Topic 5: Principal component analysis

5.1 Covariance matrices

Suppose we are interested in a population whose members are represented by vectors in \mathbb{R}^d . We model the population as a probability distribution \mathbb{P} over \mathbb{R}^d , and let X be a random vector with distribution \mathbb{P} . The mean of X is the "center of mass" of \mathbb{P} . The covariance of X is also a kind of "center of mass", but it turns out to reveal quite a lot of other information.

Note: if we have a finite collection of data points $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$, then it is common to arrange these vectors as rows of a matrix $A \in \mathbb{R}^{n \times d}$. In this case, we can think of \mathbb{P} as the uniform distribution over the *n* points x_1, x_2, \ldots, x_n . The mean of $X \sim \mathbb{P}$ can be written as

$$\mathbb{E}(\boldsymbol{X}) = \frac{1}{n} \boldsymbol{A}^{\mathsf{T}} \boldsymbol{1},$$

and the covariance of \boldsymbol{X} is

$$\operatorname{cov}(\boldsymbol{X}) = \frac{1}{n} \boldsymbol{A}^{\mathsf{T}} \boldsymbol{A} - \left(\frac{1}{n} \boldsymbol{A}^{\mathsf{T}} \boldsymbol{1}\right) \left(\frac{1}{n} \boldsymbol{A}^{\mathsf{T}} \boldsymbol{1}\right)^{\mathsf{T}} = \frac{1}{n} \widetilde{\boldsymbol{A}}^{\mathsf{T}} \widetilde{\boldsymbol{A}}$$

where $\widetilde{A} = A - (1/n)\mathbf{1}\mathbf{1}^{\top}A$. We often call these the *empirical mean* and *empirical covariance* of the data $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$.

Covariance matrices are always symmetric by definition. Moreover, they are always positive semidefinite, since for any non-zero $z \in \mathbb{R}^d$,

$$oldsymbol{z}^ op \operatorname{cov}(oldsymbol{X})oldsymbol{z} \;=\; oldsymbol{z}^ op \mathbb{E}ig[(oldsymbol{X} - \mathbb{E}(oldsymbol{X}))^ opig]oldsymbol{z} \;=\; \mathbb{E}ig[\langleoldsymbol{z}, oldsymbol{X} - \mathbb{E}(oldsymbol{X})
angle^2ig] \;\geq\; 0\,.$$

This also shows that for any unit vector \boldsymbol{u} , the variance of \boldsymbol{X} in direction \boldsymbol{u} is

$$\operatorname{var}(\langle \boldsymbol{u}, \boldsymbol{X} \rangle) = \mathbb{E}\Big[\langle \boldsymbol{u}, \boldsymbol{X} - \mathbb{E} \boldsymbol{X} \rangle^2 \Big] = \boldsymbol{u}^{\top} \operatorname{cov}(\boldsymbol{X}) \boldsymbol{u}$$

Consider the following question: in what direction does X have the highest variance? It turns out this is given by an eigenvector corresponding to the largest eigenvalue of cov(X). This follows the following *variational* characterization of eigenvalues of symmetric matrices.

Theorem 5.1. Let $M \in \mathbb{R}^{d \times d}$ be a symmetric matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$ and corresponding orthonormal eigenvectors v_1, v_2, \ldots, v_d . Then

$$\max_{\boldsymbol{u}\neq\boldsymbol{0}} \frac{\boldsymbol{u}^{\top}\boldsymbol{M}\boldsymbol{u}}{\boldsymbol{u}^{\top}\boldsymbol{u}} = \lambda_{1},$$
$$\min_{\boldsymbol{u}\neq\boldsymbol{0}} \frac{\boldsymbol{u}^{\top}\boldsymbol{M}\boldsymbol{u}}{\boldsymbol{u}^{\top}\boldsymbol{u}} = \lambda_{d}.$$

These are achieved by v_1 and v_d , respectively. (The ratio $u^{\top}Mu/u^{\top}u$ is called the Rayleigh quotient associated with M in direction u.)

Proof. Following Theorem 4.1, write the eigendecomposition of \boldsymbol{M} as $\boldsymbol{M} = \boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^{\top}$ where $\boldsymbol{V} = [\boldsymbol{v}_1 | \boldsymbol{v}_2 | \cdots | \boldsymbol{v}_d]$ is orthogonal and $\boldsymbol{\Lambda} = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_d)$ is diagonal. For any $\boldsymbol{u} \neq \boldsymbol{0}$,

$$egin{array}{rll} egin{array}{rll} egin{arra$$

This final ratio represents a convex combination of the scalars $\lambda_1, \lambda_2, \ldots, \lambda_d$. Its largest value is λ_1 , achieved by $\boldsymbol{w} = \boldsymbol{e}_1$ (and hence $\boldsymbol{u} = \boldsymbol{V}\boldsymbol{e}_1 = \boldsymbol{v}_1$), and its smallest value is λ_d , achieved by $\boldsymbol{w} = \boldsymbol{e}_d$ (and hence $\boldsymbol{u} = \boldsymbol{V}\boldsymbol{e}_d = \boldsymbol{v}_d$).

Corollary 5.1. Let v_1 be a unit-length eigenvector of cov(X) corresponding to the largest eigenvalue of cov(X). Then

$$\operatorname{var}(\langle \boldsymbol{v}_1, \boldsymbol{X} \rangle) = \max_{\boldsymbol{u} \in S^{d-1}} \operatorname{var}(\langle \boldsymbol{u}, \boldsymbol{X} \rangle).$$

Now suppose we are interested in the k-dimensional subspace of \mathbb{R}^d that captures the "most" variance of X. Recall that a k-dimensional subspace $W \subseteq \mathbb{R}^d$ can always be specified by a collection of k orthonormal vectors $u_1, u_2, \ldots, u_k \in W$. By the orthogonal projection to W, we mean the linear map

$$egin{aligned} oldsymbol{x} \mapsto oldsymbol{U}^ op oldsymbol{x} , & ext{where} \quad oldsymbol{U} \ oldsymbol$$

The covariance of $U^{\top}X$, a $k \times k$ covariance matrix, is simply given by

$$\operatorname{cov}(\boldsymbol{U}^{\top}\boldsymbol{X}) = \boldsymbol{U}^{\top}\operatorname{cov}(\boldsymbol{X})\boldsymbol{U}.$$

The "total" variance in this subspace is often measured by the trace of the covariance: $tr(cov(U^{\top}X))$. Recall, the *trace* of a square matrix is the sum of its diagonal entries, and it is a linear function.

Fact 5.1. For any $U \in \mathbb{R}^{d \times k}$, $\operatorname{tr}(\operatorname{cov}(U^{\top}X)) = \mathbb{E} \|U^{\top}(X - \mathbb{E}(X))\|_{2}^{2}$. Furthermore, if $U^{\top}U = I$, then $\operatorname{tr}(\operatorname{cov}(U^{\top}X)) = \mathbb{E} \|UU^{\top}(X - \mathbb{E}(X))\|_{2}^{2}$.

