rd s.t.

yt = sign(xT
t w⋆) (∀t ≥ 1)

▶ Success criterion:
▶ Examples (x1, y1), (x2, y2), . . . revealed one-by-one
▶ For t-th example (xt, yt):

▶ Learner first sees xt and must make prediction ŷt ∈ {±1}
▶ Then, learner sees the correct yt.

▶ Learner is successful if total number of mistakes Mt after t
examples is o(t).

No learner is always successful.
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Example: Online learning of linear classifiers with margins
▶ Hypothesis class: linear classifiers in Rd

x 7→ sign(xTw)

▶ Data model: arbitrary bounded sequence of examples
((xt, yt))t≥1 from Rd × {±1}; promise that ∃w⋆ ∈ Rd s.t.

ytx
T
t w⋆ ≥ 1 (∀t ≥ 1)

▶ Success criterion:
▶ Examples (x1, y1), (x2, y2), . . . revealed one-by-one
▶ For t-th example (xt, yt):

▶ Learner first sees xt and must make prediction ŷt ∈ {±1}
▶ Then, learner sees the correct yt.

▶ Learner is successful if total number of mistakes Mt after t
examples is o(t).

“Perceptron” algorithm is always successful.
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(Online) Perceptron

▶ Start with w(0) := 0
▶ For t = 1, 2, . . .:

▶ Predict ŷt := sign(xT
tw(t−1))

▶ Update:

w(t) :=
{

w(t−1) + ytxt if ŷt ̸= yt

w(t−1) otherwise

Theorem (Novikoff, 1962). Fix any sequence ((xt, yt))t≥1 from
Rd × {±1} such that (i) L := supt ∥xt∥2 < +∞, and (ii) there
exists w⋆ ∈ Rd satisfying

ytx
T
t w⋆ ≥ 1 (∀t ≥ 1).

On this sequence, Perceptron has Mt ≤ L2∥w⋆∥2
2 for all t ≥ 1.

[See a demo? Go through the proof?]
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Example: Linear regression
▶ Hypothesis class: linear functions in Rd

x 7→ xTw

▶ Data model: iid random examples ((Xi, Yi))n
i=1 from Rd × R

(at least satisfying moment conditions s.t. stuff below is finite)
▶ Success criterion:

▶ Let (X, Y ) be an independent copy of (X1, Y1)
▶ Learner returns a linear function

ŵ = ŵ((X1, Y1), . . . , (Xn, Yn))
▶ Learner is successful if the “risk” of ŵ, defined by

R(w) := E[(XTw − Y )2] (∀w ∈ Rd),

is not much larger than minw∈Rd R(w).

What is a good strategy here?
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Empirical risk minimization

▶ Let P be the probability distribution of (X, Y ).
▶ Risk R(w) is mean squared prediction error of w w.r.t. P .
▶ If we know P , then in principle we can just minimize R.
▶ What if we just have the random examples ((Xi, Yi))n

i=1?

▶ Plug-in principle: pretend Pn is P , where

Pn = 1
n

n∑
i=1

δ(Xi,Yi)

is the “empirical distribution”, and proceed as above.

This general approach—not just for linear functions—is called
“Empirical Risk Minimization (ERM)”.

[Go through an analysis?]
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Example: Planted bisection model

▶ Hypothesis class: groupings of discrete items (e.g., clustering)
▶ Data model: graph on n vertices

▶ vertices are partitioned into two groups of n/2 each
▶ appearance of edges are random and independent
▶ {u, v} appears with probability p if u, v in same group
▶ {u, v} appears with probability q < p if u, v in different groups
▶ graph is observed; bisection is “hidden”

▶ Success criterion:
▶ (Approximately) recover the bisection
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Recap

▶ Recap:
▶ About machine learning theory
▶ About the course
▶ Some examples of learning problems/settings

▶ Next time:
▶ Concentration of measure
▶ Please read UML Chapter 1 and Appendix B
▶ Homework 0 (required!) is out; due next week Jan 31
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