COMS 4773 Spring 2024 Homework 0

Daniel Hsu

This assignment is not to be turned in.

Problem 1. Let X be a non-negative integer-valued random variable.

- (a) Prove that $\Pr(X \neq 0) \leq \mathbb{E} X$.
- (b) Prove that $\Pr(X=0) \leq \operatorname{var}(X) / \mathbb{E}(X^2)$.

Problem 2. For $p \ge 1$, the l^p norm for vectors in \mathbb{R}^n is defined by

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$
 for all $x = (x_1, \dots, x_n) \in \mathbb{R}^n$.

For $p = \infty$, the l^{∞} norm is defined by

$$||x||_{\infty} = \max_{i=1,\dots,n} |x_i| \quad \text{for all } x = (x_1,\dots,x_n) \in \mathbb{R}^n.$$

(a) Prove that for any vectors $x, y \in \mathbb{R}^n$,

$$x \cdot y \le \|x\|_1 \|y\|_{\infty}.$$

(b) Prove that $||x||_2 \le ||x||_1 \le \sqrt{n} ||x||_2$ for all $x \in \mathbb{R}^n$.

Problem 3. Prove that for any vectors $v_1, \ldots, v_d \in \mathbb{R}^n$, each with $||v_i||_2 \leq 1$, any positive integer k, and any vector u in the convex hull of v_1, \ldots, v_d , there exists non-negative integers k_1, \ldots, k_d with $\sum_{i=1}^d k_i = k$ such that

$$\left\| u - \frac{1}{k} \sum_{i=1}^{d} k_i v_i \right\|_2^2 \le \frac{1}{k}.$$

Note: A vector u is in the <u>convex hull</u> of v_1, \ldots, v_d if there exists non-negative numbers $\alpha_1, \ldots, \alpha_d \ge 0$ with $\sum_{i=1}^d \alpha_i = 1$ such that

$$u = \sum_{i=1}^{d} \alpha_i v_i$$