Theorem 5.2. Let $M \in \mathbb{R}^{d \times d}$ be a symmetric matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$ and corresponding orthonormal eigenvectors v_1, v_2, \ldots, v_d . Then for any $k \in [d]$,

$$\max_{\boldsymbol{U} \in \mathbb{R}^{d \times k} : \boldsymbol{U}^{\top} \boldsymbol{U} = \boldsymbol{I}} \operatorname{tr}(\boldsymbol{U}^{\top} \boldsymbol{M} \boldsymbol{U}) = \lambda_1 + \lambda_2 + \dots + \lambda_k,$$

$$\min_{\boldsymbol{U} \in \mathbb{R}^{d \times k} : \boldsymbol{U}^{\top} \boldsymbol{U} = \boldsymbol{I}} \operatorname{tr}(\boldsymbol{U}^{\top} \boldsymbol{M} \boldsymbol{U}) = \lambda_{d-k+1} + \lambda_{d-k+2} + \dots + \lambda_d$$

The max is achieved by an orthogonal projection to the span of v_1, v_2, \ldots, v_k , and the min is achieved by an orthogonal projection to the span of $v_{d-k+1}, v_{d-k+2}, \ldots, v_d$.

Proof. Let u_1, u_2, \ldots, u_k denote the columns of U. Then, writing $M = \sum_{j=1}^d \lambda_j v_j v_j^{\mathsf{T}}$ (Theorem 4.1),

$$\operatorname{tr}(\boldsymbol{U}^{\top}\boldsymbol{M}\boldsymbol{U}) = \sum_{i=1}^{k} \boldsymbol{u}_{i}^{\top}\boldsymbol{M}\boldsymbol{u}_{i} = \sum_{i=1}^{k} \boldsymbol{u}_{i}^{\top} \left(\sum_{j=1}^{d} \lambda_{j} \boldsymbol{v}_{j} \boldsymbol{v}_{j}^{\top}\right) \boldsymbol{u}_{i} = \sum_{j=1}^{d} \lambda_{j} \sum_{i=1}^{k} \langle \boldsymbol{v}_{j}, \boldsymbol{u}_{i} \rangle^{2} = \sum_{j=1}^{d} c_{j} \lambda_{j}$$

where $c_j := \sum_{i=1}^k \langle \boldsymbol{v}_j, \boldsymbol{u}_i \rangle^2$ for each $j \in [d]$. We'll show that each $c_j \in [0, 1]$, and $\sum_{j=1}^d c_j = k$. First, it is clear that $c_j \geq 0$ for each $j \in [d]$. Next, extending $\boldsymbol{u}_1, \boldsymbol{u}_2, \ldots, \boldsymbol{u}_k$ to an orthonormal

basis $\boldsymbol{u}_1, \boldsymbol{u}_2, \ldots, \boldsymbol{u}_d$ for \mathbb{R}^d , we have for each $j \in [d]$,

$$c_j = \sum_{i=1}^k \langle \boldsymbol{v}_j, \boldsymbol{u}_i
angle^2 \leq \sum_{i=1}^d \langle \boldsymbol{v}_j, \boldsymbol{u}_i
angle^2 = 1.$$

Finally, since v_1, v_2, \ldots, v_d is an orthonormal basis for \mathbb{R}^d ,

$$\sum_{j=1}^{d} c_j = \sum_{j=1}^{d} \sum_{i=1}^{k} \langle \boldsymbol{v}_j, \boldsymbol{u}_i \rangle^2 = \sum_{i=1}^{k} \sum_{j=1}^{d} \langle \boldsymbol{v}_j, \boldsymbol{u}_i \rangle^2 = \sum_{i=1}^{k} \|\boldsymbol{u}_i\|_2^2 = k.$$

The maximum value of $\sum_{j=1}^{d} c_j \lambda_j$ over all choices of $c_1, c_2, \ldots, c_d \in [0, 1]$ with $\sum_{j=1}^{d} c_j = k$ is $\lambda_1 + \lambda_2 + \cdots + \lambda_k$. This is achieved when $c_1 = c_2 = \cdots = c_k = 1$ and $c_{k+1} = \cdots = c_d = 0$, i.e., when span $(\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k) = \operatorname{span}(\boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_k)$. The minimum value of $\sum_{j=1}^d c_j \lambda_j$ over all choices of $c_1, c_2, \ldots, c_d \in [0, 1]$ with $\sum_{j=1}^d c_j = k$ is $\lambda_{d-k+1} + \lambda_{d-k+2} + \cdots + \lambda_d$. This is achieved when $c_1 = \cdots = c_{d-k} = 0$ and $c_{d-k+1} = c_{d-k+2} = \cdots = c_d = 1$, i.e., when $\operatorname{span}(\boldsymbol{v}_{d-k+1}, \boldsymbol{v}_{d-k+2}, \ldots, \boldsymbol{v}_d) = c_d = 1$. $\operatorname{span}(\boldsymbol{u}_1, \boldsymbol{u}_2, \ldots, \boldsymbol{u}_k).$

We'll refer to the k largest eigenvalues of a symmetric matrix M as the top-k eigenvalues of M, and the k smallest eigenvalues as the bottom-k eigenvalues of M. We analogously use the term top-k (resp., bottom-k) eigenvectors to refer to orthonormal eigenvectors corresponding to the top-k (resp., bottom-k) eigenvalues. Note that the choice of top-k (or bottom-k) eigenvectors is not necessarily unique.

Corollary 5.2. Let v_1, v_2, \ldots, v_k be top-k eigenvectors of cov(X), and let $V_k := [v_1|v_2|\cdots|v_k]$. Then

$$\operatorname{tr}(\operatorname{cov}(\boldsymbol{V}_k^{\scriptscriptstyle op} \boldsymbol{X})) \; = \; \max_{\boldsymbol{U} \in \mathbb{R}^{d imes k} \, : \, \boldsymbol{U}^{\scriptscriptstyle op} \boldsymbol{U} = \boldsymbol{I}} \operatorname{tr}(\operatorname{cov}(\boldsymbol{U}^{\scriptscriptstyle op} \boldsymbol{X})) \, .$$

An orthogonal projection given by top-k eigenvectors of cov(X) is called a *(rank-k) principal* component analysis (PCA) projection. Corollary 5.2 reveals an important property of a PCA projection: it maximizes the variance captured by the subspace.

5.2Best affine and linear subspaces

PCA has another important property: it gives an affine subspace $A \subseteq \mathbb{R}^d$ that minimizes the expected squared distance between \boldsymbol{X} and \boldsymbol{A} .

