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Abstract. The areas of On-Line Algorithms and Machine Learning are

both concerned with problems of making decisions about the present

based only on knowledge of the past. Although these areas di�er in terms

of their emphasis and the problems typically studied, there are a collec-

tion of results in Computational Learning Theory that �t nicely into the

\on-line algorithms" framework. This survey article discusses some of the

results, models, and open problems from Computational Learning The-

ory that seem particularly interesting from the point of view of on-line

algorithms.

The emphasis in this article is on describing some of the simpler, more in-

tuitive results, whose proofs can be given in their entirity. Pointers to the

literature are given for more sophisticated versions of these algorithms.

1 Introduction

The areas of On-Line Algorithms and Machine Learning are both concerned with

problems of making decisions from limited information. Although they di�er in

terms of their emphasis and the problems typically studied, there are a collection

of results in Computational Learning Theory that �t nicely into the \on-line al-

gorithms" framework. This survey article discusses some of the results, models,

and open problems from Computational Learning Theory that seem particularly

interesting from the point of view of on-line algorithms. This article is not meant

to be comprehensive. Its goal is to give the reader a sense of some of the inter-

esting ideas and problems in this area that have an \on-line algorithms" feel to

them.

We begin by describing the problem of \predicting from expert advice," which

has been studied extensively in the theoretical machine learning literature. We

present some of the algorithms that have been developed and that achieve quite

tight bounds in terms of a competitive ratio type of measure. Next we broaden

our discussion to consider several standard models of on-line learning from exam-

ples, and examine some of the key issues involved.We describe several interesting

algorithms for on-line learning, including the Winnow algorithm and an algo-

rithm for learning decision lists, and discuss issues such as attribute-e�cient

learning and the in�nite attribute model, and learning target functions that

change over time. Finally, we end with a list of important open problems in the

area and a discussion of how ideas from Computational Learning Theory and

On-Line Algorithms might be fruitfully combined.

To aid in the 
ow of the text, most of the references and discussions of history

are placed in special \history" subsections within the article.
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2 Predicting from Expert Advice

We begin with a simple, intuitive problem. A learning algorithm is given the

task each day of predicting whether or not it will rain that day. In order to

make this prediction, the algorithm is given as input the advice of n \experts".

Each day, each expert predicts yes or no, and then the learning algorithm must

use this information in order to make its own prediction (the algorithm is given

no other input besides the yes/no bits produced by the experts). After making

its prediction, the algorithm is then told whether or not, in fact, it rained that

day. Suppose we make no assumptions about the quality or independence of

the experts, so we cannot hope to achieve any absolute level of quality in our

predictions. In that case, a natural goal instead is to perform nearly as well as the

best expert so far: that is, to guarantee that at any time, our algorithm has not

performed much worse than whichever expert has made the fewest mistakes to

date. In the language of competitive analysis, this is the goal of being competitive

with respect to the best single expert.

We will call the sequence of events in which the algorithm (1) receives the

predictions of the experts, (2) makes its own prediction, and then (3) is told

the correct answer, a trial. For most of this discussion we will assume that

predictions belong to the set f0; 1g, though we will later consider more general

sorts of predictions (e.g., many-valued and real-valued).

2.1 A Simple Algorithm

The problem described above is a basic version of the problem of \predicting from

expert advice" (extensions, such as when predictions are probabilities, or when

they are more general sorts of suggestions, are described in Section 2.3 below).

We now describe a simple algorithm called the Weighted Majority algorithm.

This algorithm maintains a list of weights w

1

; : : :w

n

, one for each expert, and

predicts based on a weighted majority vote of the expert opinions.

The Weighted Majority Algorithm (simple version)

1. Initialize the weights w

1

; : : : ; w

n

of all the experts to 1.

2. Given a set of predictions fx

1

; : : : ; x

n

g by the experts, output the pre-

diction with the highest total weight. That is, output 1 if

X

i:x

i

=1

w

i

�

X

i:x

i

=0

w

i

and output 0 otherwise.

3. When the correct answer ` is received, penalize each mistaken expert

by multiplying its weight by 1=2. That is, if x

i

6= `, then w

i

 w

i

=2; if

x

i

= ` then w

i

is not modi�ed.

Goto 2.

Theorem1. The number of mistakes M made by the Weighted Majority algo-

rithm described above is never more than 2:41(m+ lgn), where m is the number

of mistakes made by the best expert so far.
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Proof. Let W denote the total weight of all the experts, so initiallyW = n. If

the algorithmmakes a mistake, this means that at least half of the total weight of

experts predicted incorrectly, and therefore in Step 3, the total weight is reduced

by at least a factor of 1=4. Thus, if the algorithm makes M mistakes, we have:

W � n(3=4)

M

: (1)

On the other hand, if the best expert has made m mistakes, then its weight is

1=2

m

and so clearly:

W � 1=2

m

: (2)

Combining (1) and (2) yields 1=2

m

� n(3=4)

M

and therefore:

M �

1

lg(4=3)

(m + lgn)

� 2:41(m+ lgn)ut

2.2 A Better Algorithm

We can achieve a better bound than that described above by modifying the

algorithm in two ways. The �rst is by randomizing. Instead of predicting the

outcome with the highest total weight, we instead view the weights as probabil-

ities, and predict each outcome with probability proportional to its weight. The

second change is to replace \multiply by 1=2" with \multiply by �" for a value

� to be determined later.

