COMS 4773 Spring 2024 HW 4 (due Apr. 19 at noon)

Problem 1. Suppose P is a distribution over $\mathbb{R}^{d} \times\{-1,1\}$, and $(X, Y) \sim P$. Here, we regard $\{-1,1\}$ as a subset of \mathbb{R}.
(a) The mean squared error of a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is defined as

$$
\mathbb{E}\left[(f(X)-Y)^{2}\right]
$$

Characterize the function $f^{\star}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ that minimizes the mean squared error in terms of the conditional distribution of Y given X. Justify your answer.
(b) Suppose $f^{\star}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is the minimizer of the mean squared error (as defined above), and suppose $h^{\star}: \mathbb{R}^{d} \rightarrow\{-1,1\}$ is the Bayes classifier for P. Prove that for any $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$,

$$
\operatorname{Pr}(h(X) \neq Y)-\operatorname{Pr}\left(h^{\star}(X) \neq Y\right) \leq \sqrt{\mathbb{E}\left[(f(X)-Y)^{2}\right]-\mathbb{E}\left[\left(f^{\star}(X)-Y\right)^{2}\right]}
$$

where h is defined by $h(x)=\operatorname{sign}(f(x))$.

Problem 2. Suppose $J: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is an L-Lipschitz convex objective function that you would like to approximately minimize (for some $L>0$). However, instead of a first-order (gradient) oracle, you only have access to the following "noisy oracle" (for some fixed $V>0$):

Given any $w \in \mathbb{R}^{d}$ as input, the noisy oracle returns a random vector $G=$ $\left(G_{1}, \ldots, G_{d}\right)$ such that, for each $i \in[d]$,

$$
\mathbb{E}\left[G_{i} \mid \mathcal{F}\right]=\frac{\partial J}{\partial w_{i}}(w) \quad \text { and } \quad \mathbb{E}\left[\left(G_{i}-\mathbb{E}\left[G_{i} \mid \mathcal{F}\right]\right)^{2} \mid \mathcal{F}\right] \leq V
$$

where \mathcal{F} denotes the results of all previous queries to the oracle.
(a) Analyze the following algorithm for approximately minimizing J (with hyperparameter $\eta>0$):

- Set $w_{0}=(0, \ldots, 0) \in \mathbb{R}^{d}$.
- For $t=1,2, \ldots, T$:
* Query the oracle at w_{t-1} to obtain $G_{t}=\left(G_{t, 1}, \ldots, G_{t, d}\right)$.
* Set $w_{t}=w_{t-1}-\eta G_{t}$ for some fixed step size $\eta>0$.
- Return $\bar{w}=\frac{1}{T} \sum_{t=0}^{T-1} w_{t}$.

In particular, prove a bound on $\mathbb{E}\left[J(\bar{w})-\min _{w \in B^{d}} J(w)\right]$ in terms of L, V, η, and T, where $B^{d}=\left\{w \in \mathbb{R}^{d}:\|w\|_{2} \leq 1\right\}$ is the unit ball; and give the value of the hyperparameter η that minimizes the bound (up to constant factors).
(b) Suppose you are tasked with implementing the noisy oracle. You have access to a first-order oracle for J, but you are told that your implementation of the noisy oracle must only output vectors with at most one non-zero component. Design and write the pseudocode for such an implementation, and prove its correctness. You should try your best to make it so V is as small as possible.

Problem 3. For $\gamma \in(0,1 / 2)$, let $f_{\gamma}:[-1,1] \rightarrow \mathbb{R}$ denote the piecewise linear function defined by

$$
f_{\gamma}(t)= \begin{cases}-1 & \text { if }-1 \leq t \leq-\gamma \\ t / \gamma & \text { if }-\gamma<t<\gamma \\ 1 & \text { if } \gamma \leq t \leq 1\end{cases}
$$

Prove that, for any $\epsilon \in(0,1 / 2)$ and any $\gamma \in(0,1 / 2)$, there is a polynomial p of degree at most $\frac{1000}{\gamma} \ln \frac{1}{\epsilon}$ such that

$$
\left|f_{\gamma}(t)-p(t)\right| \leq \epsilon \quad \text { for all } t \in[-1,-\gamma] \cup[\gamma, 1]
$$

(The constant 1000 is probably more than necessary.)
Hint: Combine a polynomial obtained from Jackson's theorem (presented in lecture) together with a particular linear combination of Bernstein polynomials (also presented in lecture).

