Decompositions of moment tensors Daniel Hsu COMS 4772 Tensor decompositions

High-dimensional support recovery from moments

▶ Random vector X, supported on k distinct points $z_1, z_2, ..., z_k \in \mathbb{R}^d$,

$$\mathbb{P}(\boldsymbol{X}=\boldsymbol{z}_t) = w_t > 0.$$

- ▶ Can we learn the parameters $\{(w_t, \mathbf{z}_t)\}_{t=1}^k$ from moments?
- ► Moments:

$$\mathbb{E}(\mathbf{X}) = \sum_{t=1}^{k} w_t \cdot \mathbf{z}_t,$$
 $\mathbb{E}(\mathbf{X} \otimes \mathbf{X}) = \sum_{t=1}^{k} w_t \cdot \mathbf{z}_t \otimes \mathbf{z}_t,$
 $\mathbb{E}(\mathbf{X} \otimes \mathbf{X} \otimes \mathbf{X}) = \sum_{t=1}^{k} w_t \cdot \mathbf{z}_t \otimes \mathbf{z}_t \otimes \mathbf{z}_t.$

Insufficiency of low-order moments

▶ The following looks like eigenvalue decomposition:

$$\mathbb{E}(\boldsymbol{X} \otimes \boldsymbol{X}) = \sum_{t=1}^{k} w_t \cdot \boldsymbol{z}_t \otimes \boldsymbol{z}_t,$$

but $\{\boldsymbol{z}_t\}_{t=1}^k$ need not be orthogonal.

Possible to have

$$\sum_{t=1}^k w_t \cdot \boldsymbol{z}_t \otimes \boldsymbol{z}_t = \sum_{t=1}^k \tilde{w}_t \cdot \tilde{\boldsymbol{z}}_t \otimes \tilde{\boldsymbol{z}}_t$$

for different parameters $\{(w_t, \mathbf{z}_t)\}_{t=1}^k$ and $\{(\tilde{w}_t, \tilde{\mathbf{z}}_t)\}_{t=1}^k$.

▶ **Note**: additional constraints *could* make decomposition unique (e.g., separability in NMF).

3

Jennrich's algorithm (1970)

Define

$$m{\mathcal{S}} \; := \; \mathbb{E}(m{X} \otimes m{X}) \; = \; \sum_{t=1}^k w_t \cdot m{z}_t \otimes m{z}_t \, ,$$
 $m{\mathcal{T}} \; := \; \mathbb{E}(m{X} \otimes m{X} \otimes m{X}) \; = \; \sum_{t=1}^k w_t \cdot m{z}_t \otimes m{z}_t \otimes m{z}_t \, .$

- ▶ **Key assumption**: $Z := [z_1|z_2|\cdots|z_k]$ has rank k.
- ▶ Main idea: combine **S** and **T** to form a diagonalizable matrix whose eigenvectors are the parameters.
- Can write

$$S = ZWZ^{T}$$

where $\mathbf{W} = \text{diag}(w_1, w_2, \dots, w_k)$.

► What about **T**?

5

"Flattening" a tensor to a matrix

- ▶ Recall multilinear function $T(u, v, w) = \sum_{i,j,k} T_{i,j,k} u_i v_j w_k$.
- ► Can also think of $T: \mathbb{R}^d \to \mathbb{R}^{d \times d}: (j, k)$ -th entry of T(u) is

$$T(u)_{j,k} = T(u, e_j, e_k).$$

(Like "currying" in functional programming.)

• Since $T = \sum_{t=1}^k w_t \cdot z_t \otimes z_t \otimes z_t$,

$$T(u) = \sum_{t=1}^{k} w_t \langle z_t, u \rangle \cdot z_t \otimes z_t$$

= $ZD_u W Z^{\top}$

where $\boldsymbol{D}_{\boldsymbol{u}} = \operatorname{diag}(\langle \boldsymbol{z}_1, \boldsymbol{u} \rangle, \langle \boldsymbol{z}_2, \boldsymbol{u} \rangle, \dots, \langle \boldsymbol{z}_k, \boldsymbol{u} \rangle).$

Combining the second and third moments

- Notation: \mathbf{A}^{\dagger} is Moore-Penrose pseudoinverse of \mathbf{A} .
- Pick vector \boldsymbol{u} somehow, and form $\boldsymbol{T}(\boldsymbol{u})\boldsymbol{S}^{\dagger}$.
 - $T(u)S^{\dagger} = (ZD_{u}WZ^{\top})(ZWZ^{\top})^{\dagger} = ZD_{u}Z^{\dagger}$
- **E**xtract eigenvectors of $T(u)S^{\dagger}$ with non-zero eigenvalues.
 - ▶ If $\langle \boldsymbol{z}_t, \boldsymbol{u} \rangle \neq 0$, then \boldsymbol{z}_t is eigenvector with non-zero eigenvalue.
 - ▶ **Caveat**: can only get z_t up to scaling $\sigma_t z_t$ for $\sigma_t \neq 0$; but corresponding eigenvalue is $\langle z_t, u \rangle$, so

$$\sigma_t = \frac{\langle \sigma_t \mathbf{z}_t, \mathbf{u} \rangle}{\langle \mathbf{z}_t, \mathbf{u} \rangle}.$$