Intuitively, the advantage of the randomized approach is that it dilutes the

worst case. Previously, the worst case was that slightly more than half of the

total weight predicted incorrectly, causing the algorithm to make a mistake and

yet only reduce the total weight by 1=4. Now, there is roughly a 50=50 chance

that the algorithm will predict correctly in this case, and more generally, the

probability that the algorithm makes a mistake is tied to the amount that the

weight is reduced.

A second advantage of the randomized approach is that it can be viewed as

selecting an expert with probability proportional to its weight. Therefore, the

algorithm can be naturally applied when predictions are \strategies" or other

sorts of things that cannot easily be combined together. Moreover, if the \ex-

perts" are programs to be run or functions to be evaluated, then this view speeds

up prediction since only one expert needs to be examined in order to produce

the algorithm's prediction (although all experts must be examined in order to

make an update of the weights). We now formally describe the algorithm and

its analysis.

The Weighted Majority Algorithm (randomized version)

1. Initialize the weights w

1

; : : : ; w

n

of all the experts to 1.

2. Given a set of predictions fx

1

; : : : ; x

n

g by the experts, output x

i

with

probability w

i

=W , where W =

P

i

w

i

.
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3. When the correct answer ` is received, penalize each mistaken expert by

multiplying its weight by �.

Goto 2.

Theorem2. On any sequence of trials, the expected number of mistakes M

made by the Randomized Weighted Majority algorithm described above satis�es:

M �

m ln(1=�) + lnn

1� �

where m is the number of mistakes made by the best expert so far.

For instance, for � = 1=2, we get an expected number of mistakes less than

1:39m+2 lnn, and for � = 3=4 we get an expected number of mistakes less than

1:15m + 4 lnn. That is, by adjusting �, we can make the \competitive ratio"

of the algorithm as close to 1 as desired, at the expense of an increase in the

additive constant. In fact, by adjusting � dynamically using a typical \guess and

double" approach, one can achieve the following:

Corollary 3. On any sequence of trials, the expected number of mistakes M

made by a modi�ed version of the Randomized Weighted Majority algorithm

described above satis�es:

M � m + lnn+O(

p

m lnn)

where m is the number of mistakes made by the best expert so far.

Proof of Theorem 2. De�ne F

i

to be the fraction of the total weight on the wrong

answers at the i

th

trial. Say we have seen t examples. Let M be our expected

number of mistakes so far, so M =

P

t

i=1

F

i

.

On the i

th

example, the total weight changes according to:

W  W (1� (1� �)F

i

)

since we multiply the weights of experts that made a mistake by � and there is

an F

i

fraction of the weight on these experts. Hence the �nal weight is:

W = n

t

Y

i=1

(1� (1� �)F

i

)

Let m be the number of mistakes of the best expert so far. Again, using the

fact that the total weight must be at least as large as the weight on the best

expert, we have:

n

t

Y

i=1

(1� (1� �)F

i

) � �

m

(3)
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Taking the natural log of both sides we get:

lnn+

t

X

i=1

ln(1� (1� �)F

i

) � m ln �

� lnn�

t

X

i=1

ln(1� (1� �)F

i

) � m ln(1=�)

� lnn + (1� �)

t

X

i=1

F

i

� m ln(1=�)

M �

m ln(1=�) + lnn

1� �

Where we get the third line by noting that � ln(1 � x) > x, and the fourth by

using M =

P

t

i=1

F

i

. ut

2.3 History and Extensions

Within the Computational Learning Theory community, the problem of pre-

dicting from expert advice was �rst studied by Littlestone and Warmuth [28],

DeSantis, Markowsky and Wegman [15], and Vovk [35]. The algorithms described

above as well as Theorems 1 and 2 are from Littlestone and Warmuth [28], and

Corollary 3, as well as a number of re�nements, are from Cesa-Bianchi et al.

[12]. Perhaps one of the key lessons of this work in comparison to work of a

more statistical nature is that one can remove all statistical assumptions about

the data and still achieve extremely tight bounds (see Freund [18]). This prob-

lem and many variations and extensions have been addressed in a number of

di�erent communities, under names such as the \sequential compound decision

problem" [32] [4], \universal prediction" [16], \universal coding" [33], \univer-

sal portfolios" [13], and \prediction of individual sequences"; the notion of the

competitiveness is also called the \min-max regret" of an algorithm. A web page

uniting some of these communities and with a discussion of this general problem

now exists at http://www-stat.wharton.upenn.edu/Seq96.

A large variety of extensions to the problem described above have been stud-

ied. For example, suppose that each expert provides a real number between 0

and 1 as its prediction (e.g., interpret a real number p as the expert's belief

in the probability of rain) and suppose that the algorithm also may produce a

real number between 0 and 1. In this case, one must also specify a loss function

| what is the penalty for predicting p when the outcome is x? Some common

loss functions appropriate to di�erent settings are the absolute loss: jp� xj, the

square loss: (p�x)

2

, and the log loss: �x ln p� (1�x) ln(1� p). Papers of Vovk

[35, 36], Cesa-Bianchi et al. [12, 11], and Foster and Vohra [17] describe optimal

algorithms both for these speci�c loss functions and for a wide variety of general

loss functions.

