
COMS 4773 Spring 2024 HW 2 (due Mar. 1 at noon)

Please read the handout on McDiarmid’s inequality, posted on the course website.

Theorem 1 (McDiarmid’s inequality). Let X1, . . . , Xn be independent random variables,
where Xi has range Xi. Let f : X1 × · · · × Xn → R be any function with the (c1, . . . , cn)-
bounded differences property: for every i = 1, . . . , n and every (x1, . . . , xn), (x

′
1, . . . , x

′
n) ∈

X1 × · · · × Xn that differ only in the i-th coordinate (xj = x′
j for all j ̸= i), we have

|f(x1, . . . , xn)− f(x′
1, . . . , x

′
n)| ≤ ci.

For any t > 0,

Pr(f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] ≥ t) ≤ exp

(
− 2t2∑n

i=1 c
2
i

)
.

Problem 1. First, check for yourself that Hoeffding’s inequality is a simple corollary of
McDiarmid’s inequality.

(a) Suppose F is a (possibly infinite) collection of real-valued functions on X , each with
range [a, b], µ is a probability distribution over X , and S is an iid sample from µ of size
n. For any f ∈ F , let µ(f) = EX∼µ[f(X)] and µS(f) =

1
n

∑
x∈S f(x). Use McDiarmid’s

inequality to prove the following: for any t > 0,

Pr

(
max
f∈F

|µ(f)− µS(f)| − E
[
max
f∈F

|µ(f)− µS(f)|
]
≥ t

)
≤ exp

(
− 2nt2

(b− a)2

)
.

(b) Suppose p = (p1, . . . , pk) ∈ ∆k−1 is a probability distribution over {1, . . . , k}, and
p̂ = (p̂1, . . . , p̂k) is the empirical probability distribution based on an iid sample from
p of size n, i.e.,

p̂i =
number of times i appears in the iid sample

n
.

Prove the following: for any δ ∈ (0, 1), with probability at least 1− δ,

∥p− p̂∥2 ≤
√

1− ∥p∥22
n

+

√
ln(1/δ)

n
.

Hint: McDiarmid’s inequality is useful for part of this problem.
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Problem 2. Suppose X1, . . . , Xn are 1-subgaussian mean-zero random variables (not nec-
essarily independent nor identically distributed), and let

Z := max
i=1,...,n

Xi.

In this problem, you will prove a bound on E[Z] two (or three) ways. (Throughout this
problem, assume n > 1 so log(n) > 0. This will simplify the form of the bounds.)

(a) Prove the following: for any λ > 0,

E[Z] ≤ 1

λ
KZ(λ),

where KZ(λ) = lnE[exp(λZ)] is the log moment generating function for Z.

Hint: Use Jensen’s inequality.

(b) Use the result from Part (a) to prove the following: for some absolute constant C > 0,

E[Z] ≤ C
√
log(n).

Hint: For any real numbers a1, . . . , an, we have emaxi∈[n] ai = maxi∈[n] e
ai ≤

∑n
i=1 e

ai .

Now we start the second way to prove the same bound on E[Z].

(c) Prove the following: for any t > 0,

Pr(Z ≥ t) ≤ n · e−t2/2.

Hint: This one is easy; not a trick question.

(d) Use the result from Part (c) and the fact that E[Z] ≤
∫∞
0

Pr(Z ≥ t) dt to prove the
following: for some absolute constant C > 0,

E[Z] ≤ C
√

log(n).

Hint: Break the integral into two parts, [0, w) and [w,∞), for some judicious choice of
w > 0; use a “trivial” bound for the first part, and use a bound that takes advantage
of the lower integral limit for the second part.

Here is a generalization.

(e) (Optional.) Suppose X1, X2, . . . is an infinite sequence of 1-subgaussian mean-zero
random variables (not necessarily independent nor identically distributed), and let

Y := max
i=1,2,...

Xi√
1 + ln(i)

.

Prove the following: for some absolute constant C > 0,

E[Y ] ≤ C.

2



Problem 3. Suppose µ is a probability distribution over X ×{0, 1}. Consider the following
online prediction problem that unfolds over the course of T rounds. In each round t =
1, . . . , T :

1. First, Nature independently draws a random example (Xt, Yt) from µ, and reveals Xt

to the learner (but Yt is kept hidden).

2. Next, the learner makes a prediction Ŷt of Yt.

3. Finally, Nature reveals the label Yt to the learner.

Let MT be the number of mistakes made by the learner in all T rounds:

MT =
T∑
t=1

1{Ŷt ̸= Yt}.

Let H be a finite hypothesis class of functions mapping X to {0, 1},1 and for each h ∈ H,
let MT,h be the number of mistakes made by hypothesis h in all T rounds:

MT,h =
T∑
t=1

1{h(Xt) ̸= Yt}.

(a) Explain how to use RANDOMIZED WEIGHTED MAJORITY (with a suitable choice
of the hyperparameter) for this problem to guarantee

E[MT −MT,h] ≤ O
(√

T log|H|
)

for all h ∈ H.

(b) Consider the following algorithm for this problem. Let ĥ1 ∈ H be any arbitrary
hypothesis from H; in round t > 1, let

ĥt ∈ argmin
h∈H

t−1∑
s=1

1{h(Xs) ̸= Ys}

be a hypothesis that makes the fewest mistakes in all previous rounds; set Ŷt := ĥt(Xt).
For this algorithm, prove the following:

E[MT −MT,h] ≤ O
(√

T log|H|
)

for all h ∈ H.

