
Boosting
COMS 4995-1 Spring 2020 (Daniel Hsu)

1 Weak versus strong learning
In 1989, Kearns & Valiant asked if PAC learning is equivalent to a “weaker”
variant of PAC learning in which the learner is only required to return a
hypothesis whose error rate is slightly better than 1/2. (Recall that in PAC
learning, the learner must be able to achieve error rate ε for any ε ∈ (0, 1).)
Schapire answered the question in the affirmative a year later. In particular,
he provided an efficient algorithm that achieves the original PAC learning
guarantees (i.e., a “Strong Learner”) if provided oracle access to a subroutine
that achieves the weaker variant of PAC learning (i.e., a “Weak Learner”).
This kind of meta-algorithm that converts a Weak Learner and yields a Strong
Learner is called a boosting algorithm. A year after Schapire’s algorithm was
published, Freund published an “optimal” boosting algorithm called “Boost-
by-Majority”. Even later, Freund and Schapire together invented the AdaBoost
algorithm, which has been one of the crowning achievements of computational
learning theory, from both practical and theoretical perspectives.

Boosting algorithms exploit that the fact that the Weak Learner is required
to return a hypothesis h whose error rate P [h(X) ̸= Y] is better than 1/2,
regardless of what the marginal distribution of X is. To do this, they change
the effective distribution of X that the Weak Learner sees examples from.
This way, the Weak Learner is tricked into providing hypotheses whose errors
are “spread out” (loosely speaking), and a majority vote over the hypotheses
produced by the Weak Learner will be (almost) always correct.

We won’t worry about the formal equivalence of Weak and Strong Learning,
and instead consider two aspects of boosting. First, we’ll show how the
main idea of boosting, the ability to find highly accurate weighted majority
vote classifiers, is borne out on training data. Second, we’ll discuss the
“generalization” properties of weighted majority vote classifiers—specifically,
what their behavior on iid training data tells us about their true error rates.

1

2 Boosting on training data
The main idea of boosting is borne out just on training data

(x1, y1), . . . , (xn, yn) ∈ X × {±1}.

We suppose that there is a Weak Learner (i.e., a subroutine) that, if provided
any weighting over the training data p ∈ ∆([n]) = {p = (p1, . . . , pn) ∈ Rn

+ :∑n
i=1 pi = 1}, returns a hypothesis h : X → {±1} such that the p-weighted

empirical error rate satisfies
n∑

i=1
pi1{h(xi) ̸= y} ≤ 1 − θ

2 .

Here, θ ∈ (0, 1) is a fixed parameter that we call the advantage of the
hypothesis h (quantifying how much better than random guessing is the
returned hypothesis). This assumption about the Weak Learner is called the
Weak Learning Assumption.

2.1 Existence proof
Let us assume for simplicity that the Weak Learner who always returns
hypotheses from a finite class H. The Weak Learning Assumption can be
stated as

min
p∈∆([n])

max
h∈H

n∑
i=1

piyih(xi) ≥ θ.

Let A be the matrix whose rows are indexed by [n] and columns are indexed
by H, and whose (i, h) entry is

Ai,h = yih(xi) ∈ {±1}.

Then we can write the Weak Learning Assumption in matrix notation as

min
p∈∆([n])

max
h∈H

pTAeh ≥ θ.

Von Neumann’s Min-Max Theorem for Zero-Sum games tells us that

min
p∈∆([n])

max
h∈H

pTAeh = max
w∈∆(H)

min
i∈[n]

eT
i Aw.

2

Here, we have regarded A as the payoff matrix for a two-player zero-sum game
between the “Booster” (row player) and “Weak Learner” (column player). We
conclude that

max
w∈∆(H)

min
i∈[n]

eT
i Aw ≥ θ.

This shows that the Weak Learning Assumption is equivalent to the existence
of a weighted majority vote over H, given by

x 7→ sign
 ∑

h∈H
whh(x)

 ,

such that for every training example (xi, yi),

yi

∑
h∈H

whh(xi) ≥ θ.

In particular, since θ > 0, this weighted majority vote hypothesis correctly
classifies every training example.

The above argument, however, does not tell us how to find a weighted majority
vote hypothesis when the Weak Learning Assumption holds. In principle, if
one could enumerate all of H, then one could find the desired w using linear
programming. But we are interested in algorithms that only access hypotheses
from H via the Weak Learner.