A second extension of this framework is to broaden the class of algorithms

against which the algorithm is competitive. For instance, Littlestone, Long, and
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Warmuth [27] show that modi�cations of the algorithms described above are

constant-competitive with respect to the best linear combination of experts,

when the squared loss measure is used. Merhav and Feder [29] show that one can

be competitive with respect to the best o�-line strategy that can be implemented

by a �nite state machine.

Another variation on this problem is to remove all semantics associated with

speci�c predictions by the experts and to simply talk about losses. In this vari-

ation, the learning algorithm is required in each iteration to select an expert to

\go with". For instance, suppose we are playing a 2-player matrix game as the

row player. Each row can be viewed as an expert. To play the game we proba-

bilistically select some expert (row) to use, and then, after the game is done, we

�nd out our loss and that of each expert. If we are playing repeatedly against

some adversary, we then would get another opportunity to probabilistically se-

lect an expert to use and so forth. Freund and Schapire show that extensions

of the randomized Weighted Majority Algorithm discussed above can be made

to �t nicely into this scenario [19] (see also the classic work of Blackwell [4]).

Another scenario �tting this framework would be a case where each expert is

a page-replacement algorithm, and an operating system needs to decide which

algorithm to use. Periodically the operating system computes losses for the var-

ious algorithms that it could have used and based on this information decides

which algorithm to use next.

Ordentlich and Cover [14] [30] describe strategies related to the random-

ized Weighted Majority algorithm for a problem of on-line portfolio selection.

They give an on-line algorithm that is optimally competitive against the best

\constant-rebalanced portfolio" (CRP). Their algorithm can be viewed as cre-

ating one expert for every CRP and then allocating its resources among them.

This setting has the nice property that the market automatically adjusts the

weights, so the algorithm itself just initially divides its funds equally among all

in�nitely-many CRPs and then lets it sit. A simple analysis of their algorithm

with extensions to transaction costs is given in [10].

3 On-Line Learning from Examples

The previous section considered the problem of \learning from expert advice".

We now broaden our focus to consider the more general scenario of on-line learn-

ing from examples. In this setting there is an example space X , typically f0; 1g

n

.

Learning proceeds as a sequence of trials. In each trial, an example x 2 X is

presented to the learning algorithm. The algorithm then predicts either 1 or 0

(whether the example is positive or negative) and �nally the algorithm is told

the true label ` 2 f0; 1g. The algorithm is penalized for each mistake made; i.e.,

whenever its prediction di�ers from `. Our goal is to make as few mistakes as

possible. Typically, the presentation of examples will be assumed to be under the

control of an adversary. This setting is also broadly called the Mistake Bound

learning model.

The scenario described so far is not too di�erent from the standard framework
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of On-Line Algorithms: we are given an on-line sequence of tasks and we want

our penalty to be not too much larger than that of the best o�-line algorithm.

However, for the task of predicting labels, the \best we could do if there was no

hidden information" would be to make zero mistakes, whereas no on-line algo-

rithm could do better than make mistakes half the time if the labels were chosen

randomly. Thus, some further restriction on the problem is necessary in order to

make nontrivial statements about algorithms. Several natural restrictions are:

(1) to restrict the labels to being determined by some \reasonable" function of

the examples, (2) to restrict the o�-line algorithms being compared against to

some \reasonable" class of algorithms, and (3) to restrict the adversary to having

some sort of randomness in its behavior. Each of these restrictions corresponds

to a standard model studied in Computational Learning Theory, and we describe

these in more detail below.

To describe these models, we need the notion of a concept class. A concept

class C is simply a set of Boolean functions over the domain X (each Boolean

function is sometimes called a concept), along with an associated representa-

tion of these functions. For instance, the class of disjunctions over f0; 1g

n

is the

class of all functions that can be described as a disjunction over the variables

fx

1

; : : : ; x

n

g. The class of DNF formulas contains all Boolean functions, each

with a description length equal to the size of its minimum DNF formula repre-

sentation. In the discussion below, we will use n to denote the description length

of the examples, and size(c) to denote the description length of some concept

c 2 C.

We now describe three standard learning problems.

Learning a concept class C (in the Mistake Bound model): In this set-

ting, we assume that the labels attached to examples are generated by some

unknown target concept c 2 C. That is, there is some hidden concept c be-

longing to the class C, and in each trial, the label ` given to example x is

equal to c(x). The goal of the learning algorithm is to make as few mistakes

as possible, assuming that both the choice of target concept and the choice

of examples are under the control of an adversary. Speci�cally, if an algo-

rithm has the property that for any target concept c 2 C it makes at most

poly(n; size(c)) mistakes on any sequence of examples, and its running time

per trial is poly(n; size(c)) as well, then we say that the algorithm learns

class C in the mistake bound model. If, furthermore, the number of mistakes

made is only poly(size(c)) � polylog(n) | that is, if the algorithm is robust

to the presence of many additional irrelevant variables | then the algorithm

is also said to be attribute e�cient.