1The notation YX is used to denote the set of all possible functions from X to Y, so H ⊆ {0, 1}X .
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Problem 4. Suppose µ is a probability distribution on X ×{0, 1}, and (Hk)k∈N is an infinite
sequence of finite hypothesis classes on X , where 2 ≤ |H1| < |H2| < · · · . (A typical setup
is one where the classes are nested: H1 ⊂ H2 ⊂ · · · .) Let S denote an iid sample from µ of
size n, and define

err(h) = Pr
(X,Y )∼µ

(h(X) ̸= Y ),

êrr(h) =
1

n

∑
(x,y)∈S

1{h(x) ̸= y}.

(a) Prove that for any δ ∈ (0, 1), with probability at least 1− δ,

|err(h)− êrr(h)| ≤ bound(k, n, δ) for all k ≥ 1 and all h ∈ Hk

where

bound(k, n, δ) := C

√
log|Hk|+ log(k) + log(1/δ)

n

for some absolute constant C > 0.

Hint: Use Hoeffding’s inequality and union bound, together with the fact

∞∑
k=1

1

k2 + k
=

∞∑
k=1

1

k
− 1

k + 1
= 1.

(b) Consider the following strategy for choosing ĥ ∈
⋃

k≥1Hk. Define

ĥk := argmin
h∈Hk

êrr(h) for each k ≥ 1,

assuming ties are broken in some way. Choose

k̂ := argmin
k≥1

min{1, êrr(ĥk) + bound(k, n, δ)},

assuming ties are broken in favor of the smaller k, and set ĥ := ĥk̂.

The strategy above is simple to write down, but the “argmink≥1” should give some
pause. Briefly explain how the strategy can be executed in finite time. (Assume, for
each k, that you have an algorithm for computing both ĥk and bound(k, n, δ).)

(c) (Continuing from Part (b).) Prove the following: for any δ ∈ (0, 1), with probability
at least 1− δ,

err(ĥ) ≤ min
k≥1

err(h∗
k) + 2 bound(k, n, δ)

where h∗
k := argminh∈Hk

err(h) for each k ≥ 1.
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Problem 5. Recall the following online convex optimization problem. In round t = 1, 2, . . . :

1. The learner chooses xt ∈ Rn.

2. Nature chooses (differentiable) convex function ft : Rn → R and reveals ∇ft(xt) to the
learner.

3. The learner incurs loss ft(xt).

In this problem, you will analyze a variant of the online gradient descent algorithm that
chooses the xt’s as follows:

xt := argmin
x∈Rn

t−1∑
s=1

⟨∇fs(xs), x⟩+ ⟨ℓ̂t, x⟩+
∥x∥22
2η

, (1)

where ℓ̂1, ℓ̂2, . . . is some arbitrary sequence of vectors in Rn with ℓ̂1 = 0. (When t = 1, the
sum is empty and ℓ̂1 = 0, so x1 = argminx∈Rn∥x∥22/(2η) = 0.)

The idea of the ℓ̂t’s is that they are “guesses” for the actual gradients ℓt = ∇ft(xt). In
round t, the gradient ℓt is not available to the learner, so the learner has to make do with ℓ̂t.
Don’t worry about where these guesses might come from for now. This algorithm has the
following guarantee: for any T and any x ∈ Rn,

T∑
t=1

ft(xt)−
T∑
t=1

ft(x) ≤ η
T∑
t=1

∥∇ft(xt)− ℓ̂t∥22 +
∥x∥22
2η

. (2)

Here are some possible interpretations of (2).

• If ℓ̂t = 0 for all t, then the algorithm is the same as the usual online gradient descent,
and the right-hand side of (2) is the same guarantee we had before.

• If ℓ̂t = ℓt for all t (i.e., the “guesses” are perfect!), then the right-hand side of (2) is
just ∥x∥2/(2η), which does not grow with the number of rounds T at all!

• If ℓ̂t = ℓt−1, then the right-hand side of (2) is

η

T∑
t=1

∥∇ft(xt)−∇ft−1(xt−1)∥22 +
∥x∥22
2η

,

which may be small if the gradients don’t change very much from round to round.

Your task is to prove of the guarantee in (2) in two steps.

(a) Prove the following lemma.
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Lemma 1. Let x1, x2, . . . be the choices of the online gradient descent variant from
(1). Define another sequence xogd

1 , xogd
2 , . . . by

xogd
t := argmin

x∈Rn

t−1∑
s=1

⟨∇fs(xs), x⟩+
1

2η
∥x∥22. (3)

For any T and any x ∈ Rn,

T∑
t=1

⟨ℓ̂t, xt − xogd
t+1⟩+ ⟨ℓt, xogd

t+1⟩ ≤
T∑
t=1

⟨ℓt, x⟩+
∥x∥22
2η

.

Hint: Use induction on T . The base case (T = 1) uses the fact that ℓ̂1 = 0. For the
inductive step, use the inductive hypothesis with a careful choice of x. You should only
have to use the “optimality” properties guaranteed by the definitions of xt and xogd

t .

(b) Armed with Lemma 1 from Part (a), prove the guarantee in (2).

Hint: It may be helpful to obtain explicit expressions for xt and xogd
t+1 (as defined in (1)

and (3)). The decomposition

⟨∇ft(xt), xt − x⟩ = ⟨∇ft(xt)− ℓ̂t, xt − xogd
t+1⟩+ ⟨ℓ̂t, xt − xogd

t+1⟩+ ⟨∇ft(xt), x
ogd
t+1 − x⟩

may also be helpful.
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