2.2 Boosting game
Our aim is to construct an algorithm that finds a majority vote hypothesis
that correctly classifies all of the training examples, accessing hypotheses
in H only through the Weak Learner. To do this, we consider designing
an algorithm—a Booster—for playing the following game against the Weak
Learner that takes place over T rounds.

• Initialize: s0 := 0 ∈ Rn

• For t = 1, 2, . . . , T :
– Booster choose pt ∈ ∆([n])
– Weak Learner picks zt ∈ {±1}n such that pT

t zt ≥ θ.
– st := st−1 + zt

3

In this game, when the Weak Learner picks zt, we really mean that it picks
ht ∈ H such that zt,i = yiht(xi) for i = 1, . . . , n satisfies

pT
t zt =

n∑
i=1

pt,iyiht(xi) ≥ θ.

In other words, it must have pt-weighted empirical error rate at most (1−θ)/2.

Observe that the state vector st satisfies

st,i = yi(h1(xi) + · · · + ht(xi))

for all i = 1, . . . , n. Therefore, if sT,i > 0 for all i = 1, . . . , n, then the majority
vote classifier

x 7→ sign
 T∑

t=1
ht(x)


correctly classifies all of the training examples. That is the goal of the Booster.
The Weak Learner’s goal is to ensure that at least one training example
remains incorrectly classified.

Let us define the “total loss” incurred by the Booster to be

L(s) :=
n∑

i=1
1{si ≤ 0}

if the final state is s ∈ Rn. In this notation, the Booster wins the game if and
only if

L(sT) < 1.

Is there a T such that the Booster has a winning strategy? If so, can it be
computed efficiently?

2.3 Last round of the game
To build intuition for the boosting algorithm, let us consider what can happen
in the very last round of the game. Suppose s is the state after first T − 1
rounds. How should the Booster choose pT in round T?

Define
ΛT (s) := L(s)

4

for all s ∈ Rn. If the Booster chooses pT , then the Weak Learner can choose
any zT ∈ {±1}n subject to pT

T zT ≥ θ so that the state becomes s + zT and
the total loss incurred by the Booster is ΛT (s + zT). Let us assume that
the Weak Learner is going to choose the worst possible zT . In that case, the
Booster should choose pT to achieve the min below:

ΛT−1(s) := min
p∈∆([n])

max
z∈{±1}n:

pTz≥θ

ΛT (s + z),

so that whatever the Weak Learner does, the total loss is as small as possible.
Here, the semantic of ΛT−1(s) is the total loss of the Booster if the state after
round T − 1 is s, and both the Booster and Weak Learner play optimally in
round T .

In general, we can define Λt(s) to be the total loss of the Booster if the state
after round t is s, and both the Booster and Weak Learner play optimally in
subsequent rounds t + 1, . . . , T . By the same argument as above, we have

Λt−1(s) = min
p∈∆([n])

max
z∈{±1}n:

pTz≥θ

Λt(s + z).

2.4 Minimax value
Since the entire game starts in state s0 = 0, the minimum possible total loss
achievable by the Booster playing against an optimal Weak Learner is given
by the following expression:

min
p1∈∆([n])

max
z1∈{±1}n:

pT
1 z1≥θ

min
p2∈∆([n])

max
z2∈{±1}n:

pT
2 z2≥θ

· · · min
pT ∈∆([n])

max
zT ∈{±1}n:

pT
T zT ≥θ

ΛT

 T∑
t=1

zt

 .

This is the minimax value of this sequential game. The Booster has a winning
strategy if and only if the minimax value is less than one.

Unfortunately, the above expression is rather unwieldy and does not shed
light on when the value is less than one. It is also not clear if there is an
efficient algorithm to compute the winning strategy even when one exists.

Instead, we will develop a tractable upper bound on Λt that (amazingly)
decomposes over i = 1, . . . , n. Not only will this facilitate analysis, it will

5

also suggest an efficient algorithm—precisely the “Boost-by-Majority” (BBM)
algorithm of Freund. Our derivation and analysis will follow the “Drifting
Games” formulation of Schapire.

2.5 The upper bound
Let us define ϕT (si) := 1{si ≤ 0}, so

ΛT (s) =
n∑

i=1
ϕT (si).

