COMS 4773: McDiarmid's Inequality

Daniel Hsu

February 18, 2024

Theorem 1 (McDiarmid's inequality). Let X_{1}, \ldots, X_{n} be independent random variables, where X_{i} has range \mathcal{X}_{i}. Let $f: \mathcal{X}_{1} \times \cdots \times \mathcal{X}_{n} \rightarrow \mathbb{R}$ be any function with the $\left(c_{1}, \ldots, c_{n}\right)$-bounded differences property: for every $i=1, \ldots, n$ and every $\left(x_{1}, \ldots, x_{n}\right),\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) \in \mathcal{X}_{1} \times \cdots \times \mathcal{X}_{n}$ that differ only in the i-th corodinate ($x_{j}=x_{j}^{\prime}$ for all $j \neq i$), we have

$$
\left|f\left(x_{1}, \ldots, x_{n}\right)-f\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)\right| \leq c_{i}
$$

For any $t>0$,

$$
\operatorname{Pr}\left(f\left(X_{1}, \ldots, X_{n}\right)-\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right)\right] \geq t\right) \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right)
$$

Proof. Write $\mathbb{E}_{i}[\cdot]$ to denote expectation conditioned on $X_{1: i}:=\left(X_{1}, \ldots, X_{i}\right)$. Therefore, $g_{i}\left(X_{1: i}\right):=$ $\mathbb{E}_{i}\left[f\left(X_{1: n}\right)\right]$ is, as the notation suggests, a function of $X_{1: i}$. Now define the following random variables:

$$
\begin{aligned}
Y_{i} & :=g_{i}\left(X_{1: i}\right)-g_{i-1}\left(X_{1: i-1}\right), \\
A_{i} & :=\inf _{x_{i} \in \mathcal{X}_{i}} g_{i}\left(X_{1: i-1}, x_{i}\right)-g_{i-1}\left(X_{1: i-1}\right), \\
B_{i} & :=\sup _{x_{i} \in \mathcal{X}_{i}} g_{i}\left(X_{1: i-1}, x_{i}\right)-g_{i-1}\left(X_{1: i-1}\right) .
\end{aligned}
$$

These random variables satisfy

$$
\begin{aligned}
& Y_{i} \in\left[A_{i}, B_{i}\right], \\
& \mathbb{E}_{i-1}\left[Y_{i}\right]=0, \\
& \sum_{i=1}^{n} Y_{i}=f\left(X_{1: n}\right)-\mathbb{E}\left[f\left(X_{1: n}\right)\right] .
\end{aligned}
$$

Furthermore, we claim that $\left[A_{i}, B_{i}\right]$ is always an interval of length at most c_{i}. We defer the proof of this claim to later.

To bound the probability that the sum of the Y_{i} 's is at least t, we use the Chernoff bounding
method. Let $S_{i}:=Y_{1}+\cdots+Y_{i}$. Then

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(\lambda S_{n}\right)\right] & =\mathbb{E}\left[\exp \left(\lambda\left(Y_{n}+S_{n-1}\right)\right)\right] \\
& =\mathbb{E}\left[\mathbb{E}_{n-1}\left[\exp \left(\lambda Y_{n}\right)\right] \exp \left(\lambda S_{n-1}\right)\right] \\
& \leq \exp \left(\lambda^{2} c_{n}^{2} / 8\right) \mathbb{E}\left[\exp \left(\lambda S_{n-1}\right)\right] \\
& =\exp \left(\lambda^{2} c_{n}^{2} / 8\right) \mathbb{E}\left[\exp \left(\lambda\left(Y_{n-1}+S_{n-2}\right)\right)\right] \\
& =\exp \left(\lambda^{2} c_{n}^{2} / 8\right) \mathbb{E}\left[\mathbb{E}_{n-2}\left[\exp \left(\lambda Y_{n-1}\right)\right] \exp \left(\lambda S_{n-2}\right)\right] \\
& \leq \exp \left(\lambda^{2} c_{n}^{2} / 8\right) \exp \left(\lambda^{2} c_{n-1}^{2} / 8\right) \mathbb{E}\left[\exp \left(\lambda S_{n-2}\right)\right] \\
& \vdots \\
& \leq \exp \left(\lambda^{2} c_{n}^{2} / 8\right) \cdots \exp \left(\lambda^{2} c_{1}^{2} / 8\right) \\
& =\exp \left(\frac{\sum_{i=1}^{n} c_{i}^{2}}{4} \cdot \frac{\lambda^{2}}{2}\right) .
\end{aligned}
$$

Above, the inequalities all follow from Hoeffding's inequality. Therefore, S_{n} is $\sum_{i=1}^{n} c_{i}^{2} / 4$-subgaussian. The probability bound now follows from the Cramer-Chernoff inequality for subgaussian random variables.

It remains to prove that $\left[A_{i}, B_{i}\right]$ is an interval of length at most c_{i}. We show that $B_{i}-A_{i} \leq c_{i}$. By independence of X_{1}, \ldots, X_{n}, we have

$$
\begin{aligned}
g_{i}\left(X_{1: i-1}, x_{i}\right) & =\mathbb{E}\left[f\left(X_{1: i-1}, x_{i}, X_{i+1: n}\right) \mid X_{1: i-1} ; X_{i}=x_{i}\right] \\
& =\mathbb{E}\left[f\left(X_{1: i-1}, x_{i}, X_{i+1: n}^{\prime}\right) \mid X_{1: i-1}\right]
\end{aligned}
$$

where $X_{i+1: n}^{\prime}$ is an independent copy of $X_{i+1: n}$. Then

$$
\begin{aligned}
B_{i}-A_{i} & =\sup _{b \in \mathcal{X}_{i}} g_{i}\left(X_{1: i-1}, b\right)-\inf _{a \in \mathcal{X}_{i}} g_{i}\left(X_{1: i-1}, a\right) \\
& =\sup _{a, b \in \mathcal{X}_{i}} g_{i}\left(X_{1: i-1}, b\right)-g_{i}\left(X_{1: i-1}, a\right) \\
& =\sup _{a, b \in \mathcal{X}_{i}} \mathbb{E}\left[f\left(X_{1: i-1}, b, X_{i+1: n}^{\prime}\right)-f\left(X_{1: i-1}, a, X_{i+1: n}^{\prime}\right) \mid X_{1: i-1}\right] \\
& \leq \mathbb{E}\left[\sup _{a, b \in \mathcal{X}_{i}}\left|f\left(X_{1: i-1}, b, X_{i+1: n}^{\prime}\right)-f\left(X_{1: i-1}, a, X_{i+1: n}^{\prime}\right)\right| \mid X_{1: i-1}\right] \\
& \leq c_{i} .
\end{aligned}
$$

The last step above uses the bounded differences property of f.

