
COMS 4773 Spring 2024 HW 3 (due Apr. 3 at noon)

Problem 1.

(a) Suppose the hypothesis classes H1 ⊆ {0, 1}X and H2 ⊆ {0, 1}X , respectively, have VC
dimensions d1 and d2. Prove that the VC dimension of H1 ∪H2 is at most d1 + d2 +1.

(b) Define, for each d ∈ N, a hypothesis class Hd ⊂ {0, 1}X defined on X = N such that:

• Hd has VC dimension d, and

• for all n ∈ N and all distinct x1, . . . , xn ∈ X , the number of behaviors of Hd on
x1:n is

|Hd(x1:n)| =
(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

d

)
.

Prove that your choice of Hd satisfies these properties.

(This shows that the bound from Sauer’s lemma can be tight for some hypothesis
classes of a given VC dimension.)
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Problem 2. Recall that LTFd := {hw,b : w ∈ Rd, b ∈ R}, the class of linear threshold
functions in Rd, where

hw,b(x) = sign(⟨x,w⟩+ b) for all x ∈ Rd.

In this problem, you will show that for any n ≥ 2 points x1, . . . , xn ∈ R2, the set of
behaviors of LTF2 on these points,

LTF2(x1:n) = {(h(x1), . . . , h(xn)) : h ∈ LTF2},

has cardinality O(n2). Note that LTFd has VC dimension d + 1, so Sauer’s lemma only
guarantees

|LTF2(x1:n)| ≤
(
n

0

)
+

(
n

1

)
+

(
n

2

)
+

(
n

3

)
= Θ(n3).

So this will show that the upper-bound provided by Sauer’s lemma is not tight for all
hypothesis classes of a given VC dimension.

(a) Prove that if x1, . . . , xn are n arbitrary points in R2, then there are at most 2(n − 1)
“behaviors” a = (a1, . . . , an) realized by LTFs hw,b such that ⟨x1, w⟩ = −b.

Hint : Consider lines that pass through x1 and xi for i = 2, . . . , n. Then consider lines
that pass through x1 and the angle between two “adjacent” lines of the previous type.
What are the different behaviors that these lines determine?

(b) Use the result from Part (a) to prove that |LTF2(x1:n)| ≤ 2n(n − 1) + 1 for any
x1, . . . , xn ∈ R2.
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Problem 3. Recall that for any A ⊆ Rn, we define

Radn(A) := Eσ sup
a∈A

⟨σ, a⟩n

where σ is a random vector distributed uniformly in {−1, 1}n (i.e., the coordinates of σ are
iid Rademacher random variables), and ⟨·, ·⟩n is the normalized inner product

⟨u, v⟩n :=
1

n

n∑
i=1

uivi.

(a) Let A and B be arbitrary subsets of {0, 1}n. Define

A⊙B := {a⊙ b : a ∈ A, b ∈ B},

and
A+B := {a+ b : a ∈ A, b ∈ B},

where u⊙ v denotes the element-wise product of u and v (i.e., w = u⊙ v ∈ Rn means
wi = uivi for all i ∈ [n]). Prove that

Radn(A⊙B) ≤ Radn(A+B).

Hint: Consider using the Lipschitz contraction property of Rademacher averages.

(b) There is an alternative (and somewhat more standard) definition of Rademacher aver-
age, which we shall write as Rad∗

n(A):

Rad∗
n(A) := Eσ sup

a∈A
|⟨σ, a⟩n|.

Many of the properties of Radn also hold for Rad∗
n, up to some minor changes. One is

the Lipschitz contraction property. In this problem, you will prove a simplified version
of it. Suppose L ≥ 0 and that ϕ : R → R is an L-Lipschitz function satisfying ϕ(0) = 0.
For any A ⊆ Rn, define

ϕ(A) := {(ϕ(a1), . . . , ϕ(an)) : (a1, . . . , an) ∈ A}.

Prove that, for any A ⊆ Rn,

Rad∗
n(ϕ(A)) ≤ 2LRad∗

n(A).

Hint: There is a direct proof of this property, but I think it is quite messy, and it is
much easier to leverage the Lipschitz contraction property of Radn. Start by proving
the following intermediate equation and inequality (with ϕ as above):

Rad∗
n(ϕ(A)) = Radn((ϕ(A) ∪ {0}) ∪ (−ϕ(A) ∪ {0}))

≤ Radn(ϕ(A) ∪ {0}) + Radn(−ϕ(A) ∪ {0}).
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Problem 4. In this problem, you will prove a generalization guarantee for soft-margin
support vector machine (SVM). Given training data (x1, y1), . . . , (xn, yn) ∈ Rd×{−1, 1} and
regularization parameter λ > 0, the soft-margin SVM classifier is the (homogeneous) linear
threshold function hŵλ

: Rd → {−1, 1} defined by

hŵλ
(x) = sign(⟨x, ŵλ⟩) for all x ∈ Rd,

where ŵλ = ŵλ((x1, y1), . . . , (xn, yn)) ∈ Rd is the solution to the minimization problem

min
w∈Rd

λ

2
∥w∥22 +

1

n

n∑
i=1

max{0, 1− yi⟨xi, w⟩}.

The goal is to prove the following guarantee.

Proposition 1. Let (X, Y ) ∼ P for a probability distribution P on Bd × {−1, 1}, where
Bd := {x ∈ Rd : ∥x∥2 ≤ 1} is the unit ball in Rd. Let (X1, Y1), . . . , (Xn, Yn) be an iid sample
from P . There exists a universal constant C > 0 such that, for any δ ∈ (0, 1),

Pr

[
R(ŵλ) ≤ min

w∈Rd

[
R(w) +

λ

2
∥w∥22

]
+ C

(√
1

λn
+

√
log(1/δ)

min{1, λ}n

)]
≥ 1− δ,

where R(w) := Emax{0, 1− Y ⟨X,W ⟩} for w ∈ Rd.

(a) Prove that ∥ŵλ∥2 ≤
√
2/λ.

(b) For any r ≥ 0, let Bd(r) := {w ∈ Rd : ∥w∥2 ≤ r} be the ball of radius r in Rd. Prove
that for any x1, . . . , xn ∈ Bd,

Radn(A) ≤
r√
n
,

where A := {(⟨x1, w⟩, . . . , ⟨xn, w⟩) : w ∈ Bd(r)}.

(c) Prove Proposition 1.

Hint: Use the following decompositon. For any w ∈ Rd,

R(ŵλ)−R(w) = R(ŵλ)−Rn(ŵλ)

+Rn(w)−R(w)

+

[
Rn(ŵλ) +

λ

2
∥ŵλ∥22

]
−
[
Rn(w) +

λ

2
∥w∥22

]
+
λ

2
∥w∥22 −

λ

2
∥ŵλ∥22

where Rn(w) :=
1
n

∑n
i=1max{0, 1− Yi⟨Xi, w⟩} for w ∈ Rd.
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