Then, assuming ϕt has been defined for some t ≥ 1, define
ϕt−1(si) := min

qi≥0
max

zi∈{±1}
ϕt(si + zi) + qi(zi − θ).

We claim that the sum of ϕt(si) over i = 1, . . . , n provides an upper bound
on Λt(s).

Claim. For all t = 0, . . . , T ,

Λt(s) ≤
n∑

i=1
ϕt(si), for all s ∈ Rn.

Proof. The proof is by backwards induction. The base case of t = T is
trivial, by definition of ϕT . Now assume as the inductive hypothesis that the
inequality holds for some t ≥ 1. Then

Λt−1(s) = min
p∈∆([n])

max
z∈{±1}n:pTz≥θ

Λt(s + z)

= min
p∈∆([n])

max
z∈{±1}n

min
λ≥0

Λt(s + z) + λ(pTz − θ)

≤ min
p∈∆([n])

min
λ≥0

max
z∈{±1}n

Λt(s + z) + λ(pTz − θ)

= min
q∈Rn

+
max

z∈{±1}n
Λt(s + z) +

n∑
i=1

qi(zi − θ)

≤ min
q∈Rn

+
max

z∈{±1}n

n∑
i=1

ϕt(si + zi) + qi(zi − θ)

=
n∑

i=1
min
qi≥0

max
zi∈{±1}

ϕt(si + zi) + qi(zi − θ)

=
n∑

i=1
ϕt−1(si).

6

The first inequality follows from switching the order of minλ0 and maxz∈{±1}n,
which can only increase the value. In the subsequent line, we switch notation
to q = (q1, . . . , qn) with qi = λpi for i = 1, . . . , n. The second inequality follows
from the inductive hypothesis. The subsequent equality holds because the
objective decomposes over i = 1, . . . , n. The final equality holds by definition
of ϕt−1(si).

2.6 Achieving the bound
Since the upper bound on Λt decomposes over i, we can separately find the qi

that achieves the min in the i-th component of the upper bound. To do this,
we first observe one more useful property of the ϕt’s.

Claim. ϕt(si + 1) ≤ ϕt(si − 1)

Proof. The proof is by backwards induction.

In the definition of ϕt−1,

ϕt−1(si) = min
qi≥0

max
zi∈{±1}

ϕt(si + zi) + qi(zi − θ),

we observe that the minimization objective is the maximum of two linear
functions, one with a positive slope and the other with a negative slope. Since
ϕt(si + 1) ≤ ϕt(si − 1), it follows that the minimizing qi is the point at which
these two linear functions intersect, namely

ϕt(si − 1) − ϕt(si + 1)
2 ,

and the value achieved at that point is

ϕt−1(si) = 1 + θ

2 ϕt(si + 1) + 1 − θ

2 ϕt(si − 1).

This gives the strategy employed by the BBM algorithm:

• In round t, let

qt,i := ϕt(st−1,i − 1) − ϕt(st−1,i + 1)
2 for all i = 1, . . . , n,

7

and
pt,i ∝ qt,i for all i = 1, . . . , n.

The argument above also provides a (backwards) recurrence relation,
ϕt−1(si) = 1+θ

2 ϕt(si + 1) + 1−θ
2 ϕt(si − 1), that is satisfied by the upper bound

functions, starting with ϕT (si) = 1{si ≤ 0}. The solution to the recurrence is

ϕt(si) = BinomialCDF

T − t − si

2

∣∣∣∣∣∣∣∣ T − t,
1 + θ

2



=

⌊
T−t−si

2

⌋
∑
k=0

T − t

k

 1 + θ

2

k 1 − θ

2

T−t−k

.

Here, BinomialCDF(x | n, p) is the cumulative distribution function at x for
the binomial distribution with n trials and success probability p. Having this
explicit solution for the upper bound functions makes it clear that the BBM
algorithm can be implemented efficiently.

2.7 Monotonicity of the upper bound
There is one last property we need for the upper bound to complete the
analysis of BBM.

Claim. Pick any t = 1, . . . , T . Let s ∈ Rn be the state after t − 1 rounds.
Assume the Booster chooses pt (through qt) to achieve the minimum value in
the definition of ϕt−1(si). Then for any zt ∈ {±1}n such that pT

t zt ≥ θ,
n∑

i=1
ϕt(si + zt,i) ≤

n∑
i=1

ϕt−1(si).