Recall that a k-dimensional affine subspace A is specified by a k-dimensional (linear) subspace $W \subseteq \mathbb{R}^d$ —say, with orthonormal basis u_1, u_2, \ldots, u_k —and a displacement vector $u_0 \in \mathbb{R}^d$:

$$A = \{ \boldsymbol{u}_0 + \alpha_1 \boldsymbol{u}_1 + \alpha_2 \boldsymbol{u}_2 + \dots + \alpha_k \boldsymbol{u}_k : \alpha_1, \alpha_2, \dots, \alpha_k \in \mathbb{R} \}.$$

Let $U := [u_1|u_2|\cdots|u_k]$. Then, for any $x \in \mathbb{R}^d$, the point in A closest to x is given by $u_0 +$ $UU^{\top}(x-u_0)$, and hence the squared distance from x to A is $\|(I-UU^{\top})(x-u_0)\|_2^2$.

Theorem 5.3. Let v_1, v_2, \ldots, v_k be top-k eigenvectors of $cov(\mathbf{X})$, let $\mathbf{V}_k := [v_1|v_2|\cdots|v_k]$, and $\boldsymbol{v}_0 := \mathbb{E}(\boldsymbol{X})$. Then

$$\mathbb{E} \left\| (oldsymbol{I} - oldsymbol{V}_k oldsymbol{V}_k^ op) (oldsymbol{X} - oldsymbol{v}_0)
ight\|_2^2 = \min_{oldsymbol{U} \in \mathbb{R}^{d imes k}, \, oldsymbol{u}_0 \in \mathbb{R}^d: \ oldsymbol{U}^ op oldsymbol{U} = oldsymbol{I}} \mathbb{E} \left\| (oldsymbol{I} - oldsymbol{U} oldsymbol{U}^ op) (oldsymbol{X} - oldsymbol{u}_0)
ight\|_2^2.$$

Proof. For any matrix $d \times d$ matrix M, the function $u_0 \mapsto \mathbb{E} \|M(X - u_0)\|_2^2$ is minimized when $Mu_0 = M \mathbb{E}(X)$ (Fact 5.2). Therefore, we can plug-in $\mathbb{E}(X)$ for u_0 in the minimization problem, whereupon it reduces to

$$\min_{\boldsymbol{U} \in \mathbb{R}^{d \times k} : \boldsymbol{U}^{\top} \boldsymbol{U} = \boldsymbol{I}} \mathbb{E} \| (\boldsymbol{I} - \boldsymbol{U} \boldsymbol{U}^{\top}) (\boldsymbol{X} - \mathbb{E}(\boldsymbol{X})) \|_{2}^{2}$$

The objective function is equivalent to

$$\begin{split} \mathbb{E} \left\| (oldsymbol{I} - oldsymbol{U}oldsymbol{U}^ op) (oldsymbol{X} - \mathbb{E}(oldsymbol{X}))
ight\|_2^2 &= \mathbb{E} \left\| oldsymbol{X} - \mathbb{E}(oldsymbol{X})
ight\|_2^2 - \mathbb{E} \left\| oldsymbol{U}oldsymbol{U}^ op (oldsymbol{X} - \mathbb{E}(oldsymbol{X}))
ight\|_2^2 \ &= \mathbb{E} \left\| oldsymbol{X} - \mathbb{E}(oldsymbol{X})
ight\|_2^2 - \operatorname{tr}(\operatorname{cov}(oldsymbol{U}^ op oldsymbol{X})) \,, \end{split}$$

where the second equality comes from Fact 5.1. Therefore, minimizing the objective is equivalent to maximizing $tr(cov(U^{\top}X))$, which is achieved by PCA (Corollary 5.2).

The proof of Theorem 5.3 depends on the following simple but useful fact.

Fact 5.2 (Bias-variance decomposition). Let Y be a random vector in \mathbb{R}^d , and $b \in \mathbb{R}^d$ be any fixed vector. Then

$$\mathbb{E} \|\boldsymbol{Y} - \boldsymbol{b}\|_2^2 = \mathbb{E} \|\boldsymbol{Y} - \mathbb{E}(\boldsymbol{Y})\|_2^2 + \|\mathbb{E}(\boldsymbol{Y}) - \boldsymbol{b}\|_2^2$$

(which, as a function of **b**, is minimized when $\mathbf{b} = \mathbb{E}(\mathbf{Y})$).

A similar statement can be made about (linear) subspaces by using top-k eigenvectors of $\mathbb{E}(XX^{\top})$ instead of $\operatorname{cov}(X)$. This is sometimes called *uncentered PCA*.

Theorem 5.4. Let v_1, v_2, \ldots, v_k be top-k eigenvectors of $\mathbb{E}(XX^{\top})$, and let $V_k := [v_1|v_2|\cdots|v_k]$. Then

$$\mathbb{E} \| (\boldsymbol{I} - \boldsymbol{V}_k \boldsymbol{V}_k^{\mathsf{T}}) \boldsymbol{X} \|_2^2 = \min_{\boldsymbol{U} \in \mathbb{R}^{d \times k} : \boldsymbol{U}^{\mathsf{T}} \boldsymbol{U} = \boldsymbol{I}} \mathbb{E} \| (\boldsymbol{I} - \boldsymbol{U} \boldsymbol{U}^{\mathsf{T}}) \boldsymbol{X} \|_2^2.$$

5.3 Noisy affine subspace recovery

Suppose there are *n* points $t_1, t_2, \ldots, t_n \in \mathbb{R}^d$ that lie on an affine subspace A_{\star} of dimension *k*. In this scenario, you don't directly observe the t_i ; rather, you only observe noisy versions of these points: Y_1, Y_2, \ldots, Y_n , where for some $\sigma_1, \sigma_2, \ldots, \sigma_n > 0$,

$$\boldsymbol{Y}_{i} \sim \mathrm{N}(\boldsymbol{t}_{i}, \sigma_{i}^{2}\boldsymbol{I}) \text{ for all } j \in [n]$$

and Y_1, Y_2, \ldots, Y_n are independent. The observations Y_1, Y_2, \ldots, Y_n no longer all lie in the affine subspace A_* , but by applying PCA to the empirical covariance of Y_1, Y_2, \ldots, Y_n , you can hope to approximately recover A_* .

Regard X as a random vector whose conditional distribution given the noisy points is uniform over Y_1, Y_2, \ldots, Y_n . In fact, the distribution of X is given by the following generative process:

- 1. Draw $J \in [n]$ uniformly at random.
- 2. Given J, draw $\boldsymbol{Z} \sim N(\boldsymbol{0}, \sigma_J^2 \boldsymbol{I})$.
- 3. Set $X := t_J + Z$.

Note that the empirical covariance based on Y_1, Y_2, \ldots, Y_n is not exactly cov(X), but it can be a good approximation when n is large (with high probability). Similarly, the empirical average of Y_1, Y_2, \ldots, Y_n is a good approximation to $\mathbb{E}(X)$ when n is large (with high probability). So here, we assume for simplicity that both cov(X) and $\mathbb{E}(X)$ are known exactly. We show that PCA produces a k-dimensional affine subspace that contains all of the t_i .