Algorithms have been developed for learning a variety of concept classes in

the Mistake Bound model, such as disjunctions, k-DNF formulas, decision

lists, and linear threshold functions. Below we will describe a very elegant and

practical algorithm called the Winnow Algorithm, that learns disjunctions

in the mistake bound model and makes only O(r logn) mistakes, where r

is the number of variables that actually appear in the target disjunction.

Thus, Winnow is attribute-e�cient. This algorithm also has the property
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that it can be used to track a target concept that changes over time, and

we will describe a sense in which the algorithm can be viewed as being

O(logn) competitive for this task. We will also discuss a few general results

on attribute-e�cient learning and a model known as the in�nite-attribute

model.

Agnostic Learning / Being Competitive with the class C: In this model,

we make no assumptions about the existence of any relationship between the

labels and the examples. Instead, we simply set our goal to be that of per-

forming nearly as well as the best concept in C. This is sometimes called

the agnostic learning model and can be viewed as the problem of learning

a concept class in the presence of adversarial noise. In this article, to use

the terminology from On-Line Algorithms, we will call this the goal of being

competitive with respect to the best concept in C. Speci�cally, let us say that

an algorithm is �-competitive with respect to C if there exists a polynomial p

such that for any sequence of examples and any concept c 2 C, the number of

mistakes made by the algorithm is at most �m

c

+ p(n; size(c)), where m

c

is

the number of mistakes made by concept c. The algorithm should have run-

ning time per trial polynomial in n and size(c) where c is the best concept

in C on the data seen so far.

If we consider the class C of single-variable concepts over f0; 1g

n

(that is, C

consists of n concepts fc

1

; : : : ; c

n

g where c

i

(x) = x

i

), then this is really the

same as the problem of \learning from expert advice" discussed in Section

2 (just think of the example as the list of predictions of the experts), and

the algorithms of Section 2 show that for all � > 0, one can achieve (1 + �)-

competitiveness with respect to the best concept in this class.

It is worth noting that if we do not care about computational complexity

(i.e., we remove the restriction that the algorithm run in polynomial time

per trial) then we can achieve (1 + �)-competitiveness for any concept class

C over f0; 1g

n

. Speci�cally, we have the following theorem.

Theorem4. For any concept class C over f0; 1g

n

and any � > 0 there is

a non-polynomial time algorithm that on any sequence of examples, for all

c 2 C, makes at most (1 + �)m

c

+O(size(c)) mistakes.

Proof. We simply associate one \expert" with each concept c 2 C, and run

the Randomized Weighted Majority algorithm described in Section 2 with

the modi�cation that the initial weight given to a concept c is 2

�2size(c)

.

This assignment of initial weights means that initially, the total weight W

is at most 1. Therefore, inequality (3) is replaced by the statement that for

any concept c 2 C, after t trials we have:

t

Y

i=1

(1� (1� �)F

i

) � �

m

c

2

�2size(c)

where m

c

is the number of mistakes make by c. Solving this inequality as

in the proof of Theorem 2 yields the guarantee that for any c 2 C, the total
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number of mistakes M made by the algorithm satis�es:

m �

m

c

ln(1=�) + 2size(c)

1� �

:

On the other hand, this algorithm clearly does not run in polynomial time

for most interesting concept classes since it requires enumerating all of the

possible concepts c 2 C.

1

ut

A second fact worth noting is that in many cases there are NP-hardness

results if we require the learning algorithm to use representations from the

class C. For instance, it is NP-hard, given a set S of labeled examples, to

�nd the disjunction that minimizes the number of disagreements with this

sample. However, this does not necessarily imply that it is NP-hard to achieve

a competitive ratio approaching 1 for learning with respect to the class of

disjunctions, since the hypothesis used by the learning algorithm need not

be a disjunction.

As mentioned in the Open Problems section, it is unknown whether it is

possible to achieve a good competitive ratio with respect to the class of

disjunctions with a polynomial time algorithm.

Learning C in the presence of random noise: This model lies somewhat in

between the two models discussed so far. In this model, we assume that

there is a target concept c 2 C just like in the standard Mistake Bound

model. However, after each example is presented to the learning algorithm,

the adversary 
ips a coin and with probability � < 1=2, gives the algorithm

the wrong label. That is, for each example x, the correct label c(x) is seen

with probability 1��, and the incorrect label 1�c(x) is seen with probability

�, independently for each example. Usually, this model is only considered for

the case in which the adversary itself is restricted to selecting examples

according to some �xed (but unknown) distribution D over the instance

space. We will not elaborate further on this model in this article, since the

results here have less of an \on-line algorithms" feel to them, except to say

that a very nice theory has been developed for learning in this setting, with

some intriguing open problems, including one we list in Section 4.

One �nal point worth mentioning is that there are a collection of simple re-

ductions between many standard concept classes. For instance, if one has an algo-

rithm to learn the class of monotone disjunctions (functions such as x

1

_x

5

_x

9

),

then one can also learn non-monotone disjunctions (like x

1

_ x

5

), conjunctions,

k-CNF formulas for constant k, and k-DNF formulas for constant k, by just per-

forming a transformation on the input space. Thus, if several classes are related

in this way, we need only discuss the simplest one.

