
COMS 4773 Spring 2024 HW 1 (due Feb. 9 at noon)

Please read the course syllabus carefully for the policy on collaboration and homework
submission.

Problem 1. Answer the following questions about COMS 4773.

(a) What should you do if you miss a lecture?

(b) What is the maximum size of a group you can form to discuss homework problems?

(c) TRUE or FALSE: If a student discusses the homework with another student, then the
two of them may just submit a single write-up with both of their names on it.

(d) What are the LATEX commands to write “∀” and “∃”?

All of the answers are in the course syllabus or can be found by following some links provided
in the course syllabus. You are hereby explicitly permitted to use the course syllabus and
the links provided therein to solve this particular problem.

Problem 2. Consider the “Using Expert Advice” problem with N experts, but now for
predicting a ternary outcome, so yt ∈ {1, 2, 3} and bt,i ∈ {1, 2, 3} for all rounds t and all
i ∈ [N ]. Assume that Nature will ensure that there is an expert who makes no mistakes.
Give an algorithm that ensures the learner makes no more than C log2N mistakes, where
C > 0 is a universal positive constant. Try to make the constant C as small as possible;
what C can you achieve? Give a proof that this mistake bound holds for your algorithm.
Bonus : Show that this value of C cannot be improved.

Problem 3. Suppose that, in the “Using Expert Advice” problem, Nature guarantees that
one of the N experts will make no more than K⋆ mistakes (ever), but this number K⋆ is not
known to the learner. Explain how to modify WEIGHTED MAJORITY with the “doubling
trick” (sketched in lecture) to guarantee a mistake bound of

2K⋆ + C
(√

K⋆ logN + logN
)

where C > 0 is some universal positive constant. Give a proof that this mistake bound holds
for your modified algorithm. (If you get something like 2K⋆+C

(√
K⋆ logN + (logK⋆)(logN)

)
,

that’s also fine.)
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Aside: An approach that seems more natural than the doubling trick is to simply use
weights wt,i = β

Mt−1,i

t , where Mt−1,i is the number of mistakes made by expert i up through
round t − 1, and βt ∈ (0, 1) is chosen in some careful way based on mini∈[N ] Mt−1,i. I think
something like this may work, but also that the proof may be more complicated. (If you
manage to make this work with a very simple proof, I would love to see it!)

Problem 4. Consider the following alternative algorithm for Online Allocation (assuming
ℓt ∈ [0, 1]N for all rounds t):1

• Initialize w1,i = 1 for all i ∈ [N ].

• For t = 1, 2, . . . :

– Choose allocation vector pt = (pt,1, . . . , pt,N) ∈ ∆N−1, where

pt,i =
wt,i

Zt

for all i ∈ [N ]

and Zt =
∑N

i=1wt,i.

– Get loss vector ℓt = (ℓt,1, . . . , ℓt,N) ∈ [0, 1]N .

– If Rt,i ≤ 0 for all i ∈ [N ], then set wt+1,i = 1 for all i ∈ [N ]; otherwise set
wt+1,i = max{Rt,i, 0} for all i ∈ [N ].

(Recall that Rt,i =
∑t

s=1⟨ps, ℓs⟩ −
∑t

s=1 ℓs,i.)

In this problem, you will prove that this algorithm guarantees RT ≤
√
TN . (Yes, this has

quite a bit worse dependence on N than what HEDGE achieves, but at least the dependence
on T is sublinear. And the algorithm is simple and has no hyperparameters!)

(a) Define rt,i = ⟨pt, ℓt⟩ − ℓt,i for all i ∈ [N ]. Prove that, for every round t, and every
i ∈ [N ],

(max{Rt,i, 0})2 ≤ (max{Rt−1,i, 0})2 + 2max{Rt−1,i, 0}rt,i + r2t,i,

where we regard R0,i = 0 for all i ∈ [N ].

(b) Using the result from part (a) and the way the algorithm chooses allocation vectors,
prove that

N∑
i=1

(max{Rt,i, 0})2 ≤
N∑
i=1

(max{Rt−1,i, 0})2 +
N∑
i=1

r2t,i.

(c) Use the previous two parts to complete the proof that, for any T , the regret of the
learner after T rounds satisfies RT ≤

√
TN .

(Remember that the loss vectors are chosen from [0, 1]N .)

1This algorithm is related to—but not the same as—the “NormalHedge” algorithm from https://arxiv.

org/abs/0903.2851.

2

https://arxiv.org/abs/0903.2851
https://arxiv.org/abs/0903.2851


Problem 5. Consider the following modification of WEIGHTEDMAJORITY for the “Using
Expert Advice” problem (with binary outcomes):

• Initialize w1,i = 1 for all i ∈ [N ].

• For t = 1, 2, . . . :

– Observe experts’ predictions bt,1, . . . , bt,N ∈ {−1, 1}.
– Choose predict at = sign(

∑N
i=1wt,ibt,i) (weighted majority vote).

– Observe outcome yt ∈ {−1, 1}.
– Update weights: for all i ∈ [N ],

wt+1,i =

{
wt,i if yt = bt,i or wt,i <

1
3
· 1
N

∑N
j=1wt,j;

1
2
wt,i if yt ̸= bt,i and wt,i ≥ 1

3
· 1
N

∑N
j=1wt,j.

This is like WEIGHTED MAJORITY (with β = 1/2), except that a mistaken expert’s
weight is halved only if its weight was at least 1/3 of the average weight in that round.

(a) Let Zt =
∑N

i=1wt,i for all rounds t. Explain why, at the start of any round t, every
expert i has weight wt,i satisfying

wt,i ≥
Zt

6N
.

(The modification to how weights are updated is important for this part.)

(b) Prove that this modified version of WEIGHTED MAJORITY has the following guar-
antee. Pick any segment of consecutive rounds, say, a, a + 1, a + 2, . . . , b, with a ≤ b.
Let Ka,b be the smallest number of mistakes committed by an expert in the rounds
a, a+ 1, a+ 2, . . . , b. Then the learner makes at most

8Ka,b + 12 lnN + 21

mistakes in the rounds a, a+ 1, a+ 2, . . . , b.

The guarantee in part (b) is useful if the “good expert” changes over time. For example,
suppose Expert 1 always predicts 1, and Expert 2 always predicts −1. Further, suppose the
outcomes in the first 1000 rounds are all 1’s, so K1,1000 = 0 (achieved by Expert 1), but the
outcomes in the next 1000 rounds are all −1’s, soK1001,2000 = 0 (achieved by Expert 2). Each
of Expert 1 and Expert 2 makes 1000 mistakes over all 2000 rounds; neither is particularly
good for all 2000 rounds. (Think about how well the original WEIGHTED MAJORITY,
with β = 1/2, would do in this example. . . ) The learner, using this modified algorithm, will
make at most a small number of mistakes overall:

• at most 8K1,1000 + 12 ln 2 + 21 ≈ 30 mistakes in rounds 1, . . . , 1000;

• at most 8K1001,2000 + 12 ln 2 + 21 ≈ 30 mistakes in rounds 1001, . . . , 2000.

The modification in how the weights are updated ensures that the learner never stops antic-
ipating that some currently poorly-performing expert may become good later on.
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