Theorem 5.5. Let X be the random vector as defined above, v_1, v_2, \ldots, v_k be top-k eigenvectors of cov(X), and $v_0 := \mathbb{E}(X)$. Then the affine subspace

$$\widehat{A} := \{ \boldsymbol{v}_0 + \alpha_1 \boldsymbol{v}_1 + \alpha_2 \boldsymbol{v}_2 + \dots + \alpha_k \boldsymbol{v}_k : \alpha_1, \alpha_2, \dots, \alpha_k \in \mathbb{R} \}$$

contains $\boldsymbol{t}_1, \boldsymbol{t}_2, \ldots, \boldsymbol{t}_n$.

Proof. Theorem 5.3 says that the matrix $\boldsymbol{V}_k := [\boldsymbol{v}_1 | \boldsymbol{v}_2 | \cdots | \boldsymbol{v}_k]$ minimizes $\mathbb{E} \| (\boldsymbol{I} - \boldsymbol{U} \boldsymbol{U}^\top) (\boldsymbol{X} - \boldsymbol{v}_0) \|_2^2$ (as a function of $\boldsymbol{U} \in \mathbb{R}^{d \times k}$, subject to $\boldsymbol{U}^\top \boldsymbol{U} = \boldsymbol{I}$), or equivalently, maximizes $\operatorname{tr}(\operatorname{cov}(\boldsymbol{U}^\top \boldsymbol{X}))$. This maximization objective can be written as

$$\begin{aligned} \operatorname{tr}(\operatorname{cov}(\boldsymbol{U}^{\top}\boldsymbol{X})) &= \mathbb{E} \| \boldsymbol{U}\boldsymbol{U}^{\top}(\boldsymbol{X} - \boldsymbol{v}_{0}) \|_{2}^{2} \quad (\text{by Fact 5.1}) \\ &= \frac{1}{n} \sum_{j=1}^{n} \mathbb{E} \Big[\| \boldsymbol{U}\boldsymbol{U}^{\top}(\boldsymbol{t}_{j} - \boldsymbol{v}_{0} + \boldsymbol{Z}) \|_{2}^{2} \Big| J = j \Big] \\ &= \frac{1}{n} \sum_{j=1}^{n} \mathbb{E} \Big[\| \boldsymbol{U}\boldsymbol{U}^{\top}(\boldsymbol{t}_{j} - \boldsymbol{v}_{0}) \|_{2}^{2} + 2\langle \boldsymbol{U}\boldsymbol{U}^{\top}(\boldsymbol{t}_{j} - \boldsymbol{v}_{0}), \boldsymbol{U}\boldsymbol{U}^{\top}\boldsymbol{Z} \rangle + \| \boldsymbol{U}\boldsymbol{U}^{\top}\boldsymbol{Z} \|_{2}^{2} \Big| J = j \Big] \\ &= \frac{1}{n} \sum_{j=1}^{n} \Big\{ \| \boldsymbol{U}\boldsymbol{U}^{\top}(\boldsymbol{t}_{j} - \boldsymbol{v}_{0}) \|_{2}^{2} + \mathbb{E} \Big[\| \boldsymbol{U}\boldsymbol{U}^{\top}\boldsymbol{Z} \|_{2}^{2} \Big| J = j \Big] \Big\} \\ &= \frac{1}{n} \sum_{j=1}^{n} \Big\{ \| \boldsymbol{U}\boldsymbol{U}^{\top}(\boldsymbol{t}_{j} - \boldsymbol{v}_{0}) \|_{2}^{2} + \mathbb{E} \Big[\| \boldsymbol{U}\boldsymbol{U}^{\top}\boldsymbol{Z} \|_{2}^{2} \Big| J = j \Big] \Big\} \end{aligned}$$

where the penultimate step uses the fact that the conditional distribution of \mathbf{Z} given J = j is $N(\mathbf{0}, \sigma_j^2 \mathbf{I})$, and the final step uses the fact that $\|\mathbf{U}\mathbf{U}^{\top}\mathbf{Z}\|_2^2$ has the same conditional distribution (given J = j) as the squared length of a $N(\mathbf{0}, \sigma_j^2 \mathbf{I})$ random vector in \mathbb{R}^k . Since $\mathbf{U}\mathbf{U}^{\top}(\mathbf{t}_j - \mathbf{v}_0)$ is the orthogonal projection of $\mathbf{t}_j - \mathbf{v}_0$ onto the subspace spanned by the columns of \mathbf{U} (call it W),

$$\| oldsymbol{U}oldsymbol{U}^ op (oldsymbol{t}_j - oldsymbol{v}_0) \|_2^2 \ \le \ \|oldsymbol{t}_j - oldsymbol{v}_0\|_2^2 \ \ ext{for all } j \in [n] \,.$$

The inequalities above are equalities precisely when $t_j - v_0 \in W$ for all $j \in [n]$. This is indeed the case for the subspace $A_{\star} - \{v_0\}$. Since V_k maximizes the objective, its columns must span a k-dimensional subspace \widehat{W} that also contains all of the $t_j - v_0$; hence the affine subspace $\widehat{A} = \{v_0 + \boldsymbol{x} : \boldsymbol{x} \in \widehat{W}\}$ contains all of the t_j . \Box

5.4 Singular value decomposition

Let A be any $n \times d$ matrix. Our aim is to define an extremely useful decomposition of A called the singular value decomposition (SVD). Our derivation starts by considering two related matrices, $A^{\top}A$ and AA^{\top} ; their eigendecompositions will lead to the SVD of A.

Fact 5.3. $A^{\top}A$ and AA^{\top} are symmetric and positive semidefinite.

It is clear that the eigenvalues of $A^{\top}A$ and AA^{\top} are non-negative. In fact, the non-zero eigenvalues of $A^{\top}A$ and AA^{\top} are exactly the same.

Lemma 5.1. Let λ be an eigenvalue of $\mathbf{A}^{\top}\mathbf{A}$ with corresponding eigenvector \mathbf{v} .

- If $\lambda > 0$, then λ is a non-zero eigenvalue of AA^{\top} with corresponding eigenvector Av.
- If $\lambda = 0$, then Av = 0.

Proof. First suppose $\lambda > 0$. Then

$$AA^{\top}(Av) = A(A^{\top}Av) = A(\lambda v) = \lambda(Av),$$

so λ is an eigenvalue of AA^{\top} with corresponding eigenvector Av.

Now suppose $\lambda = 0$ (which is the only remaining case, as per Fact 5.3). Then

$$\|\boldsymbol{A}\boldsymbol{v}\|_2^2 = \boldsymbol{v}^{ op} \boldsymbol{A}^{ op} \boldsymbol{A} \boldsymbol{v} = \boldsymbol{v}^{ op} (\lambda \boldsymbol{v}) = 0.$$

Since only the zero vector has length 0, it must be that Av = 0.