1

In the PAC learning setting, there is a similar but simpler fact that one can learn

any concept class in the presense of malicious noise by simply �nding the concept in

C that has the fewest disagreements on the sample.
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3.1 Some Simple Algorithms

As an example of learning a class in the Mistake Bound model, consider the

following simple algorithm for learning monotone disjunctions. We begin with

the hypothesis h = x

1

_x

2

_ : : :_x

n

. Each time a mistake is made on a negative

example x, we simply remove from h all the variables set to 1 by x. Notice that

we only remove variables that are guaranteed to not be in the target function,

so we never make a mistake on a positive example. Since each mistake removes

at least one variable from h, this algorithm makes at most n mistakes.

A more powerful concept class is the class of decision lists. A decision list is

a function of the form: \if `

1

then b

1

, else if `

2

then b

2

, else if `

3

then b

3

, ...,

else b

m

," where each `

i

is a literal (either a variable or its negation) and each

b

i

2 f0; 1g. For instance, one possible decision list is the rule: \if x

1

then positive,

else if x

5

then negative, else positive." Decision lists are a natural representation

language in many settings and have also been shown to have a collection of useful

theoretical properties.

The following is an algorithm that learns decision lists, making at mostO(rn)

mistakes if the target function has r relevant variables (and therefore has length

O(r)). The hypotheses used by the algorithm will be a slight generalization of

decision lists in which we allow several \if/then" rules to co-exist at the same

level: if several \if" conditions on the same level are satis�ed, we just arbitrarily

choose one to follow.

1. Initialize h to the one-level list, whose level contains all 4n + 2 possible

\if/then" rules (this includes the two possible ending rules).

2. Given an example x, look at the �rst level in h that contains a rule whose

\if" condition is satis�ed by x. Use that rule for prediction (if there are

several choices, choose one arbitrarily).

3. If the prediction is mistaken, move the rule that was used down to the next

level.

4. Return to step 2.

This algorithm has the property that at least one \if/then" rule moves one

level lower in h on every mistake. Moreover, notice that the very �rst rule in

the target concept c will never be moved, and inductively, the ith rule of c will

never move below the ith level of h. Therefore, each \if/then" rule will fall at

most L levels, where L is the length of c, and thus the algorithm makes at most

O(nL) = O(nr) mistakes.

3.2 The Winnow Algorithm

We now describe a more sophisticated algorithm for learning the class of (mono-

tone) disjunctions than that presented in the previous section. This algorithm,

called the Winnow Algorithm, is designed for learning with especially few mis-

takes when the number of relevant variables r is much less than the total number

of variables n. In particular, if the data is consistent with a disjunction of r out
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of the n variables, then the algorithm will make at most O(r logn) mistakes. Af-

ter describing this result, we then show how the Winnow algorithm can be used

to achieve in essence an O(logn) competitive ratio for learning a disjunction

that changes over time. We also discuss the behavior of Winnow in the agnostic

setting. Variations on this algorithm can be used to learn Boolean threshold

functions as well, but we will stick to the problem of learning disjunctions to

keep the analysis simpler.

Like the Weighted Majority algorithm discussed earlier, the Winnow algo-

rithm maintains a set of weights, one for each variable.

The Winnow Algorithm (a simple version)

1. Initialize the weights w

1

; : : : ; w

n

of the variables to 1.

2. Given an example x = fx

1

; : : : ; x

n

g, output 1 if

w

1

x

1

+ w

2

x

2

+ : : :+w

n

x

n

� n

and output 0 otherwise.

3. If the algorithm makes a mistake:

(a) If the algorithm predicts negative on a positive example, then for

each x

i

equal to 1, double the value of w

i

.

(b) If the algorithm predicts positive on a negative example, then for

each x

i

equal to 1, cut the value of w

i

in half.

4. Goto 2.

Theorem5. The Winnow Algorithm learns the class of disjunctions in the Mis-

take Bound model, making at most 2 + 3r(1 + lgn) mistakes when the target

concept is a disjunction of r variables.

Proof. Let us �rst bound the number of mistakes that will be made on positive

examples. Any mistake made on a positive example must double at least one of

the weights in the target function (the relevant weights), and a mistake made

on a negative example will not halve any of these weights, by de�nition of a

disjunction. Furthermore, each of these weights can be doubled at most 1 + lgn

times, since only weights that are less than n can ever be doubled. Therefore,

Winnow makes at most r(1 + lgn) mistakes on positive examples.

Now we bound the number of mistakes made on negative examples. The

total weight summed over all the variables is initially n. Each mistake made on

a positive example increases the total weight by at most n (since before doubling,

we must have had w

1

x

1

+ : : :w

n

x

n

< n). On the other hand, each mistake made

on a negative example decreases the total weight by at least n=2 (since before

halving, we must have had w

1

x

1

+ : : :+w

n

x

n

� n). The total weight never drops

below zero. Therefore, the number of mistakes made on negative examples is at

most twice the number of mistakes made on positive examples, plus 2. That is,

2+2r(1+ lgn). Adding this to the bound on the number of mistakes on positive

examples yields the theorem. ut

How well does Winnow perform when the examples are not necessarily all

consistent with some target disjunction? For a given disjunction c, let us de�ne
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m

c

to be the number of mistakes made by concept c, and let A

c

be the number

of attribute errors in the data with respect to c, which we de�ne as follows.

