COMS 4773 Spring 2024 HW 3 (due Apr. 3 at noon)

Problem 1.

(a) Suppose the hypothesis classes $\mathcal{H}_{1} \subseteq\{0,1\}^{\mathcal{X}}$ and $\mathcal{H}_{2} \subseteq\{0,1\}^{\mathcal{X}}$, respectively, have VC dimensions d_{1} and d_{2}. Prove that the VC dimension of $\mathcal{H}_{1} \cup \mathcal{H}_{2}$ is at most $d_{1}+d_{2}+1$.
(b) Define, for each $d \in \mathbb{N}$, a hypothesis class $\mathcal{H}_{d} \subset\{0,1\}^{\mathcal{X}}$ defined on $\mathcal{X}=\mathbb{N}$ such that:

- \mathcal{H}_{d} has VC dimension d, and
- for all $n \in \mathbb{N}$ and all distinct $x_{1}, \ldots, x_{n} \in \mathcal{X}$, the number of behaviors of \mathcal{H}_{d} on $x_{1: n}$ is

$$
\left|\mathcal{H}_{d}\left(x_{1: n}\right)\right|=\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{d} .
$$

Prove that your choice of \mathcal{H}_{d} satisfies these properties.
(This shows that the bound from Sauer's lemma can be tight for some hypothesis classes of a given VC dimension.)

Problem 2. Recall that $\operatorname{LTF}_{d}:=\left\{h_{w, b}: w \in \mathbb{R}^{d}, b \in \mathbb{R}\right\}$, the class of linear threshold functions in \mathbb{R}^{d}, where

$$
h_{w, b}(x)=\operatorname{sign}(\langle x, w\rangle+b) \quad \text { for all } x \in \mathbb{R}^{d} .
$$

In this problem, you will show that for any $n \geq 2$ points $x_{1}, \ldots, x_{n} \in \mathbb{R}^{2}$, the set of behaviors of LTF_{2} on these points,

$$
\operatorname{LTF}_{2}\left(x_{1: n}\right)=\left\{\left(h\left(x_{1}\right), \ldots, h\left(x_{n}\right)\right): h \in \operatorname{LTF}_{2}\right\}
$$

has cardinality $O\left(n^{2}\right)$. Note that LTF_{d} has VC dimension $d+1$, so Sauer's lemma only guarantees

$$
\left|\operatorname{LTF}_{2}\left(x_{1: n}\right)\right| \leq\binom{ n}{0}+\binom{n}{1}+\binom{n}{2}+\binom{n}{3}=\Theta\left(n^{3}\right) .
$$

So this will show that the upper-bound provided by Sauer's lemma is not tight for all hypothesis classes of a given VC dimension.
(a) Prove that if x_{1}, \ldots, x_{n} are n arbitrary points in \mathbb{R}^{2}, then there are at most $2(n-1)$ "behaviors" $a=\left(a_{1}, \ldots, a_{n}\right)$ realized by LTFs $h_{w, b}$ such that $\left\langle x_{1}, w\right\rangle=-b$.
Hint: Consider lines that pass through x_{1} and x_{i} for $i=2, \ldots, n$. Then consider lines that pass through x_{1} and the angle between two "adjacent" lines of the previous type. What are the different behaviors that these lines determine?
(b) Use the result from Part (a) to prove that $\left|\operatorname{LTF}_{2}\left(x_{1: n}\right)\right| \leq 2 n(n-1)+1$ for any $x_{1}, \ldots, x_{n} \in \mathbb{R}^{2}$.

Problem 3. Recall that for any $A \subseteq \mathbb{R}^{n}$, we define

$$
\operatorname{Rad}_{n}(A):=\mathbb{E}_{\sigma} \sup _{a \in A}\langle\sigma, a\rangle_{n}
$$

where σ is a random vector distributed uniformly in $\{-1,1\}^{n}$ (i.e., the coordinates of σ are iid Rademacher random variables), and $\langle\cdot, \cdot\rangle_{n}$ is the normalized inner product

$$
\langle u, v\rangle_{n}:=\frac{1}{n} \sum_{i=1}^{n} u_{i} v_{i}
$$

(a) Let A and B be arbitrary subsets of $\{0,1\}^{n}$. Define

$$
A \odot B:=\{a \odot b: a \in A, b \in B\}
$$

and

$$
A+B:=\{a+b: a \in A, b \in B\}
$$

where $u \odot v$ denotes the element-wise product of u and v (i.e., $w=u \odot v \in \mathbb{R}^{n}$ means $w_{i}=u_{i} v_{i}$ for all $\left.i \in[n]\right)$. Prove that

$$
\operatorname{Rad}_{n}(A \odot B) \leq \operatorname{Rad}_{n}(A+B)
$$

Hint: Consider using the Lipschitz contraction property of Rademacher averages.
(b) There is an alternative (and somewhat more standard) definition of Rademacher average, which we shall write as $\operatorname{Rad}_{n}^{*}(A)$:

$$
\operatorname{Rad}_{n}^{*}(A):=\mathbb{E}_{\sigma} \sup _{a \in A}\left|\langle\sigma, a\rangle_{n}\right| .
$$