(We can apply Lemma 5.1 to both A and A^{\top} to conclude that $A^{\top}A$ and AA^{\top} have the same non-zero eigenvalues.)

Theorem 5.6 (Singular value decomposition). Let A be an $n \times d$ matrix. Let $v_1, v_2, \ldots, v_d \in \mathbb{R}^d$ be orthonormal eigenvectors of $A^{\top}A$ corresponding to eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d \geq 0$. Let r be the number of positive λ_i . Define

Then

and u_1, u_2, \ldots, u_r are orthonormal.

Proof. It suffices to show that for some set of d linearly independent vectors $q_1, q_2, \ldots, q_d \in \mathbb{R}^d$,

$$oldsymbol{A}oldsymbol{q}_j \;=\; \left(\sum_{i=1}^r \sqrt{\lambda_i}oldsymbol{u}_ioldsymbol{v}_i^{ op}
ight)oldsymbol{q}_j \;\;\; ext{ for all } j\in [d]\,.$$

We'll use v_1, v_2, \ldots, v_d . Observe that

$$oldsymbol{A}oldsymbol{v}_j \;\;=\; egin{cases} \sqrt{\lambda_j}oldsymbol{u}_j & ext{if } 1\leq j\leq r\,, \ oldsymbol{0} & ext{if } r< j\leq d\,, \ oldsymbol{0} & ext{if } r< j\leq d\,, \end{cases}$$

by definition of u_i and by Lemma 5.1. Moreover,

$$\left(\sum_{i=1}^r \sqrt{\lambda_i} oldsymbol{u}_i oldsymbol{v}_i^{^{ op}}
ight)oldsymbol{v}_j \;=\; \sum_{i=1}^r \sqrt{\lambda_i} \langle oldsymbol{v}_j, oldsymbol{v}_i
angle \,=\; egin{cases} \sqrt{\lambda_j} oldsymbol{u}_j & ext{if } 1 \leq j \leq r\,, \ oldsymbol{0} & ext{if } r < j \leq d\,, \ oldsymbol{0} & ext{if } r < j \leq d\,, \end{cases}$$

since v_1, v_2, \ldots, v_d are orthonormal. We conclude that $Av_j = (\sum_{i=1}^r \sqrt{\lambda_i} u_i v_i^{\top}) v_j$ for all $j \in [d]$, and hence $A = \sum_{i=1}^r \sqrt{\lambda_i} u_i v_i^{\top}$.

Note that

$$oldsymbol{u}_i^{ op}oldsymbol{u}_j \;=\; rac{oldsymbol{v}_i^{ op}oldsymbol{A}^{ op}oldsymbol{A}_j}{\sqrt{\lambda_i\lambda_j}} \;=\; rac{\lambda_joldsymbol{v}_i^{ op}oldsymbol{v}_j}{\sqrt{\lambda_i\lambda_j}} \;=\; 0 \quad ext{for all } 1 \leq i < j \leq r$$

where the last step follows since v_1, v_2, \ldots, v_d are orthonormal. This implies that u_1, u_2, \ldots, u_r are orthonormal.

The decomposition of \boldsymbol{A} into the sum $\boldsymbol{A} = \sum_{i=1}^{r} \sqrt{\lambda_i} \boldsymbol{u}_i \boldsymbol{v}_i^{\top}$ from Theorem 5.6 is called the singular value decomposition (SVD) of \boldsymbol{A} . The $\boldsymbol{u}_1, \boldsymbol{u}_2, \ldots, \boldsymbol{u}_r$ are the left singular vectors, and the $\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_r$ are the right singular vectors. The scalars $\sqrt{\lambda_1} \geq \sqrt{\lambda_2} \geq \cdots \geq \sqrt{\lambda_r}$ are the (positive) singular values corresponding to the left/right singular vectors $(\boldsymbol{u}_1, \boldsymbol{v}_1), (\boldsymbol{u}_2, \boldsymbol{v}_2), \ldots, (\boldsymbol{u}_r, \boldsymbol{v}_r)$. The representation $\boldsymbol{A} = \sum_{i=1}^{r} \sqrt{\lambda_i} \boldsymbol{u}_i \boldsymbol{v}_i^{\top}$ is actually typically called the thin SVD of \boldsymbol{A} . The number r of positive λ_i is the rank of \boldsymbol{A} , which is at most the smaller of n and d.

Of course, one can extend u_1, u_2, \ldots, u_r to an orthonormal basis for \mathbb{R}^n . Define the matrices $U := [u_1|u_2|\cdots|u_n] \in \mathbb{R}^{n \times n}$ and $V := [v_1|v_2|\cdots|v_d] \in \mathbb{R}^{d \times d}$. Also define $S \in \mathbb{R}^{n \times d}$ to be the matrix whose only non-zero entries are $\sqrt{\lambda_i}$ in the (i, i)-th position, for $1 \le i \le r$. Then $A = USV^{\top}$. This matrix factorization of A is typically called the *full SVD* of A. (The vectors $u_{r+1}, u_{r+2}, \ldots, u_n$ and $v_{r+1}, v_{r+2}, \ldots, v_d$ are also regarded as singular vectors of A; they correspond to the singular value equal to zero.)

Just as before, we'll refer to the k largest singular values of A as the top-k singular values of A, and the k smallest singular values as the bottom-k singular values of A. We analogously use the term top-k (resp., bottom-k) singular vectors to refer to orthonormal singular vectors corresponding to the top-k (resp., bottom-k) singular values. Again, the choice of top-k (or bottom-k) singular vectors is not necessarily unique.

Relationship between PCA and SVD

As seen above, the eigenvectors of $A^{\top}A$ are the right singular vectors A, and the eigenvectors of AA^{\top} are the left singular vectors of A.

Suppose there are *n* data points $a_1, a_2, \ldots, a_n \in \mathbb{R}^d$, arranged as the rows of the matrix $A \in \mathbb{R}^{n \times d}$. Now regard X as a random vector with the uniform distribution on the *n* data points. Then $\mathbb{E}(XX^{\top}) = \frac{1}{n} \sum_{i=1}^{n} a_i a_i^{\top} = \frac{1}{n} A^{\top} A$: top-*k* eigenvectors of $\frac{1}{n} A^{\top} A$ are top-*k* right singular vectors of A. Hence, rank-*k* uncentered PCA (as in Theorem 5.4) corresponds to the subspace spanned by the top-*k* right singular vectors of A.

Variational characterization of singular values

Given the relationship between the singular values of A and the eigenvalues of $A^{\top}A$ and AA^{\top} , it is easy to obtain variational characterizations of the singular values. We can also obtain the characterization directly.