For each example labeled positive but that satis�es no relevant variables of c,

we add 1 to A

c

; for each example labeled negative but that satis�es k relevant

variables of c, we add k to A

c

. So, if concept c is a disjunction of r variables,

then m

c

� A

c

� rm

c

. It is not hard to show that Winnow has the following

behavior for agnostic learning of disjunctions.

Theorem6. For any sequence of examples and any disjunction c, the number of

mistakes made by Winnow is O(A

c

+ r logn), where r is the number of relevant

variables for c. Since A

c

� rm

c

, this means that Winnow is O(r)-competitive

with respect to the best disjunction of r variables.

In fact, by randomizing and tuning the Winnow algorithm to the speci�c

value of r, one can achieve the following stronger statement.

Theorem7. Given r, one can tune a randomized Winnow algorithm so that

on any sequence of examples and any disjunction c of r variables, the expected

number of mistakes made by the algorithm is

A

c

+ (2 + o(1))

p

A

c

r ln(n=r)

as A

c

=(r ln

n

r

)!1.

These kinds of theorems can be viewed as results in a generalization of the

\experts" scenario discussed in Section 2. Speci�cally, consider an algorithmwith

access to n \specialists". On every trial, each specialist may choose to make a

prediction or it may choose to abstain (unlike the \experts" scenario in which

each expert must make a prediction on every trial). That is, we can think of the

specialists as only making a prediction when the situation �ts their \specialty".

Using a proof much like that used to prove Theorem 6, one can show that a

version of the Winnow algorithm is constant-competitive with respect to the

best set of specialists, where we charge a set one unit for every mistake made by

a specialist in the set, and one unit whenever all specialists in the set abstain.

3.3 Learning drifting disjunctions

For the problem of learning a static target concept with no noise in the data,

there is no real notion of \competitiveness". The algorithm just makes some

�xed upper bounded number of mistakes. However, a natural variation on this

scenario, which is also relevant to practice, is to imagine that the target function

is not static and instead changes with time. For instance, for the case of learning

a disjunction, we might imagine that from time to time, variables are added to or

removed from the target function. In this case, a natural measure of \adversary

cost" is the number of additions and deletions made to the target function, and

the obvious goal is to make a number of mistakes that is not too much larger

than the adversary's cost.
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Speci�cally, consider the following game played against an adversary. There

are n variables and a target concept that initially is the disjunction of zero of

them (it says everything is negative). Then, each round of the game proceeds as

follows.

Adversary's turn: The adversary may change the target concept by adding or

removing some variables from the target disjunction. The adversary pays a

cost of 1 for each variable added. (Since the number of variables removed over

time is bounded by the number added over time, we may say that removing

variables is free.) The adversary then presents an example to the learning

algorithm.

Learner's turn: The learning algorithm makes a prediction on the example

given, and then is told the correct answer (according to the current target

concept). The algorithm is charged a cost of 1 if it made a mistake.

Consider the variation on the Winnow algorithm that never allows any weight

to decrease below 1=2; that is, when a mistake is made on a negative example,

only weights of value 1 or more are cut in half. Surprisingly, this Winnow variant

guarantees that its cost is at most O(logn) times the adversary cost. So in a

sense it is O(logn)-competitive for this problem. Note that Theorem 5 can be

viewed as a special case of this in which in its �rst move, the adversary adds r

variables to the target function and then makes no changes from then on.

Theorem8. The Winnow variant described above, on any sequence of examples,

makes at most O(c

A

logn) mistakes, where c

A

is the adversary's total cost so far.

Proof. Consider the total weight on all the variables. The total weight is initially

n. Each mistake on a positive example increases the total weight by at most n

and each mistake on a negative example decreases the total weight by at least

n=4 (because

P

w

i

x

i

� n and at most n=2 of this sum can come from weights

equal to 1=2, so at least n=2 of the sum gets cut in half). Therefore, the number

of mistakes on negative examples is bounded by 4(1 + M

p

) where M

p

is the

number of mistakes made on positive examples. So, we only need to bound the

number of mistakes on positives.

Let R denote the set of variables in the current target function (i.e., the

currently relevant variables), and let r = jRj. Consider the potential function

� = r log(2n)�

X

i2R

lgw

i

:

Consider now how our potential function � can change. Each time we make

a mistake on a positive example, � decreases by at least 1. Each time we make

a mistake on a negative example, � does not change. Each time the adversary

adds a new relevant variable, � increases by at most log(2n) + 1 (log(2n) for

the increase in r and 1 for the possibility that the new weight w

i

equals 1=2 so

lgw

i

= �1). Each time the adversary removes a relevant variable, � does not

increase (and may decrease if the variable removed has weight less than 2n).

In summary, the only way that � can increase is by the adversary adding a
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new relevant variable, and each mistake on a positive example decreases � by

at least 1; furthermore, � is initially zero and is always non-negative. Therefore,

the number of mistakes we make on positive examples is bounded by log(2n)+1

times the adversary's cost, proving the theorem. ut

3.4 Learning from String-Valued attributes and the In�nite

Attribute Model

The discussion so far has focused on learning over the instance space X = f0; 1g

n

.