Proof. Recall that

ϕt−1(si) = min
qi≥0

max
zi∈{±1}

ϕt(si + zi) + qi(zi − θ).

8

Since pt is chosen (via choice of qt) to achieve the min,
n∑

i=1
ϕt−1(si) =

n∑
i=1

max
zi∈{±1}

ϕt(si + zi) + qt,i(zi − θ)

≥
n∑

i=1
ϕt(si + zt,i) + qt,i(zt,i − θ)

≥
n∑

i=1
ϕt(si + zt,i),

where the last inequality uses the constraint pT
t zt ≥ θ.

2.8 Conclusion of the analysis
Recall that L(s) = ΛT (s) = ∑n

i=1 ϕT (si). By monotonicity property, in the
sequence of states s0, s1, . . . , sT actually encountered by BBM, we have

L(sT) =
n∑

i=1
ϕT (sT,i) ≤

n∑
i=1

ϕT−1(sT−1,i) ≤ · · · ≤
n∑

i=1
ϕ0(s0,i) = n · ϕ0(0).

So,
n∑

i=1
1{sT,i ≤ 0} ≤ n · BinomialCDF

T

2

∣∣∣∣∣∣∣∣T,
1 + θ

2

 .

Therefore, if T is large enough so that the right-hand side is less than one, then
BBM wins the game, i.e., the majority vote classifier x 7→ sign(∑T

t=1 ht(x))
correctly classifies all training examples. (By Hoeffding’s inequality, the
right-hand side is at most ne−θ2T/2, so T = 2 ln n

θ2 suffices.)

2.9 Exponential weights variant of BBM
The choice of the pt by BBM in each round depends both on T and θ. It is
possible to obtain a boosting algorithm that does away with these dependences.
We first describe how to remove the dependence on T . The main idea is to
redefine ΛT (s) to be a particular upper bound on the total loss L(s) based
on a surrogate loss function. In particular, we let ΛT (s) := ∑n

i=1 ϕT (si) where

ϕT (si) := e−ηsi

9

for an appropriate choice of η > 0. Note that e−ηsi ≥ 1{si ≤ 0}, so ensuring
that ΛT (s) < 1 is sufficient to guarantee that every training example is
correctly classified by the majority vote classifier.

The analysis of this variant of BBM is entirely the same as before, except for
the final conclusion. The solution to the backwards recurrence defining ϕt is
also different, and in fact very simple:

ϕt(si) =
1 + θ

2 e−η + 1 − θ

2 eη

T−t

e−ηsi.

The Booster’s distribution over examples in round t is given by
pt,i ∝ e−ηst−1,i.

The final conclusion of the analysis gives the following chain of inequalities
(from the monotonicity of the upper bounds):

n∑
i=1

1{sT,i ≤ 0}︸ ︷︷ ︸
LT (sT)

≤
n∑

i=1
e−ηsT,i

︸ ︷︷ ︸
ΛT (sT)=

∑n
i=1 ϕT (sT,i)

≤ · · · ≤ n

1 + θ

2 e−η + 1 − θ

2 eη

T

︸ ︷︷ ︸∑n
i=1 ϕ0(s0,i)

.

To minimize the bound, we choose η = 1
2 ln 1+θ

1−θ . With this choice of η (which
has no dependence on T , but does depend on θ), we have

n∑
i=1

1{sT,i ≤ 0} ≤ n(1 − θ2)T/2.

This can be upper bounded by ne−θ2T/2, and hence T = 2 ln n
θ2 rounds is sufficient

to guarantee that the Booster wins the game.

Finally, removing the dependence on both T and θ is achieved by the AdaBoost
algorithm of Freund and Schapire. The probability distribution chosen by
AdaBoost in round t is

pt,i ∝ exp
−

t−1∑
τ=1

ητzτ,i

 ,

where ηt = 1
2 ln 1+θt

1−θt
and θt is the advantage of the hypothesis ht. AdaBoost

returns a weighted majority vote hypothesis of the form

x 7→ sign
 T∑

t=1
ηtht(x)

 .

10

The final bound on the number of examples misclassified by this hypothesis is

n
T∏

t=1

√
1 − θ2

t ,

which is at most one for
T = 2 ln n

θ̄2 ,

where θ̄2 = 1
T

∑T
t=1 θ2

t .