Fact 5.4. Let the SVD of a matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ be given by $\mathbf{A} = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}$, where $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$. For each $i \in [r]$,

$$\sigma_i = \max_{\substack{\boldsymbol{x} \in S^{d-1}: \langle \boldsymbol{v}_j, \boldsymbol{x} \rangle = 0 \; \forall j < i \\ \boldsymbol{y} \in S^{n-1}: \langle \boldsymbol{u}_j, \boldsymbol{y} \rangle = 0 \; \forall j < i}} \boldsymbol{y}^\top \boldsymbol{A} \boldsymbol{x} = \boldsymbol{u}_i^\top \boldsymbol{A} \boldsymbol{v}_i.$$

Relationship between eigendecomposition and SVD

If $M \in \mathbb{R}^{d \times d}$ is symmetric and has eigendecomposition $M = \sum_{i=1}^{d} \lambda_i \boldsymbol{v}_i \boldsymbol{v}_i^{\mathsf{T}}$, then its singular values are the absolute values of the λ_i . We can take $\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_d$ as corresponding right singular vectors. For corresponding left singular vectors, we can take $\boldsymbol{u}_i := \boldsymbol{v}_i$ whenever $\lambda_i \geq 0$ (which is the case for all *i* if M is also psd), and $\boldsymbol{u}_i := -\boldsymbol{v}_i$ whenever $\lambda_i < 0$. Therefore, we have the following variational characterization of the singular values of M.

Fact 5.5. Let the eigendecomposition of a symmetric matrix $\mathbf{M} \in \mathbb{R}^{d \times d}$ be given by $\mathbf{M} = \sum_{i=1}^{d} \lambda_i \mathbf{v}_i \mathbf{v}_i^{\top}$, where $|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_d|$. For each $i \in [d]$,

$$egin{aligned} &|\lambda_i| \ = \ \max_{oldsymbol{x}\in S^{d-1}: \langleoldsymbol{v}_j,oldsymbol{x}
angle = 0 \, orall j \langle oldsymbol{y}_i \rangle = 0 \, orall j \langle oldsymbol{x}_i
angle = \ \mathbf{x}\in S^{d-1}: \langleoldsymbol{v}_j,oldsymbol{x}
angle = 0 \, orall j \langle oldsymbol{x}_i
angle = \ |oldsymbol{v}_i^ op \mathbf{M} oldsymbol{x}_i| \, . \ \mathbf{x}\in S^{d-1}: \langleoldsymbol{v}_j,oldsymbol{x}
angle = 0 \, orall j \langle oldsymbol{v}_i
angle . \end{aligned}$$

Moore-Penrose pseudoinverse

The SVD defines a kind of matrix inverse that is applicable to non-square matrices $A \in \mathbb{R}^{n \times d}$ (where possibly $n \neq d$). Let the SVD be given by $A = USV^{\top}$, where $U \in \mathbb{R}^{n \times r}$ and $V \in \mathbb{R}^{d \times r}$ satisfy $U^{\top}U = V^{\top}V = I$, and $S \in \mathbb{R}^{r \times r}$ is diagonal with positive diagonal entries. Here, the rank of A is r. The Moore-Penrose pseudoinverse of A is given by

$$oldsymbol{A}^{\dagger} \ \coloneqq \ oldsymbol{V}oldsymbol{S}^{-1}oldsymbol{U}^{ op} \ \in \ \mathbb{R}^{d imes n}$$

Note that A^{\dagger} is well-defined: S is invertible because its diagonal entries are all strictly positive. What is the effect of multiplying A by A^{\dagger} on the left? Using the SVD of A,

$$oldsymbol{A}^{\dagger}oldsymbol{A} \;=\; oldsymbol{V}oldsymbol{S}^{-1}oldsymbol{U}^{ op}oldsymbol{U}oldsymbol{S}oldsymbol{V}^{ op} \;=\; oldsymbol{V}oldsymbol{V}^{ op} \;\in\; \mathbb{R}^{d imes d}\,,$$

which is the orthogonal projection to the row space of A. In particular, this means that

$$AA^{\dagger}A = A$$

Similarly, $AA^{\dagger} = UU^{\top} \in \mathbb{R}^{n \times n}$, the orthogonal projection to the column space of A. Note that if r = d, then $A^{\dagger}A = I$, as the row space of A is simply \mathbb{R}^d ; similarly, if r = n, then $AA^{\dagger} = I$.

The Moore-Penrose pseudoinverse is also related to least squares. For any $\boldsymbol{y} \in \mathbb{R}^n$, the vector $\boldsymbol{A}\boldsymbol{A}^{\dagger}\boldsymbol{y}$ is the orthogonal projection of \boldsymbol{y} onto the column space of \boldsymbol{A} . This means that $\min_{\boldsymbol{x}\in\mathbb{R}^d} \|\boldsymbol{A}\boldsymbol{x}-\boldsymbol{y}\|_2^2$ is minimized by $\boldsymbol{x}=\boldsymbol{A}^{\dagger}\boldsymbol{y}$. The more familiar expression for the least squares solution $\boldsymbol{x}=(\boldsymbol{A}^{\top}\boldsymbol{A})^{-1}\boldsymbol{A}^{\top}\boldsymbol{y}$ only applies in the special case where $\boldsymbol{A}^{\top}\boldsymbol{A}$ is invertible. The connection to the general form of a solution can be seen by using the easily verified identity

$$oldsymbol{A}^\dagger \;=\; (oldsymbol{A}^ opoldsymbol{A})^\daggeroldsymbol{A}^ op$$

and using the fact that $(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{\dagger} = (\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}$ when $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ is invertible.

5.5 Matrix norms and low rank SVD

Matrix inner product and the Frobenius norm

The space of $n \times d$ real matrices is a real vector space in its own right, and it can, in fact, be viewed as a Euclidean space with inner product given by $\langle \mathbf{X}, \mathbf{Y} \rangle := \operatorname{tr}(\mathbf{X}^{\top}\mathbf{Y})$. It can be checked that this indeed is a valid inner product. For instance, the fact that the trace function is linear can be used to establish linearity in the first argument:

$$\begin{aligned} \langle c\boldsymbol{X} + \boldsymbol{Y}, \boldsymbol{Z} \rangle &= \operatorname{tr}((c\boldsymbol{X} + \boldsymbol{Y})^{\top}\boldsymbol{Z}) \\ &= \operatorname{tr}(c\boldsymbol{X}^{\top}\boldsymbol{Z} + \boldsymbol{Y}^{\top}\boldsymbol{Z}) \\ &= c\operatorname{tr}(\boldsymbol{X}^{\top}\boldsymbol{Z}) + \operatorname{tr}(\boldsymbol{Y}^{\top}\boldsymbol{Z}) = c\langle \boldsymbol{X}, \boldsymbol{Z} \rangle + \langle \boldsymbol{Y}, \boldsymbol{Z} \rangle. \end{aligned}$$