I.e., examples have Boolean-valued attributes. Another common setting is one

in which the attributes are string-valued; that is, X = (�

�

)

n

. For instance,

one attribute might represent an object's color, another its texture, etc. If the

number of choices for each attribute is small, we can just convert this to the

Boolean case, for instance by letting \x

1

= red" be a Boolean variable that is

either true or false in any given example. However, if the number of choices for

an attribute is large or is unknown apriori, this conversion may blow up the

number of variables.

This issue motivates the \in�nite attribute" learning model. In this model,

there are in�nitely many boolean variables x

1

; x

2

; x

3

; : : :, though any given ex-

ample satis�es only �nite number of them. An example is speci�ed by listing the

variables satis�ed by it. For instance, a typical example might be fx

3

; x

9

; x

32

g,

meaning that these variables are true and the rest are false in the example. Let

n be the size of (the number of variables satis�ed by) the largest example seen

so far. The goal of an algorithm in this setting is to make a number of mistakes

polynomial in the size of the target function and n, but independent of the to-

tal number of variables (which is in�nite). The running time per trial should

be polynomial in the size of the target function and the description length of

the longest example seen so far. It is not hard to see that this can model the

situation of learning over (�

�

)

n

.

Some algorithms in the standard Boolean-attribute setting fail in the in�nite

attribute model. For instance, listing all variables and then crossing o� the ones

found to be irrelevant as in the simple disjunction-learning algorithm presented

in Section 3.1 clearly does not work. The decision-list algorithm presented fails as

well; in fact, there is no known polynomial-time algorithm for learning decision

lists in this setting (see the Open Problems section).

On the other hand, algorithms such as Winnow can be adapted in a straight-

forward way to succeed in the in�nite attribute model. More generally, the fol-

lowing theorem is known.

Theorem9. Let C be a projection and embedding-closed concept class

2

. If there

is an attribute-e�cient algorithm for learning C over f0; 1g

n

, then C can be

learned in the In�nite-Attribute model.

2

This is just a \reasonableness condition" saying that one can take a concept in C

de�ned on n

1

variables and embed it into a space with n

2

> n

1

variables and still

stay within the class C, and in the reverse direction, one can �x values of some of

the variables and still have a legal concept. See [9] for details.
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3.5 History

The Winnow algorithm was developed by Littlestone in his seminal paper [24],

which also gives a variety of extensions and introduces the Mistake-Bound learn-

ing model. The Mistake Bound model is equivalent to the \extended equivalence

query" model of Angluin [1], and is known to be strictly harder for polynomial-

time algorithms than the PAC learning model of Valiant [34, 22] in which (among

other di�erences) the adversary is required to select examples from a �xed dis-

tribution [6]. Agnostic learning is disussed in [23].

Littlestone [26] gives a variety of results on the behavior of Winnow in the

presence of various kinds of noise. The improved bounds of Theorem 7 are from

Auer and Warmuth [3]. The use of Winnow for learning changing concepts is

folklore (and makes a good homework problem); Auer and Warmuth [3] provide

a more sophisticated algorithm and analysis, achieving a stronger result than

Theorem 8, in the style of Theorem 7. The Winnow algorithm has been shown

to be quite successful in practical tasks as well, such as predicting links followed

by users on the Web [2], and a calendar scheduling application [7].

The algorithm presented for learning decision lists is based on Rivest's algo-

rithm for the PAC model [31], adapted to the Mistake Bound model by Little-

stone [25] and Helmbold, Sloan and Warmuth [20]. The In�nite-Attribute model

is de�ned in Blum [5] and Theorem 9 is from Blum, Hellerstein, and Littlestone

[9].

4 Open Problems

1. Can the bounds of Corollary 3 be achieved and improved with a

smooth algorithm? The bound of Corollary 3 is achieved using a \guess

and double" algorithm that periodically throws out all it has learned so far

and restarts using a new value of �. It would seem more natural (and likely

to work better in practice) to just smoothly adjust � as we go along, never

restarting from scratch. Can an algorithm of this form be shown to achieve

this bound, preferably with even better constants? (See [12] for the precise

constants.)

2. Can Decision Lists be learned Attribute-E�ciently?Recall from Sec-

tion 3.1 that a decision list is a function of the form: \if `

1

then b

1

, else if

`

2

then b

2

, else if `

3

then b

3

, ..., else b

m

," where each `

i

is a literal (ei-

ther a variable or its negation) and each b

i

2 f0; 1g. We saw in Section

3.1 that decision lists with r relevant variables can be learned with at most

O(rn) mistakes in the mistake-bound model. An alternative approach using

the Winnow algorithm makes O(r

2r

logn) mistakes. Can decision lists be

learned attribute-e�ciently? I.e., with mistake bound poly(r) � polylog(n)?