Many of the properties of Rad_{n} also hold for $\operatorname{Rad}_{n}^{*}$, up to some minor changes. One is the Lipschitz contraction property. In this problem, you will prove a simplified version of it. Suppose $L \geq 0$ and that $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is an L-Lipschitz function satisfying $\phi(0)=0$. For any $A \subseteq \mathbb{R}^{n}$, define

$$
\phi(A):=\left\{\left(\phi\left(a_{1}\right), \ldots, \phi\left(a_{n}\right)\right):\left(a_{1}, \ldots, a_{n}\right) \in A\right\}
$$

Prove that, for any $A \subseteq \mathbb{R}^{n}$,

$$
\operatorname{Rad}_{n}^{*}(\phi(A)) \leq 2 L \operatorname{Rad}_{n}^{*}(A)
$$

Hint: There is a direct proof of this property, but I think it is quite messy, and it is much easier to leverage the Lipschitz contraction property of Rad_{n}. Start by proving the following intermediate equation and inequality (with ϕ as above):

$$
\begin{aligned}
\operatorname{Rad}_{n}^{*}(\phi(A)) & =\operatorname{Rad}_{n}((\phi(A) \cup\{0\}) \cup(-\phi(A) \cup\{0\})) \\
& \leq \operatorname{Rad}_{n}(\phi(A) \cup\{0\})+\operatorname{Rad}_{n}(-\phi(A) \cup\{0\}) .
\end{aligned}
$$

Problem 4. In this problem, you will prove a generalization guarantee for soft-margin support vector machine (SVM). Given training data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathbb{R}^{d} \times\{-1,1\}$ and regularization parameter $\lambda>0$, the soft-margin SVM classifier is the (homogeneous) linear threshold function $h_{\hat{w}_{\lambda}}: \mathbb{R}^{d} \rightarrow\{-1,1\}$ defined by

$$
h_{\hat{w}_{\lambda}}(x)=\operatorname{sign}\left(\left\langle x, \hat{w}_{\lambda}\right\rangle\right) \quad \text { for all } x \in \mathbb{R}^{d},
$$

where $\hat{w}_{\lambda}=\hat{w}_{\lambda}\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right) \in \mathbb{R}^{d}$ is the solution to the minimization problem

$$
\min _{w \in \mathbb{R}^{d}} \frac{\lambda}{2}\|w\|_{2}^{2}+\frac{1}{n} \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left\langle x_{i}, w\right\rangle\right\} .
$$

The goal is to prove the following guarantee.
Proposition 1. Let $(X, Y) \sim P$ for a probability distribution P on $B^{d} \times\{-1,1\}$, where $B^{d}:=\left\{x \in \mathbb{R}^{d}:\|x\|_{2} \leq 1\right\}$ is the unit ball in \mathbb{R}^{d}. Let $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ be an iid sample from P. There exists a universal constant $C>0$ such that, for any $\delta \in(0,1)$,

$$
\operatorname{Pr}\left[\mathcal{R}\left(\hat{w}_{\lambda}\right) \leq \min _{w \in \mathbb{R}^{d}}\left[\mathcal{R}(w)+\frac{\lambda}{2}\|w\|_{2}^{2}\right]+C\left(\sqrt{\frac{1}{\lambda n}}+\sqrt{\frac{\log (1 / \delta)}{\min \{1, \lambda\} n}}\right)\right] \geq 1-\delta,
$$

where $\mathcal{R}(w):=\mathbb{E} \max \{0,1-Y\langle X, W\rangle\}$ for $w \in \mathbb{R}^{d}$.
(a) Prove that $\left\|\hat{w}_{\lambda}\right\|_{2} \leq \sqrt{2 / \lambda}$.
(b) For any $r \geq 0$, let $B^{d}(r):=\left\{w \in \mathbb{R}^{d}:\|w\|_{2} \leq r\right\}$ be the ball of radius r in \mathbb{R}^{d}. Prove that for any $x_{1}, \ldots, x_{n} \in B^{d}$,

$$
\operatorname{Rad}_{n}(A) \leq \frac{r}{\sqrt{n}},
$$

where $A:=\left\{\left(\left\langle x_{1}, w\right\rangle, \ldots,\left\langle x_{n}, w\right\rangle\right): w \in B^{d}(r)\right\}$.
(c) Prove Proposition 1.

Hint: Use the following decompositon. For any $w \in \mathbb{R}^{d}$,

$$
\begin{aligned}
\mathcal{R}\left(\hat{w}_{\lambda}\right)-\mathcal{R}(w)= & \mathcal{R}\left(\hat{w}_{\lambda}\right)-\mathcal{R}_{n}\left(\hat{w}_{\lambda}\right) \\
& +\mathcal{R}_{n}(w)-\mathcal{R}(w) \\
& +\left[\mathcal{R}_{n}\left(\hat{w}_{\lambda}\right)+\frac{\lambda}{2}\left\|\hat{w}_{\lambda}\right\|_{2}^{2}\right]-\left[\mathcal{R}_{n}(w)+\frac{\lambda}{2}\|w\|_{2}^{2}\right] \\
& +\frac{\lambda}{2}\|w\|_{2}^{2}-\frac{\lambda}{2}\left\|\hat{w}_{\lambda}\right\|_{2}^{2}
\end{aligned}
$$

where $\mathcal{R}_{n}(w):=\frac{1}{n} \sum_{i=1}^{n} \max \left\{0,1-Y_{i}\left\langle X_{i}, w\right\rangle\right\}$ for $w \in \mathbb{R}^{d}$.