The inner product naturally induces an associated norm $X \mapsto \sqrt{\langle X, X \rangle}$. Viewing $X \in \mathbb{R}^{n \times d}$ as a data matrix whose rows are the vectors $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$, we see that

$$\langle \boldsymbol{X}, \boldsymbol{X} \rangle \; = \; \mathrm{tr}(\boldsymbol{X}^{ op} \boldsymbol{X}) \; = \; \mathrm{tr}\left(\sum_{i=1}^n \boldsymbol{x}_i \boldsymbol{x}_i^{ op}\right) \; = \; \sum_{i=1}^n \mathrm{tr}(\boldsymbol{x}_i \boldsymbol{x}_i^{ op}) \; = \; \sum_{i=1}^n \mathrm{tr}(\boldsymbol{x}_i^{ op} \boldsymbol{x}_i) \; = \; \sum_{i=1}^n \|\boldsymbol{x}_i\|_2^2 \, .$$

Above, we make use of the fact that for any matrices $A, B \in \mathbb{R}^{n \times d}$,

$$\operatorname{tr}(\boldsymbol{A}^{\mathsf{T}}\boldsymbol{B}) = \operatorname{tr}(\boldsymbol{B}\boldsymbol{A}^{\mathsf{T}}),$$

which is called the *cyclic property* of the matrix trace. Therefore, the square of the induced norm is simply the sum-of-squares of the entries in the matrix. We call this norm the *Frobenius norm* of the matrix \mathbf{X} , and denote it by $\|\mathbf{X}\|_{\text{F}}$. It can be checked that this matrix inner product and norm are exactly the same as the Euclidean inner product and norm when you view the $n \times d$ matrices as *nd*-dimensional vectors obtained by stacking columns on top of each other (or rows side-by-side).

Suppose a matrix \boldsymbol{X} has thin SVD $\boldsymbol{X} = \boldsymbol{U}\boldsymbol{S}\boldsymbol{V}^{\top}$, where $\boldsymbol{S} = \text{diag}(\sigma_1, \sigma_2, \dots, \sigma_r)$, and $\boldsymbol{U}^{\top}\boldsymbol{U} = \boldsymbol{V}^{\top}\boldsymbol{V} = \boldsymbol{I}$. Then its squared Frobenius norm is

$$\|\boldsymbol{X}\|_{\mathrm{F}}^2 = \operatorname{tr}(\boldsymbol{V}\boldsymbol{S}\boldsymbol{U}^{ op}\boldsymbol{U}\boldsymbol{S}\boldsymbol{V}^{ op}) = \operatorname{tr}(\boldsymbol{V}\boldsymbol{S}^2\boldsymbol{V}^{ op}) = \operatorname{tr}(\boldsymbol{S}^2\boldsymbol{V}^{ op}\boldsymbol{V}) = \operatorname{tr}(\boldsymbol{S}^2) = \sum_{i=1}^r \sigma_i^2,$$

the sum-of-squares of X's singular values.

Best rank-k approximation in Frobenius norm

Let the SVD of a matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ be given by $\mathbf{A} = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}$. Here, we assume $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$. For any $k \leq r$, a rank-k SVD of \mathbf{A} is obtained by just keeping the first k components (corresponding to the k largest singular values), and this yields a matrix $\mathbf{A}_k \in \mathbb{R}^{n \times d}$ with rank k:

$$\boldsymbol{A}_{k} := \sum_{i=1}^{k} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{\top}.$$
(5.1)

This matrix A_k is the best rank-k approximation to A in the sense that it minimizes the Frobenius norm error over all matrices of rank (at most) k. This is remarkable because the set of matrices of rank at most k is not a set over which it is typically easy to optimize. (For instance, it is not a convex set.) **Theorem 5.7.** Let $A \in \mathbb{R}^{n \times d}$ be any matrix, with SVD as given in Theorem 5.6, and A_k as defined in (5.1). Then:

- 1. The rows of A_k are the orthogonal projections of the corresponding rows of A to the kdimensional subspace spanned by top-k right singular vectors v_1, v_2, \ldots, v_k of A.
- 2. $\|\boldsymbol{A} \boldsymbol{A}_k\|_{\mathrm{F}} \leq \min\{\|\boldsymbol{A} \boldsymbol{B}\|_{\mathrm{F}} : \boldsymbol{B} \in \mathbb{R}^{n \times d}, \operatorname{rank}(\boldsymbol{B}) \leq k\}.$
- 3. If $a_1, a_2, \ldots, a_n \in \mathbb{R}^d$ are the rows of A, and $\hat{a}_1, \hat{a}_2, \ldots, \hat{a}_n \in \mathbb{R}^d$ are the rows of A_k , then

$$\sum_{i=1}^n \|\boldsymbol{a}_i - \hat{\boldsymbol{a}}_i\|_2^2 \leq \sum_{i=1}^n \|\boldsymbol{a}_i - \boldsymbol{b}_i\|_2^2$$

for any vectors $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n \in \mathbb{R}^d$ that span a subspace of dimension at most k.

Proof. The orthogonal projection to the subspace W_k spanned by $\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_k$ is given by $\boldsymbol{x} \mapsto \boldsymbol{V}_k \boldsymbol{V}_k^{\mathsf{T}} \boldsymbol{x}$, where $\boldsymbol{V}_k := [\boldsymbol{v}_1 | \boldsymbol{v}_2 | \cdots | \boldsymbol{v}_k]$. Since $\boldsymbol{V}_k \boldsymbol{V}_k^{\mathsf{T}} \boldsymbol{v}_i = \boldsymbol{v}_i$ for $i \in [k]$ and $\boldsymbol{V}_k \boldsymbol{V}_k^{\mathsf{T}} \boldsymbol{v}_i = \boldsymbol{0}$ for i > k,

$$oldsymbol{A}oldsymbol{V}_koldsymbol{V}_k^ op = \sum_{i=1}^r \sigma_ioldsymbol{u}_ioldsymbol{v}_i^ opoldsymbol{V}_koldsymbol{V}_k^ op = \sum_{i=1}^k \sigma_ioldsymbol{u}_ioldsymbol{v}_i^ op = oldsymbol{A}_koldsymbol{A}_koldsymbol{V}_koldsymbol{V}_k^ op = \sum_{i=1}^k \sigma_ioldsymbol{u}_ioldsymbol{v}_i^ op = oldsymbol{A}_koldsymbol{A}_koldsymbol{A}_koldsymbol{V}_koldsymbol{V}_k^ op = \sum_{i=1}^k \sigma_ioldsymbol{u}_ioldsymbol{v}_i^ op = oldsymbol{A}_koldsymbol{A}_koldsymbol{A}_koldsymbol{V}_koldsymbol{V}_k^ op = \sum_{i=1}^k \sigma_ioldsymbol{u}_ioldsymbol{v}_i^ op = oldsymbol{A}_koldsymbo$$

This equality says that the rows of A_k are the orthogonal projections of the rows of A onto W_k . This proves the first claim.