3 Generalization properties of weighted ma-
jority vote hypotheses

In the previous section, we have shown how to find (weighted) majority vote
hypotheses that, under the Weak Learning Assumption, achieve zero error
rate on training data. Of course, we are generally interested in the behavior
of such hypotheses on new data. To study this, we assume that the training
data are drawn iid from a probability distribution P over X × {±1}. We
would like to relate the error rate on the training data (i.e., the empirical
error rate) to the “true” error rate with respect to P .

In more detail, we are considering hypotheses f of the form

f(x) = sign(g(x))

where g ∈ conv(H), i.e., f ∈ F := sign(conv(H)). Here, conv(H) is the set
of convex combinations of hypotheses from H. The difference between the
empirical error rate Pn[f(X) ̸= Y] on the n iid training examples and the true
error rate P [f(X) ̸= Y] of hypotheses from F is, in the worst case, controlled
by the VC dimension of F , which can be as large as |H|. In contrast, the
VC dimension of H is at most log |H|. This means that to reliably control
the deviations between empirical and true error rates of hypotheses from F ,
the sample size may need to be exponentially larger than what is required for
hypotheses from H. This poor dependence on |H| is highly undesirable.

One saving grace is that boosting algorithms like BBM and AdaBoost may
return a weighted majority vote over just a small number of hypotheses from

11

H—in fact, just K = 2 log n
θ2 of them (under the Weak Learning Assumption).

Thus, they are sparse weighted majority vote hypotheses, and the family of
such hypotheses has a much smaller VC dimension, roughly K log |H|.

However, practitioners using AdaBoost observed that in many cases,
weighted majority vote hypotheses produced by running AdaBoost for
many rounds—many more than was required to achieve zero training error
rate—could have lower test error rates than those produced after just a small
number of rounds. It turns out that what seemed to be improving is the
margin achieved by these hypotheses on the training examples.

Indeed, recall that the Weak Learning Assumption not only guaranteed the
existence of a weighted majority vote hypothesis that correct classifies all of
the training examples, but it also guarantees the existence of g ∈ conv(H) such
that yig(xi) ≥ θ for all i = 1, . . . , n. It can be shown that the “exponential
weights” variant of BBM (as well as AdaBoost) achieve something like this
guarantee as well. Do hypotheses that achieve large margins on training
examples have better generalization behavior?

3.1 Margin bound
Schapire, Freund, Bartlett, and Lee proved a generalization bound for weighted
majority vote hypotheses in terms of the margins achieved on training examples.
The following is a simplified version of their main result.

Theorem. Let (X1, Y1), . . . , (Xn, Yn) be iid sample from P over X × {±1},
and fix any δ, θ ∈ (0, 1). With probability at least 1 − δ, for all g ∈ conv(H),

P [Y g(X) ≤ 0] ≤ Pn[Y g(X) ≤ θ] + O


√√√√(log n)(log |H|)

θ2n
+

√√√√ log(1/δ)
n

 .

There are two aspects to notice about this bound. The first is that the first
term on the right-hand side is the fraction of training examples on which g
does not achieve a margin of θ. The second is that the second term on the
right-hand side is, if θ is regarded as a constant, the same as the deviation
term that one gets just with hypotheses from H (up to log factors).

The main idea of the proof is as follows. We shall approximate each g ∈ C :=
conv(H) by a convex combination of K ≈ log n

θ2 hypotheses.

12

Let CK := { 1
K

∑K
i=1 hi : h1, . . . , hK ∈ H} be the set of simple averages of K

hypotheses from H (allowing repeats). Note |CK | ≤ |H|K . We’ll use the
probabilistic method to ensure existence of good approximations for g ∈ C.
For any g ∈ C, we randomly pick Gg ∈ CK in a natural way. Specifically,
if g = ∑

h∈H αhh, we pick K hypotheses h1, . . . , hK iid from H according to
the distribution (αh : h ∈ H), and let Gg := 1

K

∑K
i=1 hi. Now, for any fixed

(x, y) ∈ X × ∈ {±1}, we have

EGg
[yGg(x)] = yg(x).

Moreover, by Hoeffding’s inequality, for any t > 0, we have

Pr
Gg

[|yGg(x) − yg(x)| > t] ≤ e−Kt2/2.

Therefore, Gg can be regarded as a random “sparsification” of g.