3. Can Parity functions be learned Attribute-E�ciently? Let C

parity

denote the class of functions over f0; 1g

n

that compute the parity of some

subset of variables. For instance, a typical function in C

parity

would be x

1

�
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x

5

� x

22

. It is easy to learn C

parity

in the mistake-bound model making

at most n mistakes, by viewing each labeled example as a linear equality

modulo 2 (each new example either is linearly dependent on the previous

set and therefore its label can be deduced, or else it provides a new linearly

independent vector). Can C

parity

be learned attribute-e�ciently?

4. Can Decision Lists or Parity functions be learned in the In�nite

Attributemodel? Can either the class of decision lists or the class of parity

functions be learned in the In�nite Attribute model? For the case of decision

lists, you may assume, if you wish, that none of the literals `

i

are negations

of variables.

5. Is there a converse to Theorem 9?

6. Can tolerance to random noise be boosted? Suppose for some concept

class C and some �xed constant noise rate � > 0 there exists a polynomial

time algorithm A with the following property: for any target concept c 2 C

and any distribution D on examples, A achieves an expected mistake rate

less than 1=2�1=p(n) for some polynomial p after seeing polynomiallymany

examples. Does this imply that there must exist a polynomial time algorithm

B that succeeds in the same sense for all constant noise rates � < 1=2. (See

Kearns [21] for related issues.)

7. What Competitive Ratio can be achieved for learning with re-

spect to the best Disjunction? Is there a polynomial time algorithm

that given any sequence of examples over f0; 1g

n

makes a number of mis-

takes at most cm

disj

+ p(n), where m

disj

is the number of mistakes made

by the best disjunction, for some constant c and polynomial p? How about

c = n

�

or c = r

�

for some � < 1, where r is the number of relevant vari-

ables in the best disjunction. (Making nm

disj

mistakes is easy using any of

the standard disjunction-learning algorithms, and we saw that the Winnow

algorithm makes O(rm

disj

) mistakes.)

8. Can Disjunctions be Weak-Learned in the presence of adversarial

noise? For some polynomial p(n) and some constant c > 0, does there

exist an algorithm with the following guarantee: Given any sequence of t

examples over f0; 1g

n

such that at least a (1� c) fraction of these examples

are consistent with some disjunction over f0; 1g

n

, the algorithm makes at

most t[

1

2

�

1

p(n)

] mistakes (in expectation, if the algorithm is randomized).

That is, given that there exists a disjunction that is \nearly correct" (say

99%) on the data, can the algorithm achieve a performance that is slightly

(1=poly) better than guessing? The algorithm may require that t � q(n) for

some polynomial q.

9. Can Linear Threshold Functions be Weak-Learned in the presence

of adversarial noise? Same question as above, except replace \disjunc-

tions" with \linear threshold functions". An a�rmative answer to this ques-

tion would yield a quasi-polynomial (n

polylog(n)

) time algorithm for learning
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DNF formulas, and more generally for learning AC

0

functions, in the PAC

learning model. This implication follows from standard complexity theory

results that show that AC

0

can be approximated by low-degree polynomi-

als.

5 Conclusions

This article has surveyed a collection of problems, models, and algorithms in

Computational Learning Theory that look particularly interesting from the point

of view of On-Line Algorithms. These include algorithms for combining the ad-

vice of experts, the model of on-line agnostic learning (or learning in the pres-

ence of worst-case noise) and the problem of learning a drifting target concept.

It seems clear that a further crossover of ideas between Computational Learning

Theory and On-Line Algorithms should be possible. Listed below are a few of

the respective strengths and weaknesses of these areas where this crossover may

prove to be especially fruitful.

The notion of state. The notion of an algorithm having a state, where there

is a cost associated with changing state, is central to the area of On-Line

Algorithms. This allows one to study problems in which the decisions made

by an algorithm involve \doing something" rather than just predicting, and

where the decisions made in the present (e.g., whether to rent or buy) a�ect

the costs the algorithm will pay in the future. This issue has been virtually

ignored in the Computational Learning Theory literature since that litera-

ture has tended to focus on prediction problems. In prediction problems the

state of an algorithm is usually just its current hypothesis and there is no

natural penalty for changing state. Nonetheless, as Computational Learning

Theory moves to analyze more general sorts of learning problems, it seems

inevitable that the notion of state will begin to play a larger role, and ideas

from On-Line Algorithms will be crucial. Some work in this direction appears

in [8].

Limiting the power of the adversary. In the On-Line Algorithms literature,

it is usually assumed that the adversary has unlimited power to choose a

worst-case sequence for the algorithm. In the machine learning setting, it is

natural to assume there is some sort of regularity to the world (after all, if

the world is completely random, there is nothing to learn). Thus, one often

assumes that the world produces labels using a function from some limited

concept class, or that examples are are drawn from some �xed distribution,

or even that this �xed distribution is of some simple type. One can then

parametrize one's results as a function of the adversary's power, producing

especially good bounds when the adversary is relatively simple. This sort

of approach may prove useful in On-Line Algorithms (in fact, it already

has) for achieving less pessimistic sorts of bounds for many of the problems

commonly studied.
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Limiting the class of o�-line algorithms being compared to. In the typ-

ical machine learning setup, if one does not restrict the adversary, then to

achieve any non-trivial bound one must limit the class of o�-line algorithms

against which one is competing. This sort of approach may also be useful in

On-Line Algorithms for achieving more reasonable bounds.
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