Consider any matrix $\boldsymbol{B} \in \mathbb{R}^{n \times d}$ with rank $(\boldsymbol{B}) \leq k$, and let W be the subspace spanned by the rows of \boldsymbol{B} . Let Π_W denotes the orthogonal projector to W. Then clearly we have $\|\boldsymbol{A} - \boldsymbol{A}\Pi_W\|_{\mathrm{F}} \leq \|\boldsymbol{A} - \boldsymbol{B}\|_{\mathrm{F}}$. This means that

$$\min_{\substack{\boldsymbol{B}\in\mathbb{R}^{n\times d}:\\\operatorname{rank}(\boldsymbol{B})\leq k}} \|\boldsymbol{A}-\boldsymbol{B}\|_{\mathrm{F}}^{2} = \min_{\substack{\operatorname{subspace } W\subseteq\mathbb{R}^{d}:\\\dim W\leq k}} \|\boldsymbol{A}-\boldsymbol{A}\boldsymbol{\Pi}_{W}\|_{\mathrm{F}}^{2} = \min_{\substack{\operatorname{subspace } W\subseteq\mathbb{R}^{d}:\\\dim W\leq k}} \sum_{i=1}^{n} \|(\boldsymbol{I}-\boldsymbol{\Pi}_{W})\boldsymbol{a}_{i}\|_{2}^{2},$$

where $a_i \in \mathbb{R}^d$ denotes the *i*-th row of A. In fact, it is clear that we can take the minimization over subspaces W with dim W = k. Since the orthogonal projector to a subspace of dimension k is of the form UU^{\top} for some $U \in \mathbb{R}^{d \times k}$ satisfying $U^{\top}U = I$, it follows that the expression above is the same as

$$\min_{\substack{oldsymbol{U}\in\mathbb{R}^{d imes k}:\ oldsymbol{U}=oldsymbol{I}}} \sum_{i=1}^n \|(oldsymbol{I}-oldsymbol{U}oldsymbol{U}^ op)oldsymbol{a}_i\|_2^2 \,.$$

Observe that $\frac{1}{n} \sum_{i=1}^{n} a_i a_i^{\top} = \frac{1}{n} A^{\top} A$, so Theorem 5.6 implies that top-k eigenvectors of the $\frac{1}{n} \sum_{i=1}^{n} a_i a_i^{\top}$ are top-k right singular vectors of A. By Theorem 5.4, the minimization problem above is achieved when $U = V_k$. This proves the second claim. The third claim is just a different interpretation of the second claim.

Best rank-k approximation in spectral norm

Another important matrix norm is the *spectral norm*: for a matrix $X \in \mathbb{R}^{n \times d}$,

$$\|oldsymbol{X}\|_2 \mathrel{\mathop:}= \max_{oldsymbol{u}\in S^{d-1}} \|oldsymbol{X}oldsymbol{u}\|_2$$
 .

By Theorem 5.6, the spectral norm of X is equal to its largest singular value.

Fact 5.6. Let the SVD of a matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ be as given in Theorem 5.6, with $r = \operatorname{rank}(\mathbf{A})$.

• For any $\boldsymbol{x} \in \mathbb{R}^d$,

$$\| oldsymbol{A} oldsymbol{x} \|_2 \ \le \ \sigma_1 \| oldsymbol{x} \|_2$$

• For any \boldsymbol{x} in the span of $\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_r$,

$$\|m{A}m{x}\|_{2} \ \geq \ \sigma_{r}\|m{x}\|_{2}$$
 .

Unlike the Frobenius norm, the spectral norm does not arise from a matrix inner product. Nevertheless, it can be checked that it has the required properties of a norm: it satisfies $||c\mathbf{X}||_2 = |c|||\mathbf{X}||_2$ and $||\mathbf{X} + \mathbf{Y}||_2 \le ||\mathbf{X}||_2 + ||\mathbf{Y}||_2$, and the only matrix with $||\mathbf{X}||_2 = 0$ is $\mathbf{X} = \mathbf{0}$. Because of this, the spectral norm also provides a metric between matrices, $\operatorname{dist}(\mathbf{X}, \mathbf{Y}) = ||\mathbf{X} - \mathbf{Y}||_2$, satisfying the properties given in Section 1.1.

The rank-k SVD of a matrix A also provides the best rank-k approximation in terms of spectral norm error.

Theorem 5.8. Let $A \in \mathbb{R}^{n \times d}$ be any matrix, with SVD as given in Theorem 5.6, and A_k as defined in (5.1). Then $\|A - A_k\|_2 \le \min\{\|A - B\|_2 : B \in \mathbb{R}^{n \times d}, \operatorname{rank}(B) \le k\}$.

Proof. Since the largest singular value of $\mathbf{A} - \mathbf{A}_k = \sum_{i=k+1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^{\mathsf{T}}$ is σ_{k+1} , it follows that

$$\|\boldsymbol{A} - \boldsymbol{A}_k\|_2 = \sigma_{k+1}$$

Consider any matrix $\mathbf{B} \in \mathbb{R}^{n \times d}$ with rank $(\mathbf{B}) \leq k$. Its null space ker (\mathbf{B}) has dimension at least $d - \operatorname{rank}(\mathbf{B}) \geq d - k$. On the other hand, the span W_{k+1} of $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_{k+1}$ has dimension k+1. Therefore, there must be some non-zero vector $\mathbf{x} \in \ker(\mathbf{B}) \cap W_{k+1}$. For any such vector \mathbf{x} ,

$$\begin{split} \|\boldsymbol{A} - \boldsymbol{B}\|_{2} &\geq \frac{\|(\boldsymbol{A} - \boldsymbol{B})\boldsymbol{x}\|_{2}}{\|\boldsymbol{x}\|_{2}} \quad \text{(by Fact 5.6)} \\ &\geq \frac{\|\boldsymbol{A}\boldsymbol{x}\|_{2}}{\|\boldsymbol{x}\|_{2}} \quad \text{(since } \boldsymbol{x} \text{ is in the null space of } \boldsymbol{B}) \\ &= \frac{\sqrt{\|\boldsymbol{A}_{k+1}\boldsymbol{x}\|_{2}^{2} + \|(\boldsymbol{A} - \boldsymbol{A}_{k+1})\boldsymbol{x}\|_{2}^{2}}}{\|\boldsymbol{x}\|_{2}} \\ &\geq \frac{\|\boldsymbol{A}_{k+1}\boldsymbol{x}\|_{2}}{\|\boldsymbol{x}\|_{2}} \\ &\geq \frac{\|\boldsymbol{A}_{k+1}\boldsymbol{x}\|_{2}}{\|\boldsymbol{x}\|_{2}} \\ &\geq \sigma_{k+1} \quad \text{(by Fact 5.6)} \,. \end{split}$$

Therefore $\|\boldsymbol{A} - \boldsymbol{B}\|_2 \geq \|\boldsymbol{A} - \boldsymbol{A}_k\|_2$.