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High-dimensional support recovery from moments

» Random vector X, supported on k distinct points
Z1,22,...,Z) € Rd,

P(X =2z) = w,>0.

» Can we learn the parameters {(w;, z;)}%_; from moments?
» Moments:
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E(X) = Wt - Z¢,
t=1
k
E(X@X) = ZWt‘Zt®Zt,
t=1
k
E(X®X®X) = Zwt-zt@)zt@zt.

~
I
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Insufficiency of low-order moments

» The following looks like eigenvalue decomposition:
X®X) ZWt Zt®zt,

but {z:}%_; need not be orthogonal.
» Possible to have

k k
ZWt'Zt(g)Zt:Zﬁ/t'Et@zt
t=1 t=1

for different parameters {(w, z;)}5_; and {(W, 2:)}E_;.

» Note: additional constraints could make decomposition unique
(e.g., separability in NMF).




Jennrich’s algorithm (1970)

» Define
k
S = E(X@X) = ZWt'Zt(X)Zt,
t=1
k
T = E(X@X@X) = ZWt'Zt®Zt®zt-
t=1
» Key assumption: Z := [zq|z;]| - |z] has rank k.

» Main idea: combine S and T to form a diagonalizable matrix
whose eigenvectors are the parameters.

» Can write
S =2Zw2z’
where W = diag(wy, wa, ..., wk).
» What about T7?

“Flattening” a tensor to a matrix
> Recall multilinear function T(u,v,w) =73";,  Tjkuivjwg.
» Can also think of T: R — R9*9: (j k)-th entry of T(u) is
T(u)j’k = T(U, €, ek) .

(Like “currying” in functional programming.)
» Since T = th(:l Wt - Z @ Z Q Zy,

k
T(u) = Z Wi (Zy, U) - 24 @ Z¢
t=1
= ZD,WZ'

where D, = diag((z1, u), (zo, u), ..., (zk, u)).




Combining the second and third moments

Notation: A is Moore-Penrose pseudoinverse of A.
Pick vector u somehow, and form T(u)S".

> T(u)S' = (zD,WZ")(zWZ")! = zD, Z!

\ A 4

» Extract eigenvectors of T(u)ST with non-zero eigenvalues.

» If (z;,u) # 0, then z, is eigenvector with non-zero eigenvalue.
» Caveat: can only get z; up to scaling o;z; for o; # 0; but
corresponding eigenvalue is (z;, u), so

<O'tzt, u>

o= <zt7u>

» Eigendecomposition is unique (up to scaling factors) as long as
eigenvalues are distinct.

» This holds if, e.g., u chosen uniformly at random from S9!,

Examples




Simple topic model

» Bag-of-words model for documents.

> Document: seq. of tokens X1, X2 from {1,2,...,d}.
> Model parameters: {(w;, pt,)}5_;, where
(wi, wa, .., wi) € A and g, py, .o py € A9

» Generative process:
» Pick topic Y from {1,2,..., k} with

P(Y=t) = w.

» Given Y, draw tokens iid from distribution gy .
> One-hot encode X() = j as vector X = e; € RY.
» Claim:

k
E(XW X)) =3 w2,
t=1

k
E(XM @ X® @ x®) = Zwt-pf?‘?’.
t=1

Simple topic model: third-order moments

T = E(X(l) 2 X? g x<3>)

Tijk = PXD =i A X® =j A X = k)
= > we PXP =i AXP =jAXB =k|Y=1)
t

= Z Wt = Wi Bt,j * Ptk
t

Figure 1: Third-order moments




Mixtures of spherical Gaussians

>

>
>

Model parameters: {(w;, p,,02)} e,
> (W17 Wo,..., Wk) S Ak_l;
d.
O SRY /IRy L eR '
> Jf,ag,...,ai > 0.
For simplicity, assume O'% = a% = ... = 0’% — g2

X =Y +o0Z, where Y and Z are independent, and

» P(Y =p,) = w; foreach t € {1,2,..., k},
» Z ~ N(0, ).

Mixtures of spherical Gaussians: moments

A\ 4

\ A 4

k
E(X) = E(Y) =3t we -
E(X®2) =Yk w, - p¥2 4+ 021
» How to estimate 027 Can look at smallest eigenvalue of
centered second-order moment (i.e., covariance matrix).
E(X®%) = 3¢ we - ug + (0%, E(X))
Upshot: can estimate Z’t‘:l we - 2 and fo(:l we - 3 from
observable quantities.




Poisson topic model (following Canny, 2004)

» Bag-of-paragraphs model for documents.
» Document: sequence of paragraphs (each a bag-of-words)
XV x@
» Generative process:

» Pick topic affinities H = (Hy, Ha, . .., Hx) from some
non-Gaussian product distribution on R’éo.

» Given H, draw iid paragraph word count vectors X(l), X(z), e
where

d
XD H ~ (X)Poi();)
j=1

and

k
A = ()\1,)\2,...,)\‘;/) = ZHtH’t'
t=1

» (Similar to Independent Component Analysis and Latent
Dirichlet Allocation.)

Poisson topic model: moments
> First moment: p :=E(XY) =S5 E(H,) - ;.
» Second moment:

E[(X® - p) @ (X@ — p)

— E[E[(X") - p) @ (X - ) | H]|

K ®2
= E (Z(Ht — E(H,)) - Nt)

t=1
k
= Zvar(Ht) 2
t=1

» Third moment:

k

E[(XM — p) @ (X? - p) @ (XO) — p)| = 3 skew(Hy)-pf®.
t=1




Multiview models

» Both topic models are examples of multiview models.

» Observables include multiple “views" X(l),X(z),X(3), ... that
are conditionally independent given a hidden state H.

» Example: hidden Markov model

» Hidden state sequence forms Markov chain (on finite state
space): H1) — H?) — HO) 5 ...

» Observation sequence X1, X2 XB) . where X(®) is
independent of all other variables conditional on H(®).

» Multiview structure: observables X X2 X©) are
conditionally independent given H(?).

Multiview moments

» View-i conditional means {uﬁ")}’;zl,
ugi) = E[X(i) | H = t} :
» Moments:

k
E[xM e x®ox®] = Y wept? @ u? o pf’
t=1

where wy = P(H = t).
» Not symmetric

» Can be made symmetric using second-order moments.
» Or, use asymmetric version of Jennrich's algorithm.