- ► Eigendecomposition is unique (up to scaling factors) as long as eigenvalues are distinct.
 - ▶ This holds if, e.g., \boldsymbol{u} chosen uniformly at random from S^{d-1} .

7

Examples

Simple topic model

- ▶ Bag-of-words model for documents.
 - ▶ Document: seq. of tokens $X^{(1)}, X^{(2)}, \ldots$ from $\{1, 2, \ldots, d\}$.
 - Model parameters: $\{(w_t, \mu_t)\}_{t=1}^k$, where $(w_1, w_2, \dots, w_k) \in \Delta^{k-1}$ and $\mu_1, \mu_2, \dots, \mu_k \in \Delta^{d-1}$.
- Generative process:
 - ▶ Pick topic Y from $\{1, 2, ..., k\}$ with

$$\mathbb{P}(Y=t) = w_t.$$

- Given Y, draw tokens iid from distribution μ_Y .
- ▶ One-hot encode $X^{(i)} = j$ as vector $\mathbf{X}^{(i)} = \mathbf{e}_i \in \mathbb{R}^d$.
- ► Claim:

$$\mathbb{E}(\boldsymbol{X}^{(1)} \otimes \boldsymbol{X}^{(2)}) = \sum_{t=1}^{k} w_t \cdot \boldsymbol{\mu}_t^{\otimes 2},$$

$$\mathbb{E}(\boldsymbol{X}^{(1)} \otimes \boldsymbol{X}^{(2)} \otimes \boldsymbol{X}^{(3)}) = \sum_{t=1}^{k} w_t \cdot \boldsymbol{\mu}_t^{\otimes 3}.$$

9

Simple topic model: third-order moments

$$T = \mathbb{E} \left(\boldsymbol{X}^{(1)} \otimes \boldsymbol{X}^{(2)} \otimes \boldsymbol{X}^{(3)} \right)$$

$$T_{i,j,k} = \mathbb{P}(X^{(1)} = i \land X^{(2)} = j \land X^{(3)} = k)$$

$$= \sum_{t} w_{t} \cdot \mathbb{P}(X^{(1)} = i \land X^{(2)} = j \land X^{(3)} = k \mid Y = t)$$

$$= \sum_{t} w_{t} \cdot \mu_{t,i} \cdot \mu_{t,j} \cdot \mu_{t,k}$$

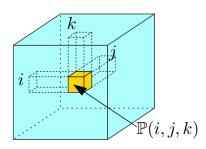


Figure 1: Third-order moments

Mixtures of spherical Gaussians

- ▶ Model parameters: $\{(w_t, \mu_t, \sigma_i^2)\}_{t=1}^k$
 - $(w_1, w_2, \ldots, w_k) \in \Delta^{k-1};$
 - $\mu_1, \mu_2, \dots, \mu_k \in \mathbb{R}^d;$ $\sigma_1^2, \sigma_2^2, \dots, \sigma_k^2 > 0.$
- For simplicity, assume $\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_k^2 = \sigma^2$.
- $m{X} = m{Y} + \sigma m{Z}$, where $m{Y}$ and $m{Z}$ are independent, and
 - ▶ $\mathbb{P}(Y = \mu_t) = w_t$ for each $t \in \{1, 2, ..., k\}$,
 - $ightharpoonup Z \sim N(0, I).$

11

Mixtures of spherical Gaussians: moments

- $\mathbb{E}(\mathbf{X}) = \mathbb{E}(\mathbf{Y}) = \sum_{t=1}^{k} w_t \cdot \boldsymbol{\mu}_t$ $\mathbb{E}(\mathbf{X}^{\otimes 2}) = \sum_{t=1}^{k} w_t \cdot \boldsymbol{\mu}_t^{\otimes 2} + \sigma^2 \mathbf{I}$
- - ▶ How to estimate σ^2 ? Can look at smallest eigenvalue of centered second-order moment (i.e., covariance matrix).
- ▶ $\mathbb{E}(\mathbf{X}^{\otimes 3}) = \sum_{t=1}^{k} w_t \cdot \boldsymbol{\mu}_t^{\otimes 3} + f(\sigma^2, \mathbb{E}(\mathbf{X}))$ ▶ **Upshot**: can estimate $\sum_{t=1}^{k} w_t \cdot \boldsymbol{\mu}_t^{\otimes 2}$ and $\sum_{t=1}^{k} w_t \cdot \boldsymbol{\mu}_t^{\otimes 3}$ from observable quantities.