3.2 Proof of the margin bound
The proof begins with three main steps.

1. For any g ∈ C,

P [Y g(X) ≤ 0] ≤ EGg
[P [Y Gg(X) ≤ θ/2]] + e−Kθ2/8.

2. With probability at least 1 − δ, for all g̃ ∈ CK ,

P [Y g̃(X) ≤ θ/2] ≤ Pn[Y g̃(X) ≤ θ/2] +
√√√√ log(|CK |/δ)

2n
.

3. For any g ∈ C,

EGg

[
Pn[Y Gg(X) ≤ θ/2]

]
≤ Pn[Y g(X) ≤ θ] + e−Kθ2/8.

Steps 1 and 3 are used to ensure existence of good approximating g̃ ∈ CK for
each g ∈ C. Step 2 just uses Hoeffding’s inequality and a union bound over a
finite class.

To prove Step 1, observe that for any (x, y) ∈ X × {±1} and any g ∈ C,

1{yg(x) ≤ 0} ≤ 1{yGg(x) ≤ θ/2} + 1{yGg(x) > θ/2 ∧ yg(x) ≤ 0}.

13

Now we take expectation with respect to Gg:

1{yg(x) ≤ 0} ≤ EGg
[1{yGg(x) ≤ θ/2}] + Pr

Gg

[yGg(x) > θ/2 ∧ yg(x) ≤ 0].

Consider EGg
[1{yGg(x) > θ/2 ∧ yg(x) ≤ 0}]. For any (x, y) such that

yg(x) ≤ 0, we have

Pr
Gg

[yGg(x) > θ/2 ∧ yg(x) ≤ 0] ≤ e−K(θ/2)2/2 = e−Kθ2/8;

this is a consequence of Hoeffding’s inequality. For any (x, y) such that
yg(x) > 0,

Pr
Gg

[yGg(x) > θ/2 ∧ yg(x) ≤ 0] = 0.

Therefore,

1{yg(x) ≤ 0} ≤ EGg
[1{yGg(x) ≤ θ/2}] + e−Kθ2/8.

Now we replace (x, y) with (X, Y), and then take expectation with respect to
(X, Y) ∼ P :

P [Y g(X) ≤ 0] ≤ E(X,Y)∼P [EGg
[1{Y Gg(X) ≤ θ/2}]] + e−Kθ2/8

= EGg
[P [Y Gg(X) ≤ θ/2]] + e−Kθ2/8,

which finishes the proof of Step 1.

The proof of Step 3 is similar, except it concludes with taking expectation
with respect to (X, Y) ∼ Pn.

Now we put everything together. By Steps 1 and 3, for every g ∈ C, we have

EGg

P [Y g(X) ≤ 0] − P [Y Gg(X) ≤ θ/2]

+ Pn[Y Gg(X) ≤ θ/2] − Pn[Y g(X) ≤ θ]
 ≤ 2e−Kθ2/8.

Therefore, for every g ∈ C, there exists g̃ ∈ CK such that

P [Y g(X) ≤ 0] − P [Y g̃(X) ≤ θ/2]
+ Pn[Y g̃(X) ≤ θ/2] − Pn[Y g(X) ≤ θ] ≤ 2e−Kθ2/8,

14

or in other words,

P [Y g(X) ≤ 0] − Pn[Y g(X) ≤ θ]
≤ P [Y g̃(X) ≤ θ/2] − Pn[Y g̃(X) ≤ θ/2] + 2e−Kθ2/8.

Now applying the Step 2 result gives, with probability at least 1 − δ, for all
g ∈ C,

P [Y g(X) ≤ 0] − Pn[Y g(X) ≤ θ] ≤
√√√√ log(|CK |/δ)

2n
+ 2e−Kθ2/8.

Choosing K = 8 ln(2n)
θ2 gives the desired conclusion.

We note that the margin bound can also be proved using Rademacher com-
plexity (and it gives a somewhat tighter bound).

15

	Weak versus strong learning
	Boosting on training data
	Existence proof
	Boosting game
	Last round of the game
	Minimax value
	The upper bound
	Achieving the bound
	Monotonicity of the upper bound
	Conclusion of the analysis
	Exponential weights variant of BBM

	Generalization properties of weighted majority vote hypotheses
	Margin bound
	Proof of the margin bound