Poisson topic model (following Canny, 2004)

- ▶ Bag-of-paragraphs model for documents.
 - ▶ Document: sequence of paragraphs (each a bag-of-words) $\boldsymbol{X}^{(1)}, \boldsymbol{X}^{(2)}, \dots$
- Generative process:
 - ▶ Pick topic affinities $\mathbf{H} = (H_1, H_2, ..., H_k)$ from some non-Gaussian product distribution on $\mathbb{R}_{>0}^k$.
 - ▶ Given \boldsymbol{H} , draw iid paragraph word count vectors $\boldsymbol{X}^{(1)}, \boldsymbol{X}^{(2)}, \dots$ where

$$m{\mathcal{X}}^{(i)} \mid m{\mathcal{H}} \; \sim \; igotimes_{j=1}^d \mathsf{Poi}(\lambda_j)$$

and

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_d) = \sum_{t=1}^k H_t \mu_t.$$

 (Similar to Independent Component Analysis and Latent Dirichlet Allocation.)

13

Poisson topic model: moments

- ullet First moment: $oldsymbol{\mu}:=\mathbb{E}(oldsymbol{X}^{(1)})=\sum_{t=1}^k\mathbb{E}(H_t)\cdotoldsymbol{\mu}_t.$
- Second moment:

$$\begin{split} &\mathbb{E}\Big[(\boldsymbol{X}^{(1)} - \boldsymbol{\mu}) \otimes (\boldsymbol{X}^{(2)} - \boldsymbol{\mu})\Big] \\ &= \mathbb{E}\Big[\mathbb{E}\Big[(\boldsymbol{X}^{(1)} - \boldsymbol{\mu}) \otimes (\boldsymbol{X}^{(2)} - \boldsymbol{\mu}) \mid \boldsymbol{H}\Big]\Big] \\ &= \mathbb{E}\Bigg[\left(\sum_{t=1}^{k} (H_t - \mathbb{E}(H_t)) \cdot \boldsymbol{\mu}_t\right)^{\otimes 2}\Bigg] \\ &= \sum_{t=1}^{k} \operatorname{var}(H_t) \cdot \boldsymbol{\mu}_t^{\otimes 2} \,. \end{split}$$

Third moment:

$$\mathbb{E}\big[(\boldsymbol{X}^{(1)}-\boldsymbol{\mu})\otimes(\boldsymbol{X}^{(2)}-\boldsymbol{\mu})\otimes(\boldsymbol{X}^{(3)}-\boldsymbol{\mu})\big] = \sum_{t=1}^k \mathsf{skew}(H_t)\cdot\boldsymbol{\mu}_t^{\otimes 3}.$$

Multiview models

- ▶ Both topic models are examples of *multiview models*.
- ▶ Observables include multiple "views" $\boldsymbol{X}^{(1)}, \boldsymbol{X}^{(2)}, \boldsymbol{X}^{(3)}, \dots$ that are conditionally independent given a hidden state H.
- Example: hidden Markov model
 - ▶ Hidden state sequence forms Markov chain (on finite state space): $H^{(1)} \rightarrow H^{(2)} \rightarrow H^{(3)} \rightarrow \cdots$
 - ▶ Observation sequence $X^{(1)}, X^{(2)}, X^{(3)}, \ldots$ where $X^{(t)}$ is independent of all other variables conditional on $H^{(t)}$.
 - ▶ **Multiview structure**: observables $X^{(1)}, X^{(2)}, X^{(3)}$ are conditionally independent given $H^{(2)}$.

15

Multiview moments

• View-i conditional means $\{\mu_t^{(i)}\}_{t=1}^k$,

$$\mu_t^{(i)} := \mathbb{E} \big[\boldsymbol{X}^{(i)} \mid H = t \big].$$

Moments:

$$\mathbb{E}\big[\boldsymbol{X}^{(1)}\otimes\boldsymbol{X}^{(2)}\otimes\boldsymbol{X}^{(3)}\big] = \sum_{t=1}^k w_t \cdot \boldsymbol{\mu}_t^{(1)}\otimes\boldsymbol{\mu}_t^{(2)}\otimes\boldsymbol{\mu}_t^{(3)}$$

where $w_t = \mathbb{P}(H = t)$.

- Not symmetric
 - Can be made symmetric using second-order moments.
 - Or, use asymmetric version of Jennrich's algorithm.